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Abstract
In this paper, we study the oscillatory and asymptotic behavior of a class of first-order
neutral delay impulsive differential systems and establish some new sufficient
conditions for oscillation and sufficient and necessary conditions for the asymptotic
behavior of the same impulsive differential system. To prove the necessary part of the
theorem for asymptotic behavior, we use the Banach fixed point theorem and the
Knaster–Tarski fixed point theorem. In the conclusion section, we mention the future
scope of this study. Finally, two examples are provided to show the defectiveness and
feasibility of the main results.
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1 Introduction
Nowadays impulsive differential systems are attracting a lot of attention. They appear in
several real world problems (see, for instance, [1–3]). In general, it is well known that
several natural phenomena are driven by differential equations. However, the description
of some real world problems requires studies on impulsive differential systems, a subject
very interesting from the mathematical point of view. Examples of the aforementioned
phenomena are related to theoretical physics, pharmacokinetics, population dynamics,
biotechnology processes, biological systems, mechanical systems, control theory, chem-
istry, engineering (we also stress that the modeling of these phenomena is suitably for-
mulated by evolutive partial differential equations and, moreover, moment problem ap-
proaches appear also as a natural instrument in control theory of neutral type systems;
see [4–6] and [7–9], respectively).

The literature related to impulsive differential equations is very wide. Here we mention
some recent developments in this field.
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In [10], Shen and Wang considered impulsive differential systems of the following
form:

⎧
⎨

⎩

υ ′(ξ ) + b1(ξ )υ(ξ – μ1) = 0, ξ �= αi, ξ ≥ ξ0,

υ(α+
i ) – υ(α–

i ) = Ii(υ(αi)), i ∈ N,
(1)

where b ∈ C(R,R) and Ii ∈ C(R,R) for i ∈ N, and established some sufficient conditions
that ensure the oscillatory and asymptotic behavior of (1).

In [11], Graef et al. studied the impulsive system

⎧
⎨

⎩

(υ(ξ ) – b(ξ )υ(ξ – μ))′ + b1(ξ )|υ(ξ – μ1)|λ sgnυ(ξ – μ1) = 0, ξ ≥ ξ0,

υ(α+
i ) = biυ(αi), i ∈N,

(2)

assuming that b(ξ ) ∈ PC([ξ0,∞),R+) (that is, b(ξ ) is piecewise continuous in [ξ0,∞)), es-
tablished some new sufficient conditions for the oscillation of (2).

In [12], the authors established some new oscillation criteria for first order impulsive
neutral delay differential systems of the form

⎧
⎨

⎩

(υ(ξ ) – b(ξ )υ(ξ – μ))′ + b1(ξ )υ(ξ – μ1) – b2(ξ )υ(ξ – μ2) = 0, μ1 ≥ μ2 > 0,

υ(α+
i ) = Ii(υ(αi)), i ∈ N,

(3)

under the assumptions that b(ξ ) ∈ PC([ξ0,∞),R+) and bi ≤ Ii(υ)
υ

≤ 1.
Karpuz et al. in [13] extended the results contained in [12] by taking the non-

homogeneous counterpart of system (3) with variable delays.
Oscillation and non-oscillation properties of second-order linear neutral differential

equations with impulses were studied by Tripathy and Santra in [14], where the authors
considered the problem

⎧
⎨

⎩

(υ(ξ ) – bυ(ξ – μ))′′ + b1υ(ξ – μ1) = 0, ξ �= αi, i ∈N,

�(υ(αi) – b̃υ(αi – μ))′ + b2υ(αi – μ1) = 0, i ∈N,
(4)

where all coefficients and delays are constant. Other sufficient and necessary conditions
for the oscillatory or asymptotic behavior of second-order neutral delay differential equa-
tions with impulses were obtained in [15], where Tripathy and Santra studied systems of
the form

⎧
⎨

⎩

(p(ξ )(υ(ξ ) + b(ξ )υ(ξ – μ))′)′ + b1(ξ )g(υ(ξ – μ1)) = 0, ξ �= αi, i ∈N,

�(p(αi)(υ(αi) + b(αi)υ(αi – μ))′) + b2(αi)g(υ(αi – μ1)) = 0, i ∈N.
(5)

In [15], in particular, the authors were interested in oscillating systems that, after a per-
turbation by instantaneous change of state, remain oscillating.
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In [16], Santra and Tripathy investigated the oscillatory or asymptotic behavior of the
solutions for first-order neutral delay differential system

⎧
⎪⎪⎨

⎪⎪⎩

(υ(ξ ) – b(ξ )υ(ξ – μ))′ + b1(ξ )g(υ(ξ – μ1)) = 0, ξ �= αi, ξ ≥ ξ0,

υ(α+
i ) = Ii(υ(αi)), i ∈ N,

υ(α+
i – μ1) = Ii(υ(αi – μ1)), i ∈ N,

(6)

for different values of the neutral coefficient b.
We also mention the paper [17] in which Santra and Dix, using the Lebesgue dominated

convergence theorem, obtained sufficient and necessary conditions for the oscillation of
the following second-order neutral differential equations with impulses:

⎧
⎨

⎩

(p(ξ )(h′(ξ ))γ )′ +
∑m

j=1 rj(ξ )gj(υ(μ̃j(ξ ))) = 0, ξ ≥ ξ0, ξ �= αi, i ∈ N,

�(p(αi)(h′(αi))γ ) +
∑m

j=1 r̃j(αi)gj(υ(μ̃j(αi))) = 0,
(7)

where

h(ξ ) = υ(ξ ) + b(ξ )υ
(
μ(ξ )

)
, �υ(ξ ) = lim

η→ξ+
υ(η) – lim

η→ξ–
υ(η), –1 ≤ b(ξ ) ≤ 0.

In line with the contents of [17], Tripathy and Santra in [18] examined oscillation and
non-oscillation properties for the solutions of the following forced nonlinear neutral im-
pulsive differential system:

⎧
⎨

⎩

(p(ξ )(u(ξ ) + b(ξ )υ(ξ – μ))′)′ + r(ξ )g(u(ξ – μ1)) = f (ξ ), ξ �= αi, i ∈N,

�(p(αi)(υ(αi) + b(αi)υ(αi – μ))′) + r̃(αi)g(υ(αi – μ1)) = f̃ (αi), i ∈ N,
(8)

for different values of b(ξ ) and established sufficient conditions for the existence of positive
bounded solutions of system (8).

Finally we mention the recent work [19] in which Tripathy and Santra studied the char-
acterizations for the oscillation of second-order neutral delay impulsive differential system

⎧
⎨

⎩

(p(ξ )(h′(ξ ))γ )′ +
∑m

j=1 b̃j(ξ )υαj (μ̃j(ξ )) = 0, ξ ≥ ξ0, ξ �= αi,

�(p(αi)(h′(αi))γ ) +
∑m

j=1 b̃j(αi)υαj (μ̃j(αi)) = 0, i ∈N,
(9)

where h(ξ ) = υ(ξ ) + b(ξ )υ(μ(ξ )) and –1 < b(ξ ) ≤ 0.
For further details on neutral impulsive differential equations and for recent results re-

lated to the oscillation theory for delay differential equations, we refer the reader to the
papers [20–53] and to the references therein. In particular, the study of oscillation of half-
linear/Emden–Fowler (neutral) differential equations with deviating arguments (delayed
or advanced arguments or mixed arguments) has numerous applications in physics and
engineering (e.g., half-linear/Emden–Fowler differential equations arise in a variety of real
world problems such as in the study of p-Laplace equations, chemotaxis models, and so
forth); see, e.g., the papers [4, 44–47, 49, 50, 52, 53] for more details. In particular, by
using different methods, the following papers were concerned with the oscillation of var-
ious classes of half-linear/Emden–Fowler differential equations and half-linear/Emden–
Fowler differential equations with different neutral coefficients (e.g., the paper [43] was
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concerned with neutral differential equations assuming that 0 ≤ b(ξ ) < 1 and b(ξ ) > 1;
in [44] the authors studied neutral differential equations assuming that 0 ≤ b(ξ ) < 1; in
[46], the authors considered neutral differential equations assuming that b(ξ ) is nonpos-
itive; in [47, 51] the author considered neutral differential equations in the case where
b(ξ ) > 1; the paper [50] was concerned with neutral differential equations assuming that
0 ≤ b(ξ ) ≤ q0 < ∞ and b(ξ ) > 1; in [52] the authors considered neutral differential equa-
tions in the case where 0 ≤ b(ξ ) ≤ q0 < ∞; in [53] the author studied neutral differential
equations in the case when 0 ≤ b(ξ ) = b0 �= 1; whereas the paper [49] was concerned with
differential equations with a nonlinear neutral term assuming that 0 ≤ b(ξ ) ≤ a < 1), which
is the same research topic as that of this paper.

