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Abstract
To investigate the influences of heterogeneity and waning immunity on measles
transmission, we formulate a network model with periodic transmission rate, and
theoretically examine the threshold dynamics. We numerically find that the waning of
immunity can lead to an increase in the basic reproduction number R0 and the
density of infected individuals. Moreover, there exists a critical level for average degree
above which R0 increases quicker in the scale-free network than in the random
network. To design the effective control strategies for the subpopulations with
different activities, we examine the optimal control problem of the heterogeneous
model. Numerical studies suggest us no matter what the network is, we should
implement control measures as soon as possible once the outbreak takes off, and
particularly, the subpopulation with high connectivity should require high intensity of
interventions. However, with delayed initiation of controls, relatively strong control
measures should be given to groups with medium degrees. Furthermore, the
allocation of costs (or resources) should coincide with their contact patterns.
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1 Introduction
Measles, spread by coughing and sneezing, is one of the leading infectious diseases that
causes death of children around the world. Vaccination is the key public health strategy to
prevent it outbreaks. In 1986, China began to implement two doses of routine vaccination,
at 8 months and 7 years old of age [1]. In 2010, a nationwide supplementary immunization
activity (SIA) of measles was conducted in mainland China and subsequently the incidence
of measles reached a low level of about 0.46/100,000 individuals in 2012 [2]. However, in
2013, the incidence of measles rose again in mainland China. Then the repeated outbreaks
occurred with a pattern that was small-scale and clustered. Until now, the elimination goal
that the incidence of measles is less than 1/100,000 population is still not achieved. Hence,
how to design an effective strategy to eliminate the measles is still a challenge in mainland
China.

Measles, like many other infectious diseases, exhibits great heterogeneity in terms of the
number and the pattern of contacts. Much research indicated that heterogeneity may lead
to highly different transmission dynamics of infectious diseases [3–8]. For example, the
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basic reproduction number, the threshold value to determine whether disease infection
dies out or not, depends crucially on the variance of the distribution of contacts [9]. Ac-
counting for the heterogeneity and non-random mixing, the meta-population basic repro-
duction numbers were about 70% greater [10]. Compared with the homogeneous mass-
action model, the extinction probability of the disease before a large epidemic occurs is
much lower for the network model [11]. These results mean that the structure of the con-
tact network is crucial in investigating and characterizing transmission of epidemics. So,
many researchers studied the spread of epidemics such as foot-and-mouth disease, SARS,
dengue, A/H1N1, and AIDS [12–16] on complex networks and analyzed the threshold of
outbreaks and stability of equilibriums [17–21], which can seize the epidemic dynamics
and further devise control measures. However, few studies have cautioned on the impor-
tance of the contact structures in understanding measles spread. Hence, it is necessary to
investigate the network structure and how it relates to the propagation of measles. More-
over, for measles, waning of immunity may be of great risk to induce more infections,
since vaccinated individuals with sufficiently low antibody levels are either at risk of dis-
ease infection [22] or have newborn babies with low immunity, who have potential risk to
be infected before 8 months. Hence, how the waning of immunity does affect the measles
infection also falls within the scope of this study.

Furthermore, an important topic of epidemiology, control and elimination of infectious
diseases, have been extensively investigated for measles [23–26]. Particularly, in 1957,
Bartlett [27] found that the localized extinction of measles was related to the community
size and then it was observed by Keeling and Grenfell [28] in 1997 that this threshold may
depend on the spatial structure and connectedness of the population. In 1999, Roberts and
Tobias [29] found that the second MMR (measles–mumps–rubella) immunization at or
around school entry may offer logistic advantages in New Zealand. In 2015, Verguet and
Johri [30] proposed that without second routine immunization, regular SIAs at high cov-
erage are able to control measles transmission, but the periodicity of SIA campaigns is de-
termined by population demographics and existing MCV1 (measles-containing vaccine)
coverage. Moreover, Hao and Glasser [31] calculated the gradient of the effective number
with respect to age- and location-specific immunization rates and obtained young adults
are the optimal target for SIAs. It should be noted that the majority of this literature for
control of measles is based on the homogeneous mixed assumption. Hence, under het-
erogeneous scenario, how to design effective control measures for different population to
eliminate measles is another aim of this study.