Motivated by the aforementioned findings, in this paper we prove sufficient and neces-
sary conditions for oscillatory or asymptotic behavior of solutions to a first-order nonlin-
ear impulsive differential system in the form

⎧
⎨

⎩

(υ(ξ ) + b(ξ )υ(ξ – μ))′ + b1(ξ )G(υ(ξ – μ1)) = f (ξ ), ξ �= αi, i ∈N,

�(υ(αi) + b(αi)υ(αi – μ)) + b2(αi)G(υ(αi – μ1)) = g(αi), i ∈ N,
(E)

where
(a) μ > 0, μ1 ≥ 0 are real constants; b1, b2 ∈ C(R+,R+), b ∈ PC(R+,R);
(b) f , g ∈ C(R,R), G ∈ C(R,R) is nondecreasing with υG(υ) > 0 for υ �= 0;
(c) αi for i ∈N with α1 < α2 < · · · < αi <... and limi→∞ αi = ∞ are fixed moments of

impulsive effect;
(d) � is the difference operator defined by

�υ(a) = lim
η→a+

υ(η) – lim
η→a– υ(η);

(e) there exists F ∈ C(R,R) such that f (ξ ) = F ′(ξ ) and g(αi) = �F(αi), i ∈N.
Next, we are listing all the assumptions/conditions which we need to study the oscillation
and non-oscillation properties of the solution of system (E).

(A1) limξ→∞ F(ξ ) = M, |M| < ∞.
(A2) F(ξ ) changes sign with –∞ < lim infξ→∞ F(ξ ) < 0 < lim supξ→∞ F(ξ ) < ∞.
(A3) F(ξ ) changes sign with F+(ξ ) = max{F(ξ ), 0}, F–(ξ ) = max{–F(ξ ), 0}.
(A4) G is odd with G(uv) = G(u)G(v), and G(u) + G(v) ≥ λG(u + v) for u, v,λ > 0.
(A5)

∫ ∞
ς

B1(ξ )G(F+(ξ – μ1)) dξ +
∑∞

i=1 B2(αi)G(F+(αi – μ1)) = ∞, where ς > 0, ξ > μ,
B1(ξ ) = min{b1(ξ ), b1(ξ – μ)} and B2(αi) = min{b2(αi), b2(αi – μ)}.

(A6)
∫ ∞
ς

B1(ξ )G(F–(ξ – μ1)) dξ +
∑∞

i=1 B2(αi)G(F–(αi – μ1)) = ∞, where ς > 0.
(A7)

∫ ∞
ς

b1(ξ )G(F+(ξ – μ1)) dξ +
∑∞

i=1 b2(αi)G(F+(αi – μ1)) = ∞, where ς > 0.
(A8)

∫ ∞
ς

b1(ξ )G(F–(ξ – μ1)) dξ +
∑∞

i=1 b2(αi)G(F–(αi – μ1)) = ∞, where ς > 0.
(A9)

∫ ∞
ς

b1(ξ )G(F+(ξ + μ – μ1)) dξ +
∑∞

i=1 b2(αi)G(F+(αi + μ – μ1)) = ∞, where ς > 0.
(A10)

∫ ∞
ς

b1(ξ )G(F–(ξ + μ – μ1)) dξ +
∑∞

i=1 b2(αi)G(F–(αi + μ – μ1)) = ∞, where ς > 0.
(A11) G is superlinear and G(u)

uγ ≥ G(v)
vγ for u ≥ v and γ > 1.

(A12)
∫ ∞
ς

b1(ξ )G(F+(ξ+μ–μ1))
[F+(ξ+μ–μ1)]γ dξ +

∑∞
i=1

b2(αi)G(F+(αi+μ–μ1))
c–γ [F+(αi+μ–μ1)]γ = ∞, where ς > 0 and 0 < c ≤ 1.

(A13)
∫ ∞
ς

b1(ξ )G(F–(ξ+μ–μ1))
[F–(ξ+μ–μ1)]γ dξ +

∑∞
i=1

b2(αi)G(F–(αi+μ–μ1))
c–γ [F–(αi+μ–μ1)]γ = ∞, where ς > 0 and 0 < c ≤ 1.

(A14)
∫ ∞

0 b1(ξ ) dξ +
∑∞

i=1 b2(αi) = ∞.
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2 Sufficient conditions for oscillation
In this section, we establish sufficient conditions for the oscillation of the impulsive system
(E).

Theorem 2.1 Under the assumptions 0 ≤ b(ξ ) ≤ a < ∞ for ξ ∈ R+ and (A2)–(A6), every
solution of system (E) is oscillatory.

Proof Let υ(ξ ) be a solution of (E). For the sake of contradiction, let the solution be non-
oscillatory. So, there exists ξ0 > ρ = max{μ,μ1} such that υ(ξ ) > 0, υ(ξ – μ) > 0 and υ(ξ –
μ1) > 0 for ξ ≥ ξ0. Setting

h(ξ ) = υ(ξ ) + b(ξ )υ(ξ – μ), ξ �= αi, i ∈N

h(αi) = υ(αi) + b(αi)υ(αi – μ), i ∈N, (10)

and

H(ξ ) = h(ξ ) – F(ξ ), H(αi) = h(αi) – F(αi), (11)

it follows from (E) that

H ′(ξ ) = –b1(ξ )G
(
υ(ξ – μ1)

) ≤ 0, ξ �= αi, i ∈N, (12)

�H(αi) = –b2(αi)G
(
υ(αi – μ1)

) ≤ 0, i ∈N, (13)

for ξ ≥ ξ1 > ξ0 +μ1. Consequently, H(ξ ) is nonincreasing and monotonic on [ξ2,∞), where
ξ2 > ξ1. So, we have the following two possible cases.

Case (i). Let H(ξ ) < 0 for ξ ≥ ξ2. Since h(ξ ) > 0, then F(ξ ) > 0 for ξ ≥ ξ2, which is a
contradiction.

Case (ii). Let H(ξ ) > 0 for ξ ≥ ξ2. Ultimately, h(ξ ) > F(ξ ) and hence h(ξ ) > max{0, F(ξ )} =
F+(ξ ) for ξ ≥ ξ2. Using (11), the first equation of system (E) becomes

0 = H ′(ξ ) + b1(ξ )G
(
υ(ξ – μ1)

)
+ G(a)

[
H ′(ξ – μ) + b1(ξ – μ)G

(
υ(ξ – μ – μ1)

)]
(14)

for ξ ≥ ξ2. Using (A4), (14) becomes

0 ≥ H ′(ξ ) + G(a)H ′(ξ – μ) + B1(ξ )
[
G

(
υ(ξ – μ1)

)
+ G

(
aυ(ξ – μ – μ1)

)]

≥ H ′(ξ ) + G(a)H ′(ξ – μ) + λB1(ξ )G
(
h(ξ – μ1)

)
(15)

for ξ ≥ ξ3 > ξ2 + μ1. Similarly, from the second equation of system (E), we get

0 ≥ �H(αi) + G(a)�H(αi – μ) + λB2(αi)G
(
h(αi – μ1)

)
(16)



Santra et al. Advances in Difference Equations        (2021) 2021:283 Page 6 of 20

for i ∈ N. Integrating (15) from ξ3 to +∞, we have

λ

∫ ∞

ξ3

B1(ξ )G
(
h(ξ – μ1)

)
dξ

≤ –
[
H(ξ ) + G(a)H(ξ – μ)

]∞
ξ3

+
∑

ξ3≤αi<∞
�

[
H(αi) + G(a)�H(αi – μ)

]

≤ –
[
H(ξ ) + G(a)H(ξ – μ)

]∞
ξ3

– λ
∑

ξ3≤αi<∞
B2(αi)G

(
h(αi – μ1)

)
.

Since limξ→∞ H(ξ ) exists, then the above inequality becomes

λ

∫ ∞

ξ3

B1(ξ )G
(
h(ξ – μ1)

)
dξ + λ

∑

ξ3≤αi<∞
B2(αi)G

(
h(αi – μ1)

)
< ∞.

Consequently,

λ

[∫ ∞

ξ3

B1(ξ )G
(
F+(ξ – μ1)

)
dξ +

∑

ξ3≤αi<∞
B2(αi)G

(
F+(αi – μ1)

)
]

< ∞,

which contradicts (A5).
If υ(ξ ) < 0 for ξ ≥ ξ0, then we set υ1(ξ ) = –υ(ξ ) for ξ ≥ ξ0 in (E), and we find

⎧
⎨

⎩

(υ1(ξ ) + b(ξ )υ1(ξ – μ))′ + b1(ξ )G(υ1(ξ – μ1)) = f̃ (ξ ), ξ �= μk , i ∈N,

	(υ1(αi) + b(αi)υ1(αi – μ)) + b2(αi)G(υ1(αi – μ1)) = g̃(αi), i ∈N,
(̃E)

where f̃ (ξ ) = –f (ξ ), g̃(αi) = –g(αi) because of (A4). Letting F̃(ξ ) = –F(ξ ), we have that

–∞ < lim inf
i→∞ F̃(ξ ) < 0 < lim sup

i→∞
F̃(ξ ) < ∞

and F̃ ′(ξ ) = f̃ (ξ ), �F̃(αi) = g̃(αi) hold. Hence, proceeding as in the positive solution, we
find a contradiction to (A6).

Thus, the theorem is proved. �

Theorem 2.2 Under the assumptions –1 ≤ b(ξ ) ≤ 0 for ξ ∈ R+, (A2)–(A4), and (A7)–
(A10), every solution of (E) oscillates.

Proof To prove by contradiction, we follow the proof of Theorem 2.1 to get that H(ξ ) is
monotonic on [ξ2,∞). So, we have the following two possible cases.

Case (i). Let H(ξ ) < 0 for ξ ≥ ξ2. Then, for ξ ≥ ξ2,

–υ(ξ – μ) ≤ b(ξ )υ(ξ – μ) ≤ h(ξ ) < F(ξ ),

we have υ(ξ – μ1) > –F(ξ + μ – μ1), ξ ≥ ξ3 > ξ2 and hence υ(ξ – μ1) > F–(ξ + μ – μ1),
ξ ≥ ξ3 > ξ2. Thus (12) and (13) are reduced to

H ′(ξ ) + b1(ξ )G
(
F–(ξ + μ – μ1)

) ≤ 0, ξ �= αi, i ∈N,

�H(αi) + b2(αi)G
(
F–(αi + μ – μ1)

) ≤ 0, i ∈N, (17)



Santra et al. Advances in Difference Equations        (2021) 2021:283 Page 7 of 20

for ξ ≥ ξ4. Next, we are going to prove –∞ < limξ→∞ H(ξ ) < 0. If not, letting
limξ→∞ H(ξ ) = ∞ for ξ ≥ ξ4. For 0 < ε < λ–γ , where λ > γ > 0, there exists ξ5 > ξ4 such that
F(ξ ) < γ + ε when ξ ≥ ξ5. Further, there is ξ6 > ξ5 such that ξ ≥ ξ6 implies that H(ξ ) < –λ,
that is, υ(ξ ) ≤ υ(ξ – μ) – λ + γ + ε. For ξ ≥ ξ6 + jμ, we have υ(ξ ) ≤ ξ – jμ + j(γ + ε – λ).
In particular, υ(ξ6 + jμ) ≤ υ(ξ6) + j(γ + ε – λ) < 0 for large ξ , a contradiction to the fact
υ(ξ ) > 0 for ξ ≥ ξ0. Hence –∞ < l < 0. Integrating (17) from ξ6 to +∞, we get

∫ ∞

ξ6

b1(ξ )G
(
F–(ξ + μ – μ1)

)
dξ +

∑

ξ6≤αi<∞
b2(αi)G

(
F–(αi + μ – μ1)

)
< ∞,

which contradicts (A10).
Case (ii). Let H(ξ ) > 0 for ξ ≥ ξ2. We note that υ(ξ ) ≥ h(ξ ) > F(ξ ) for ξ ≥ ξ3 > ξ2. In this

case, limξ→∞ H(ξ ) exists. Because it happens that υ(ξ ) > F+(ξ ) for ξ ≥ ξ3, then (12) and
(13) can be viewed as

H ′(ξ ) + b1(ξ )G
(
F+(ξ – μ1)

) ≤ 0, ξ �= αi, i ∈N,

�H(αi) + b2(αi)G
(
F+(αi – μ1)

) ≤ 0, i ∈N. (18)

Integrating (18) from ξ3 to +∞, we have

∫ ∞

ξ3

b1(ξ )G
(
F+(ξ – μ1)

)
dξ +

∑

ξ3≤αi<∞
b2(αi)G

(
F+(αi – μ1)

)
< ∞,

which is a contradiction to (A7).
The case υ(ξ ) < 0 for ξ ≥ ξ0 is similar. Hence the details are omitted.
Thus, the theorem is proved. �

Theorem 2.3 Under the assumption –∞ < –b ≤ b(ξ ) ≤ –1 for ξ ∈ R+ and b > 0, and all
the conditions of Theorem 2.2, every bounded solution of (E) oscillates.

Proof The proof of the theorem can be obtained from that of Theorem 2.2. Hence the
details are omitted. �

Remark 2.1 In Theorems 2.1–2.3, G could be linear, sublinear, or superlinear.

Remark 2.2 In Theorem 2.3, we are restricted on the solution of (E) to ensure the oscil-
lation of (E). If we do not want to restrict on the solution, then G should be superlinear.
Hence, we have the following result.

Theorem 2.4 Under the assumptions –∞ < –b ≤ b(ξ ) ≤ –1 for ξ ∈R+, b > 0, and μ ≥ μ1,
and (A2), (A3), (A4), (A7), (A8), (A11)–(A13), every solution of (E) oscillates.

Proof The proof of the theorem follows from the proof of Theorem 2.2 except for the case
when H(ξ ) < 0, h(ξ ) < 0 for ξ ≥ ξ3. Since h(ξ ) ≥ b(ξ )υ(ξ – μ), then

H(ξ ) = h(ξ ) – F(ξ ) ≥ b(ξ )υ(ξ – μ) – F(ξ ) for ξ ≥ ξ3
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implies that H(ξ ) – b(ξ )υ(ξ – μ) ≥ –F(ξ ) for ξ ≥ ξ3. Clearly, H(ξ ) – b(ξ )υ(ξ – μ) < 0 is not
possible due to (A3) and the fact that H(ξ ) – b(ξ )υ(ξ –μ) = υ(ξ ) – F(ξ ) ≥ –F(ξ ) if and only
if υ(ξ ) > 0 for ξ ≥ ξ3. Ultimately, H(ξ ) – b(ξ )υ(ξ – μ) > 0 and hence

H(ξ ) – b(ξ )υ(ξ – μ) ≥ max
{

0, –F(ξ )
}

= F–(ξ ),

that is,

H(ξ ) ≥ b(ξ )υ(ξ – μ) + F–(ξ ) ≥ –bυ(ξ – μ) + F–(ξ ) > –bυ(ξ – μ) (19)

for ξ ≥ ξ4 > ξ3. Since H(ξ ) is decreasing and μ ≥ μ1, then it follows that

–H(ξ ) ≤ –H(ξ + μ – μ1) < bυ(ξ – μ1) for ξ ≥ ξ4.

Therefore,

G(υ(ξ – μ1))
[–H(ξ )]γ

≥ G(υ(ξ – μ1))
bγ υγ (ξ – μ1)

for ξ ≥ ξ4. (20)

Consequently,

–
d

dξ

(
–H(ξ )

)1–γ = –(1 – γ )
(
–H(ξ )

)–γ (
–H ′(ξ )

)

= (γ – 1)
(
–H(ξ )

)–γ b1(ξ )G
(
υ(ξ – μ1)

)

≥ (γ – 1)b1(ξ )
G(υ(ξ – μ1))
bγ υγ (ξ – μ1)

for ξ ≥ ξ4

due to (12) and (20). We may note from (19) that 0 > H(ξ ) > –bυ(ξ – μ) + F–(ξ ) implies
that υ(ξ – μ1) > b–1F–(ξ + μ – μ1), and hence

–
d

dξ

(
–H(ξ )

)1–γ ≥ (γ – 1)b1(ξ )
G(b–1F–(ξ + μ – μ1))

bγ [b–1F–(ξ + μ – μ1)]γ

for ξ ≥ ξ4 due to (A11). Consequently,

(γ – 1)
∫ ξ

ξ4

b1(s)
G(b–1F–(s + μ – μ1))

[F–(s + μ – μ1)]γ
ds

≤ –
[
–w1–γ (s)

]ξ

ξ4
+

∑

ξ4≤αi<ξ

�
[
–w1–γ (αi)

]
. (21)

Using the inequality

δ2
1–γ – δ1

1–γ ≤ (1 – γ )b–γ (δ2 – δ1) for δ1 < δ2 and γ > 1,

it follows that

�
[
–H(αi)

]1–γ =
[
–H(αi + 0)

]1–γ –
[
–H(αi – 0)

]1–γ

≤ (1 – γ )
[
–H(αi + 0)

]–γ
�

[
–H(αi)

]
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= (1 – γ )b2(αi)
[
–H(αi + 0)

]–γ G
(
υ(αi – μ1)

)

= (1 – γ )b2(αi)
G(υ(αi – μ1))

[–H(αi)]γ
[–H(αi)]γ

[–H(αi + 0)]γ

≤ (1 – γ )b2(αi)
G(b–1F–(αi + μ – μ1))

[F–(αi + μ – μ1)]γ
[–H(αi)]γ

[–H(αi + 0)]γ
(22)

due to (13) and (20). From (13), it follows that �H(αi) = H(αi + 0) – H(αi – 0) ≤ 0, and
hence

qk =
[–H(αi – 0)]
[–H(αi + 0)]

=
[–H(αi)]

[–H(αi + 0)]
≤ 1, i ∈N,

that is, {fk} is a bounded sequence. Let c = mini∈N{qk}. Then (22) becomes

�
[
–H(αi)

]1–γ ≤ (1 – γ )cγ b2(αi)
G(b–1F–(αi + μ – μ1))

[F–(αi + μ – μ1)]γ
. (23)

Using (23) in (21), we obtain

(γ – 1)
[∫ ξ

ξ4

b1(s)
G(b–1F–(s + μ – μ1))

[F–(s + μ – μ1)]γ
ds + cγ

∑

ξ4≤αi<ξ

b2(αi)
G(b–1F–(αi + μ – μ1))

[F–(αi + μ – μ1)]γ

]

≤ [
w1–γ (s)

]ξ

ξ4
,

that is,

(γ – 1)G
(
b–1)

[∫ ξ

ξ4

b1(s)
G(F–(s + μ – μ1))
[F–(s + μ – μ1)]γ

ds + cγ
∑

ξ4≤αi<ξ

b2(αi)
G(F–(αi + μ – μ1))
[F–(αi + μ – μ1)]γ

]

≤ [
w1–γ (s)

]ξ

ξ4

due to (A4). Taking limit as ξ → ∞, we get a contradiction to (A13). This completes the
proof of the theorem. �

3 Sufficient and necessary conditions for oscillation
In this section, we are going to present the sufficient and necessary condition for oscilla-
tory or asymptotic behavior of system (E).

Lemma 3.1 ([4]) Considering b, ξ , h ∈ C([0,∞),R) such that h(ξ ) = υ(ξ ) + b(ξ )υ(ξ – μ),
ξ ≥ μ > 0, υ(ξ ) > 0 for ξ ≥ ξ1 > μ, lim infξ→∞ υ(ξ ) = 0 and limξ→∞ h(ξ ) = L exist. If b(ξ )
satisfies one of the following conditions:

(i) 0 ≤ a1 ≤ b(ξ ) ≤ a2 < 1,
(ii) 1 < a3 ≤ b(ξ ) ≤ a4 < ∞,

(iii) –∞ < –a5 ≤ b(ξ ) ≤ 0,
where ai > 0, 1 ≤ i ≤ 5, then L = 0.

Theorem 3.1 Under the assumptions 0 ≤ a1 ≤ b(ξ ) ≤ a2 < 1 for ξ ∈ R+, (A1), and G
is Lipschitzian on [c, d], where 0 < c < d < ∞, every solution of (E) either oscillates or
limξ→∞ υ(ξ ) = 0 if and only if (A14) holds.
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Proof To prove sufficiency, we assume that (A14) holds and υ(ξ ) is a solution of (E) on
[ξυ ,∞] where ξυ ≥ 0. If υ(ξ ) is oscillatory, then there is nothing to prove. Let the solution
υ(ξ ) > 0 for ξ ≥ ξυ . Then, proceeding as in Theorem 2.1, we have obtained (12) and (13)
for ξ ≥ ξ1 > ξ0 + μ1, where ξ0 > ρ > ξυ . Hence, H(ξ ) is monotonic on [ξ2,∞), where ξ2 > ξ1.
So, we have the following two possible cases.

Case (i). Let H(ξ ) > 0 for ξ ≥ ξ2. So, limξ→∞ H(ξ ) exists and limi→∞ H(αi) exists. Now,
we are going to prove that υ(ξ ) is bounded. If not, there exists {ηn} such that ηn → ∞ as
n → ∞, υ(ηn) → ∞ as n → ∞ and

υ(ηn) = max
{
υ(s) : ξ2 ≤ s ≤ ηn

}
.

Therefore,

H(ηn) = υ(ηn) + b(ηn)υ(ηn – μ) – F(ηn) ≥ (1 + a1)υ(ηn) – F(ηn) → +∞, as n → ∞,

which is a contradiction. So, υ(ξ ) is bounded. The same contradiction holds when H(ξ ) < 0
for ξ ≥ ξ2. Consequently, H(ξ ) is bounded and limξ→∞ H(ξ ) exists. Our aim is to show that
limξ→∞ υ(ξ ) = 0. For this, we need to show that lim infξ→∞ υ(ξ ) = 0 and lim supξ→∞ υ(ξ ) =
0 for every ξ and αi. First, we are going to prove lim infξ→∞ υ(ξ ) = 0. To prove this by
contradiction, letting lim infξ→∞ υ(ξ ) �= 0, then for ξ3 > ξ2 and γ > 0, we have υ(ξ – μ1) ≥
γ > 0 for ξ ≥ ξ3. Ultimately,

∫ ξ

ξ3

b1(κ)G
(
υ(κ – μ1)

)
dκ +

∑

ξ3≤αi<ξ

b2(αi)G
(
υ(αi – μ1)

)

≥ G(γ )
[∫ ξ

ξ3

b1(κ) dκ +
∑

ξ3≤αi<ξ

b2(αi)
]

→ +∞, as ξ → ∞, (24)

due to (A14). Again, if we integrate (12) from ξ3 to ξ , we get

[
H(s)

]ξ

ξ3
+

∫ ξ

ξ3

b1(κ)G
(
υ(s – μ1)

)
ds –

∑

ξ3≤αi<ξ

�H(αi) = 0,

and hence, using (13), it follows that

∫ ξ

ξ3

b1(κ)G
(
υ(κ – μ1)

)
dκ +

∑

ξ3≤αi<ξ

b2(αi)G
(
υ(αi – μ1)

)

= –
[
H(κ)

]ξ

ξ3
< ∞, as ξ → ∞. (25)

Using (24) and (25), we have a contradiction. So, lim infξ→∞ υ(ξ ) = 0 for ξ ≥ ξ3. Since
limξ→∞ H(ξ ) exists, then limξ→∞ h(ξ ) exists due to (A1). Therefore, by Lemma 3.1, we
conclude that limξ→∞ h(ξ ) = 0. Consequently,

0 = lim
ξ→∞ h(ξ ) = lim sup

ξ→∞

(
υ(ξ ) + b(ξ )υ(ξ – μ)

) ≥ lim sup
ξ→∞

υ(ξ )
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implies that lim supξ→∞ υ(ξ ) = 0. Ultimately, limξ→∞ υ(ξ ) = 0 for ξ �= αi, where i ∈ N.
Note that {υ(αi – 0)} and {υ(αi + 0)} are sequences of real numbers and υ is continu-
ous. So, we have limi→∞ υ(αi – 0) = 0 and limi→∞ υ(αi + 0) = 0 due to lim infξ→∞ υ(ξ ) = 0
and lim supξ→∞ υ(ξ ) = 0 respectively. Hence, for all ξ and αi, where i ∈ N, we have
limξ→∞ υ(ξ ) = 0.

The similar procedure can be followed when υ(ξ ) < 0 for ξ ≥ ξυ to show that
limξ→∞ υ(ξ ) = 0.

Next, to prove the necessary part, we assume that

∫ ∞

0
b1(ξ ) dξ +

∞∑

i=1

b2(αi) < ∞, (26)

and we must have to prove that the impulsive system (E) has a non-oscillatory solution
and limξ→∞ υ(ξ ) �= 0. If possible, let there exist ξ1 > 0 such that

∫ ∞

ξ1

b1(κ) dκ +
∞∑

i=1

b2(αi) <
1 – a2

5L
,

where L = max{L1, G(1)} and L1 is the Lipschitz constant on [ 1–a2
10 , 1]. By (A1), let

limξ→∞ F(ξ ) = M. Then we can find ξ2 > ξ1 so that |F(ξ ) – M| < 1–a2
10 for ξ ≥ ξ2. For

ξ3 > max{ξ1, ξ2}, we assume X = BC([ξ3,∞),R), (that is, the space bounded continuous
real-valued functions on [ξ3,∞)). Therefore, X is a Banach space with respect to sup norm
defined by

‖x‖ = sup
{∣
∣υ1(ξ )

∣
∣ : ξ ≥ ξ3

}
.

Let us define

S =
{

υ ∈ X :
1 – a2

10
≤ υ(ξ ) ≤ 1, ξ ≥ ξ3

}

.

Clearly, S is a convex and closed subspace of X. Let � : S → S be an operator defined by

(�υ)(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(�υ)(ξ3 + ρ), ξ ∈ [ξ3, ξ3 + ρ],

–b(ξ )υ(ξ – μ) + 1+4a2
5 + (F(ξ ) – M)

+
∫ ∞
ξ

b1(κ)G(υ(κ – μ1)) dκ

+
∑

ξ3≤αi<ξ b2(αi)G(υ(αi – μ1)), ξ ≥ ξ3 + ρ.

For every ξ ∈ S,

(�υ)(ξ ) ≤ 1 – a2

10
+

1 + 4a2

5
+ G(1)

[∫ ∞

ξ

b1(κ) dκ +
∑

ξ3≤αi<ξ

b2(αi)
]

<
1 – a2

10
+

1 + 4a2

5
+

1 – a2

5
=

1 + a2

2
< 1
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and

(�υ)(ξ ) ≥ –b(ξ )υ(ξ – μ) +
1 + 4a2

5
+

(
F(ξ ) – M

)

≥ –a2 +
1 + 4a2

5
–

1 – a2

10
=

1 – a2

10

imply that (�υ) ∈ S. Again, for υ1,υ2 ∈ S,

∣
∣(�υ1)(ξ ) – (�υ2)(ξ )

∣
∣

≤ ∣
∣b(ξ )

∣
∣
∣
∣υ1(ξ – μ) – υ2(ξ – μ)

∣
∣ + L1

∫ ∞

ξ

b1(κ)
∣
∣υ1(κ – μ1) – υ2(κ – μ1)

∣
∣dκ

+ L1
∑

ξ3≤αi<ξ

b2(αi)
∣
∣υ1(αi – μ1) – υ2(αi – μ1)

∣
∣,

that is,

∣
∣(�υ1)(ξ ) – (�υ2)(ξ )

∣
∣ ≤ a2‖υ1 – υ2‖ + L1‖υ1 – υ2‖

[∫ ∞

ξ

b1(κ) dκ +
∑

ξ3≤αi<ξ

b2(αi)
]

<
(

a2 +
1 – a2

5

)

‖υ1 – υ2‖,

that is, � is a contraction mapping with the contraction (a2 + 1–a2
5 ) = 1+4a2

5 < 1. Note that
� is a contraction on S and S is complete. Then, by using the Banach fixed point theorem,
ξ has a unique fixed point on [ 1–a2

10 , 1]. Hence �υ = υ and

υ(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

υ(ξ3 + ρ), ξ ∈ [ξ3, ξ3 + ρ],

–b(ξ )υ(ξ – μ) + 1+4a2
5 + (F(ξ ) – M)

+
∫ ∞
ξ

b1(κ)G(υ(κ – μ1)) dκ

+
∑

ξ3≤αi<ξ b2(αi)G(υ(αi – μ1)), ξ ≥ ξ3 + ρ,

is a non-oscillatory solution of system (E) on [ 1–a2
10 , 1] such that limξ→∞ υ(ξ ) �= 0.

Thus, the theorem is proved. �

Theorem 3.2 Under assumptions 1 < a3 ≤ b(ξ ) ≤ a4 < ∞ for ξ ∈R+, a2
3 > a4, (A1), and G

is Lipschitzian on [c, d], where 0 < c < d < ∞, every solution of system (E) either oscillates
or limξ→∞ υ(ξ ) = 0 if and only if (A14) holds.

Proof The proof of the sufficient part is the same as in the proof of Theorem 3.1.
To prove necessity, we assume that (26) holds. So, ξ1 > 0 we have

∫ ∞

ξ1

b1(ξ ) dξ +
∞∑

i=1

b2(αi) <
a3 – 1

2L
,

where L = max{L1, L2} and L1 is the Lipschitz constant of G on [c, d], where L2 = G(d) such
that

a =
2c(a3

2 – a4) – a4(a3 + a3
2 – 2)

2a32a4
, b =

a3 – 1 + c
a3

, c >
a4(a3 + a3

2 – 2)
2(a32 – a4)

> 0.
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Also, we can find ξ2 > 0 such that |F(ξ ) – M| < 1
2 (a3 – 1) for ξ ≥ ξ2 > ξ1. Next, we define a

Banach space X as in the proof of Theorem 3.1 with respect to the sup norm

‖x‖ = sup
{∣
∣υ1(ξ )

∣
∣ : ξ ≥ ξ2

}
.

Define

S =
{
υ ∈ X : a ≤ υ(ξ ) ≤ b, ξ ≥ ξ2

}
.

Clearly, S is a convex and closed subspace of X. Let � : S → S be an operator defined by

(�υ)(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(�υ)(ξ2 + ρ), ξ ∈ [ξ2, ξ2 + ρ],

– υ(ξ+μ)
b(ξ+μ) + F(ξ+μ)–M

b(ξ+μ) + c
b(ξ+μ)

+ 1
b(ξ+μ) [

∫ ∞
t+μ

b1(κ)G(υ(κ – μ1)) dκ

+
∑

ξ2≤αi<ξ+μ b2(αi)G(υ(αi – μ1))], ξ ≥ ξ2 + ρ.

For every υ ∈ S,

(�υ)(ξ ) ≤ G(d)
b(ξ + μ)

[∫ ∞

ξ+μ

b1(κ) dκ +
∑

ξ2≤αi<ξ+μ

b2(αi)
]

+
a3 – 1

2b(ξ + μ)
+

c
b(ξ + μ)

≤ 1
a3

[
2(a3 – 1)

2
+ c

]

= b

and

(�υ)(ξ ) ≥ –
υ(ξ + μ)
b(ξ + μ)

+
F(ξ + μ) – M

b(ξ + μ)
+

c
b(ξ + μ)

> –
b
a3

–
a3 – 1

2a3
+

c
a4

= –
a3 – 1 + c

a32 –
a3 – 1

2a3
+

c
a4

=
2c(a3

2 – a4) – a4(a3 – 2 + a3
2)

2a32a4
= a

implies that � ∈ S. For υ1,υ2 ∈ S,

∣
∣(�υ1)(ξ ) – (�υ2)(ξ )

∣
∣ ≤ 1

|b(ξ + μ)|
∣
∣υ1(ξ + μ) – υ2(ξ + μ)

∣
∣

+
G(b)

|b(ξ + μ)|
[∫ ∞

ξ+μ

b1(κ)
∣
∣υ1(κ – μ1) – υ2(κ – μ1)

∣
∣dκ

+
∑

ξ2≤αi<ξ+μ

b2(αi)
∣
∣υ1(αi – μ1) – υ2(αi – μ1)

∣
∣

]

,

that is,

∣
∣(�υ1)(ξ ) – (�υ2)(ξ )

∣
∣

≤ 1
a3

‖υ1 – υ2‖ +
G(b)

a3
‖υ1 – υ2‖

[∫ ∞

ξ+μ

b1(κ) dκ +
∑

ξ2≤αi<ξ+μ

b2(αi)
]

<
(

1
a3

+
a3 – 1

2a3

)

‖υ1 – υ2‖,
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that is, � is a contraction mapping with the contraction ( 1
a3

+ a3–1
2a3

) < 1. Hence, by the
Banach fixed point theorem, � has a unique fixed point on [a, b] which is a non-oscillatory
(specially positive) solution of system (E).

Thus, the theorem is proved. �

Theorem 3.3 Under the assumptions –1 < –a5 ≤ b(ξ ) ≤ 0 for ξ ∈ R+, a5 > 0 and (A1),
every solution of system (E) either oscillates or limξ→∞ υ(ξ ) = 0 if and only if (A14) holds.

Proof For the sufficient part, we follow the proof of Theorem 3.1 to show that υ(ξ ) is
bounded when H(ξ ) > 0 for ξ ≥ ξ2. Also, υ(ξ ) is bounded when H(ξ ) < 0 for ξ ≥ ξ2. Con-
sequently, limξ→∞ H(ξ ) exists and hence limξ→∞ h(ξ ) exists. By Theorem 3.1, it is easy to
prove that lim infξ→∞ υ(ξ ) = 0, and by Lemma 3.1, limξ→∞ h(ξ ) = 0. So,

0 = lim
ξ→∞ h(ξ ) = lim sup

ξ→∞

(
υ(ξ ) + b(ξ )υ(ξ – μ)

)

≥ lim sup
ξ→∞

υ(ξ ) + lim inf
ξ→∞

(
–a5υ(ξ – μ)

)

= (1 – a5) lim sup
ξ→∞

υ(ξ )

implies that lim supξ→∞ υ(ξ ) = 0. The rest of the sufficient part comes from the proof of
Theorem 3.1.

Next, we suppose that (26) holds. Then there exist ξ1, ξ2 > 0 such that

∫ ∞

ξ1

b1(ξ ) dξ +
∞∑

i=1

b2(αi) <
1 – a5

10G(1)
for ξ ≥ ξ1

and |F(ξ ) – M| < 1–a5
20 for ξ ≥ ξ2. Next, we define a Banach space X as in the proof of

Theorem 3.1 with respect to the sup norm

‖x‖ = sup
{∣
∣υ1(ξ )

∣
∣ : ξ ≥ ξ2

}
.

Let K = {x ∈ X : υ1(ξ ) ≥ 0, ξ ≥ ξ3}. Then X is a partially ordered Banach space (see, for
instance, [54], p. 30). For x, y ∈ X, we define x ≤ y if and only if x – y ∈ K . Let

S =
{

υ ∈ X :
1 – a5

20
≤ υ(ξ ) ≤ 1, ξ ≥ ξ3

}

.

If υ0(ξ ) = 1–a5
20 , then υ0 ∈ S and υ0 = g.l.b S. Further, if � ⊂ S∗ ⊂ S, then

S∗ =
{

υ ∈ X : l1 ≤ υ(ξ ) ≤ l2,
1 – a5

20
≤ l1, l2 ≤ 1

}

.
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Let v0(ξ ) = l′2, ξ ≥ ξ3, where l′2 = sup{l2 : 1–a5
20 ≤ l2 ≤ 1}. Then v0 ∈ S and v0 = l.u.b S∗. For

ξ4 = ξ3 + ρ , define ξ : S → S by

(�υ)(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(�υ)(ξ4), ξ ∈ [ξ3, ξ4],

–b(ξ )υ(ξ – μ) + 1–a5
10 + (F(ξ ) – M)

+
∫ ∞
ξ

b1(κ)G(υ(κ – μ1)) dκ

+
∑

ξ4≤αi<ξ b2(αi)G(υ(αi – μ1)), ξ ≥ ξ4.

For every υ ∈ S,

(�υ)(ξ ) ≤ a5 + G(1)
[∫ ∞

ξ

b1(κ) dκ +
∑

ξ4≤αi<ξ

b2(αi)
]

+
1 – a5

20
+

1 – a5

10

<
1 + 3a5

4
< 1

and

(�υ)(ξ ) ≥ 1 – a5

10
+

(
F(ξ ) – M

)1 – a5

10
–

1 – a5

20
=

1 – a5

20

implies that �υ ∈ S. Now, for υ1,υ2 ∈ S, it is easy to verify that υ1 ≤ υ2 implies that (�υ1) ≤
(�υ2). Hence, by the Knaster–Tarski fixed point theorem (see, e.g., [54], Theorem 1.7.3),
� has a unique fixed point such that limξ→∞ υ(ξ ) �= 0.

This completes the proof of the theorem. �

Theorem 3.4 Under the assumptions –∞ < –a5 ≤ b(ξ ) ≤ –a6 < –1 for ξ ∈ R+, a5, a6 > 0,
(A1), and G is Lipschitzian on the intervals of the form [c, d], where 0 < c < d < ∞, every
bounded solution of (E) either oscillates or limξ→∞ υ(ξ ) = 0 if and only if (A14) holds.

Proof The proof is totally the same as in the proof of Theorem 3.2, but, for the necessary
part, we provide the following settings:

∫ ∞

ξ1

b1(κ) dκ +
∞∑

i=1

b2(αi) <
a6 – 1

2L
and

∣
∣F(ξ ) – M

∣
∣ >

1
2

(a6 – 1),

where L = max{L1, L2} and L1 is the Lipschitz constant of G on [c, d], where L2 = G(d) such
that

a =
ca6 – a5(a6 – 1)

a5a6
,

b =
1
2

+
c

a6 – 1
,

c >
a5(a6 – 1)

a6
> 0,
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and

(�υ)(ξ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(�υ)(ξ2 + ρ), ξ ∈ [ξ2, ξ2 + ρ]

– υ(ξ+μ)
b(ξ+μ) + F(ξ+μ)–M

b(ξ+μ) – c
b(ξ+μ)

+ 1
b(ξ+μ) [

∫ ∞
t+μ

b1(s)G(υ(s – μ1)) ds

+
∑

ξ2≤αi<ξ+μ b2(αi)G(υ(αi – μ1))], ξ ≥ ξ2 + ρ.

This completes the proof of the theorem. �

Remark 3.1 In Theorems 3.1–3.4, we do not have any restriction on G (that is, G could be
linear, sublinear, or superlinear).

4 Conclusion
In [20], the author studied the oscillatory behavior of solutions of the impulsive system

⎧
⎨

⎩

(υ(ξ ) + b(ξ )υ(ξ – μ))′ + b1(ξ )G(υ(ξ – μ1)) = 0, ξ �= αi, i ∈N,

	(υ(αi) + B2(αi)υ(αi – μ)) + qkG(υ(αi – μ1)) = 0, i ∈N,
(E1)

under the sufficient condition

∫ ∞

0
b1(ξ ) dξ +

∞∑

i=1

b1(αi) = ∞. (27)

Because of Theorem 3.1 [20], (27) could be a sufficient and necessary condition for the
oscillatory and asymptotic behavior of solutions of system (E1) for different ranges of the
neutral coefficient b(ξ ). We guess that (27) could be a sufficient and necessary condition for
the oscillation of a non-homogeneous counterpart of (E). In this work, we have obtained
sufficient conditions for the oscillation of (E), which is presented in Sect. 2, and in Sect. 3
we have established sufficient and necessary conditions for the oscillatory or asymptotic
behavior of (E).

It would be of interest to examine the oscillation of (E) with a different neutral coef-
ficient; see, e.g., the papers [43, 46, 47, 50–53] for more details. Furthermore, it is also
interesting to analyze the oscillation of (E) with a nonlinear neutral term; see, e.g., the
paper [49] for more details.

Remark 4.1 Theorems 3.1–3.4 hold true for M = 0.

Remark 4.2 Lemma 3.1 does not hold when b(ξ ) ≡ 1 for all ξ (see, e.g., [54]), and the
present study does not allow us when b(ξ ) ≡ –1 for all ξ . Thus, in this paper, we have
obtained necessary and sufficient conditions for the oscillatory or asymptotic behavior
of (E) except b(ξ ) = ±1 for all ξ . Hence, it is clear that a different method is necessary
to study the oscillatory or asymptotic behavior of (E) when b(ξ ) = ±1. However, we have
established sufficient conditions for b(ξ ) = ±1 in Sect. 2.

5 Examples
In this section, we provide two examples to validate our main results.
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Example 5.1 Consider the impulsive system

⎧
⎨

⎩

(υ(ξ ) + 2υ(ξ – 1))′ + 4(ξ – 1)3υ3(ξ – 1) = – 2
ξ3 , ξ > 1,

�(υ(αi) + 2υ(αi – 1)) + b2(αi)υ3(αi – 1) = – 4h2i

(4i–h2)2 ,
(E1)

where b2(αi) = 8b2(2i–1)(2i–1–h)6

((2i–1)2–h2)2 , αi = 2i, i ∈ N, and G(ξ ) = ξ 3. If we choose F(ξ ) = 1
ξ2 , then

F ′(ξ ) = – 2
ξ3 and

�F(αi) = F(αi + h) – F(αi – h)

= F
(
2i + h

)
– F

(
2i – h

)

= –
4h2i

(4i – h2)2 = g(αi), i ∈N.

Clearly, (A14) holds. Since the conditions of Theorem 3.2 are true for (E1), then every
solution of (E1) either oscillates or tends to zero as ξ → ∞. In particular, υ(ξ ) = 1

ξ2 is a
solution of the impulsive system (E1).

Example 5.2 Consider the impulsive system

⎧
⎨

⎩

(υ(ξ ) + υ(ξ – π ))′ + υ(ξ – π
4 ) = cos(ξ – π

4 ), ξ > π
4 ,

�(υ(αi) + υ(αi – π )) + b2(αi)y(αi – π
4 ) = 2 sin(h) cos(k – π

4 ),
(E2)

where b2(αi) = 2
1+cot(h) , αi = i, i ∈N, G(ξ ) = ξ , f (ξ ) = cos(ξ – π

4 ). Indeed, if we choose F(ξ ) =
sin(ξ – π

4 ), then F ′(ξ ) = f (ξ ) and

�F(αi) = F(αi + h) – F(αi – h)

= F(i + h) – F(i – h)

=
√

2 sin(h)
(
sin(i) + cos(i)

)
= g(αi), i ∈N.

Clearly,

F+(ξ ) =

⎧
⎨

⎩

sin(ξ – π
4 ), 2nπ + π

4 ≤ ξ ≤ 2nπ + 5π
4 ,

0, otherwise,

and

F–(ξ ) =

⎧
⎨

⎩

– sin(ξ – π
4 ), 2nπ + 5π

4 ≤ ξ ≤ 2nπ + 9π
4 ,

0, otherwise,

imply that

F+
(

ξ –
π

4

)

=

⎧
⎨

⎩

– cos(ξ ), 2nπ + π
2 ≤ ξ ≤ 2nπ + 3π

2 ,

0, otherwise,
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and

F–
(

ξ –
π

2

)

=

⎧
⎨

⎩

sin(ξ ), 2nπ + 3π
2 ≤ ξ ≤ 2nπ + 5π

2 ,

0, otherwise.

Since

∫ ∞

π
2

F+
(

ξ –
π

4

)

dξ =
∞∑

n=0

∫ 2nπ+ 3π
2

2nπ+ π
2

[
– cos(ξ )

]
dξ = ∞,

then, for n = 0, 1, 2, . . . , we get

∫ ∞

π
2

F+
(

ξ –
π

4

)

dξ +
∞∑

i=1

(
2

1 + cot(h)

)

F+
(

i –
π

4

)

= ∞.

Clearly, (A2)–(A6) are satisfied. Hence, by Theorem 2.1, every solution of (E2) is oscilla-
tory. In particular, υ1(ξ ) = cos(ξ ) is a solution of (E2).

Acknowledgements
The authors extend their thanks to the Deanship of Scientific Research at King Khalid University for funding this work
through the small research groups under grant number RGP. 1/372/42. The authors thank the editors and the reviewers
for their useful comments.

Funding
This research work was supported by the Deanship of Scientific Research at King Khalid University under Grant number
RGP. 1/372/42.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that they have read and approved the final manuscript.

Author details
1Department of Mathematics, JIS College of Engineering, Kalyani 741235, India. 2Department of Mathematics and
Computer Science, Faculty of Arts and Sciences, Çankaya University Ankara, 06790 Etimesgut, Turkey. 3Instiute of Space
Sciences, Magurele-Bucharest, 077125 Magurele, Romania. 4Department of Medical Research, China Medical University
Hospital, China Medical University, Taichung, 40402, Taiwan, Republic of China. 5Department of Civil Engineering, College
of Engineering, King Khalid University, Abha 61421, Saudi Arabia. 6Department of Civil Engineering, High Institute of
Technological Studies, Mrezgua University Campus, Nabeul 8000, Tunisia. 7Department of Mathematics, Faculty of
Science, Mansoura University, Mansoura 35516, Egypt.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 April 2021 Accepted: 1 June 2021

References
1. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Asymptotic Properties of the Solutions. Series on

Advances in Mathematics for Applied Sciences, vol. 28. World Scientific, Singapore (1995)
2. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Oscillation Theory of Impulsive Differential Equations. World

Scientific, Singapore (1989)
3. Agarwal, R.P., O’Regan, D., Saker, S.H.: Oscillation and Stability of Delay Models in Biology. Springer, New York (2014)
4. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and

boundary conditions. Z. Angew. Math. Phys. 70(3), 86 (2019)
5. Li, T., Viglialoro, G.: Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime.

Differ. Integral Equ. 34(5–6), 315–336 (2021)



Santra et al. Advances in Difference Equations        (2021) 2021:283 Page 19 of 20

6. Viglialoro, G., Woolley, T.E.: Solvability of a Keller–Segel system with signal-dependent sensitivity and essentially
sublinear production. Appl. Anal. 99(14), 2507–2525 (2020)

7. Infusino, M., Kuhlmann, S.: Infinite dimensional moment problem: open questions and applications. In: Contemp.
Math., vol. 697, pp. 187–201. Am. Math. Soc., Providence (2017)

8. Ghasemi, M., Infusino, M., Kuhlmann, S., Marshall, M.: Moment problem for symmetric algebras of locally convex
spaces. Integral Equ. Oper. Theory 90(3), 29 (2018)

9. Infusino, M., Kuna, T., Lebowitz, J.L., Speer, E.R.: The truncated moment problem on N0 . J. Math. Anal. Appl. 452(1),
443–468 (2017)

10. Shen, J.H., Wang, Z.C.: Oscillation and asymptotic behaviour of solutions of delay differential equations with impulses.
Ann. Differ. Equ. 10(1), 61–68 (1994)

11. Graef, J.R., Shen, J.H., Stavroulakis, I.P.: Oscillation of impulsive neutral delay differential equations. J. Math. Anal. Appl.
268, 310–333 (2002)

12. Shen, J., Zou, Z.: Oscillation criteria for first order impulsive differential equations with positive and negative
coefficients. J. Comput. Appl. Math. 217, 28–37 (2008)

13. Karpuz, B., Ocalan, O.: Oscillation criteria for a class of first-order forced differential equations under impulse effects.
Adv. Dyn. Syst. Appl. 7(2), 205–218 (2012)

14. Tripathy, A.K., Santra, S.S.: Characterization of a class of second-order neutral impulsive systems via pulsatile constant.
Differ. Equ. Appl. 9(1), 87–98 (2017)

15. Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillation of a class of second-order impulsive
systems. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s12591-018-0425-7

16. Santra, S.S., Tripathy, A.K.: On oscillatory first order nonlinear neutral differential equations with nonlinear impulses.
J. Appl. Math. Comput. 59, 257–270 (2019). https://doi.org/10.1007/s12190-018-1178-8

17. Santra, S.S., Dix, J.G.: Necessary and sufficient conditions for the oscillation of solutions to a second-order neutral
differential equation with impulses. Nonlinear Stud. 27(2), 375–387 (2020)

18. Tripathy, A.K., Santra, S.S.: On the forced impulsive oscillatory nonlinear neutral systems of the second-order.
Nonlinear Oscil. 23(2), 274–288 (2020)

19. Tripathy, A.K., Santra, S.S.: Necessary and sufficient conditions for oscillations to a second-order neutral differential
equations with impulses. Kragujev. J. Math. 47(1), 81–93 (2023)

20. Santra, S.S., Ghosh, T., Bazighifan, O.: Explicit criteria for the oscillation of second-order differential equations with
several sub-linear neutral coefficients. Adv. Differ. Equ. 2020, 643 (2020)

21. Santra, S.S., Dassios, I., Ghosh, T.: On the asymptotic behavior of a class of second-order non-linear neutral differential
equations with multiple delays. Axioms 9, 134 (2020)

22. Santra, S.S., Majumder, D., Bhattacharjee, R., Bazighifan, O., Khedher, K., Marin, M.: New theorems for oscillations to the
differential equations with mixed delays. Symmetry 13, 367 (2021)

23. Santra, S.S., Bazighifan, O., Ahmad, H., Second-Order, Y.-M.C.: Differential equation: oscillation theorems and
applications. Math. Probl. Eng. 2020, 8820066 (2020)

24. Santra, S.S., Bazighifan, O., Ahmad, H., Yao, S.-W.: Second-order differential equation with multiple delays: oscillation
theorems and applications. Complexity 2020, 8853745 (2020)

25. Bazighifan, O., Ruggieri, M., Scapellato, A.: An improved criterion for the oscillation of fourth-order differential
equations. Mathematics 8(4), 610 (2020)

26. Bazighifan, O., Ruggieri, M., Santra, S.S., Scapellato, A.: Qualitative properties of solutions of second-order neutral
differential equations. Symmetry 12(9), 1520 (2020)

27. Berezansky, L., Braverman, E.: Oscillation of a linear delay impulsive differential equations. Commun. Appl. Nonlinear
Anal. 3, 61–77 (1996)

28. Diblik, J., Svoboda, Z., Smarda, Z.: Retract principle for neutral functional differential equation. Nonlinear Anal., Theory
Methods Appl. 71(12), 1393–1400 (2009)

29. Santra, S.S., Alotaibi, H., Bazighifan, O.: On the qualitative behavior of the solutions to second-order neutral delay
differential equations. J. Inequal. Appl. 2020, 256 (2020)

30. Diblik, J.: Positive solutions of nonlinear delayed differential equations with impulses. Appl. Math. Lett. 72, 16–22
(2017)

31. Luo, Z., Jing, Z.: Periodic boundary value problem for first-order impulsive functional differential equations. Comput.
Math. Appl. 55, 2094–2107 (2008)

32. Yu, J., Yan, J.: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses.
J. Math. Anal. Appl. 207, 388–396 (1997)

33. Santra, S.S., Khedher, K.M., Moaaz, O., Muhib, A., Yao, S.-W.: Second-order impulsive delay differential systems:
necessary and sufficient conditions for oscillatory or asymptotic behavior. Symmetry 13, 722 (2021).
https://doi.org/10.3390/sym13040722

34. Santra, S.S., Khedher, K.M., Yao, S.-W.: New aspects for oscillation of differential systems with mixed delays and
impulses. Symmetry 13, 780 (2021). https://doi.org/10.3390/sym13050780

35. Santra, S.S., Sethi, A.K., Moaaz, O., Khedher, K.M., Yao, S.-W.: New oscillation theorems for second-order differential
equations with canonical and non-canonical operator via Riccati transformation. Mathematics 9, 1111 (2021).
https://doi.org/10.3390/math9101111

36. Santra, S.S., Bazighifan, O., Postolache, M.: New conditions for the oscillation of second-order differential equations
with sublinear neutral terms. Mathematics 9, 1159 (2021). https://doi.org/10.3390/math9111159

37. Santra, S.S., Khedher, K.M., Nonlaopon, K., Ahmad, H.: New results on qualitative behavior of second order nonlinear
neutral impulsive differential systems with canonical and non-canonical conditions. Symmetry 13, 934 (2021).
https://doi.org/10.3390/sym13060934

38. Tripathy, A.K.: Oscillation criteria for a class of first order neutral impulsive differential-difference equations. J. Appl.
Anal. Comput. 4, 89–101 (2014)

39. Berezansky, L., Domoshnitsky, A., Koplatadze, R.: Oscillation, Nonoscillation, Stability and Asymptotic Properties for
Second and Higher Order Functional Differential Equations. Chapman & Hall, Boca Raton (2020)

40. Chatzarakis, G.E., Jadlovská, I., Li, T.: Oscillations of differential equations with non-monotone deviating arguments.
Adv. Differ. Equ. 2019, 233 (2019)

https://doi.org/10.1007/s12591-018-0425-7
https://doi.org/10.1007/s12190-018-1178-8
https://doi.org/10.3390/sym13040722
https://doi.org/10.3390/sym13050780
https://doi.org/10.3390/math9101111
https://doi.org/10.3390/math9111159
https://doi.org/10.3390/sym13060934


Santra et al. Advances in Difference Equations        (2021) 2021:283 Page 20 of 20

41. Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone
arguments. Complexity 2018, Article ID 8237634 (2018)

42. Chatzarakis, G.E., Li, T.: Oscillations of differential equations generated by several deviating arguments. Adv. Differ.
Equ. 2017, 292 (2017)

43. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: A new approach in the study of oscillatory behavior of even-order neutral
delay differential equations. Appl. Math. Comput. 225, 787–794 (2013)

44. Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math.
Comput. 274, 178–181 (2016)

45. Bohner, M., Hassan, T.S., Li, T.: Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic
equations with deviating arguments. Indag. Math. 29(2), 548–560 (2018)

46. Bohner, M., Li, T.: Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient.
Appl. Math. Lett. 37, 72–76 (2014)

47. Chatzarakis, G.E., Grace, S.R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden-Fowler differential
equations with unbounded neutral coefficients. Complexity 2019, Article ID 5691758 (2019)

48. Chiu, K.-S., Li, T.: Oscillatory and periodic solutions of differential equations with piecewise constant generalized
mixed arguments. Math. Nachr. 292(10), 2153–2164 (2019)

49. Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden-Fowler delay differential
equations with a sublinear neutral term. Math. Nachr. 293(5), 910–922 (2020)

50. Li, T., Rogovchenko, Y.V.: Oscillation of second-order neutral differential equations. Math. Nachr. 288(10), 1150–1162
(2015)

51. Li, T., Rogovchenko, Y.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41
(2016)

52. Li, T., Rogovchenko, Y.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations.
Monatshefte Math. 184(3), 489–500 (2017)

53. Li, T., Rogovchenko, Y.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential
equations. Appl. Math. Lett. 105, 1–7 (2020)

54. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon, Oxford (1991)


	First-order impulsive differential systems: sufﬁcient and necessary conditions for oscillatory or asymptotic behavior
	Abstract
	MSC
	Keywords

	Introduction
	Sufﬁcient conditions for oscillation
	Sufﬁcient and necessary conditions for oscillation
	Conclusion
	Examples
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