Our purpose of this study is to propose a novel network model with periodic transmis-
sion by dividing the vaccinated individuals into two classes: some vaccinated individuals
with high antibody titer who are completely protected, others with low antibody titer who
may be infected. We investigate the effective control strategy in this high-dimension and
heterogenous system by applying optimal control method. We define the basic reproduc-
tion number and theoretically analyze the threshold dynamics of the system. Then we
examine the optimal control problem and numerically investigate the effect of network
structure on the outbreak of measles. In particular, we combine three kinds of feasible
control measures (self-protection, enhancement of vaccination and treatment) and ap-
ply optimal control theory to answer the question of how to design, with the variation
of network structure, the optimal control measures for each subpopulation with different
activities and how much each group cost.



Xue et al. Advances in Difference Equations        (2021) 2021:138 Page 3 of 18

2 The network model
Each individual in a community can be regarded as a vertex in the network and each con-
tact between two individuals is represented as an edge. The degree of a vertex means the
number of contacts an individual has. In the following, the population is divided into n
groups with sizes Nk such that in group k, each individual has exactly k contacts for unit
time. Assuming the population size is N , then the degree distribution of this network is
defined as p(k) = Nk

N .

2.1 Model formulation
In this model, each vertex is empty or occupied by at most one individual. New recruit-
ment with rate of constant b can only happen at the empty vertex and an occupied vertex
becomes empty after the individual dies with rate of μ. Let Sk , V1k , V2k , Ek , Evk , Ik , Rk ,
1 – Ak be the densities of susceptible, vaccinated, exposed (infected from Sk and V2k), in-
fected, recovered and empty nodes with degree k. The vaccinated individuals (V1k) who
are completely protected with high antibody titer progress to the class (V2k) with waning
of immunity at rate of ω and then can be infected because of low antibody titer. We can
write

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk
dt = b(1 – Ak) – β(t)kSk� – pSk – μSk ,

dV1k
dt = pSk – ωV1k – μV1k ,

dV2k
dt = ωV1k – ηβ(t)kV2k� – μV2k ,

dEk
dt = β(t)kSk� – σEk – μEk ,

dEvk
dt = ηβ(t)kV2k� – σEvk – μEvk ,

dIk
dt = σEk + σEvk – γ Ik – μIk ,

dRk
dt = γ Ik – μRk ,

(1)

where Ak = Sk + V1k + V2k + Ek + Evk + Ik + Rk , and

� =
∑

m
p(m|k)Im =

1
〈k〉

∑

m
mp(m)Im, 〈k〉 =

∑

k

kp(k).

Here p is the vaccination rate of the susceptible individuals, 1
σ

is the incubation period of
measles, γ is the recover rate of the infected individuals, the periodic function β(t) with
period T is the baseline periodic transmission rate, η is the adjust factor which represents
vaccinated individuals having reduced transmission rate (0 < η < 1). A flow diagram of the
model is described in Fig. 1.

2.2 The threshold dynamics
For the system (1), there exists an unique disease-free equilibrium E0 = {S̄1, V̄11, V̄21,
0, 0, 0, 0, . . . , S̄M, V̄1M, V̄2M, 0, 0, 0, 0}, where S̄k = bμ

(b+μ)(p+μ) , V̄1k = bpω

(b+μ)(p+μ)(ω+μ) ,
V̄2k = bpμ

(b+μ)(p+μ)(ω+μ) , k = 1, . . . , M. Here, M denotes the maximum degree of all nodes.
Based on the method provided in [32], we define the basic reproduction number of the
system (1) as follows. Let y = (y1, y2, . . . , y3M, y3M+1, . . . , y7M) represent the state of nodes
in each class with yi ≥ 0 and divide the compartments into two types: infected classes
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Figure 1 The flow diagram of the measles transmission on the network model
(Ak = Sk + V1k + V2k + Ek + Evk + Ik + Rk )

(Ek , Evk , Ik) relabeled by i = 1, . . . , 3M and uninfected compartments (Sk , V1k , V2k , Rk) rela-
beled by i = 3M + 1, . . . , 7M. Then we write the system (1)

dyi

dt
= gi(t, y) = Gi(t, y) – Di(t, y).

Denote

G(t) =
(

∂Gi(t, E0)
∂yj

)

1≤i,j≤3M
, D(t) =

(
∂Di(t, E0)

∂yj

)

1≤i,j≤3M
.

Specifically,

G(t) =

⎛

⎜
⎝

0 0 G1(t)
0 0 G2(t)
0 0 0

⎞

⎟
⎠ , D(t) =

⎛

⎜
⎝

D1(t) 0 0
0 D2(t) 0

D3(t) D4(t) D5(t)

⎞

⎟
⎠ ,

where

G1(t) = β(t)

⎛

⎜
⎜
⎜
⎜
⎝

S̄1p(1)
〈k〉 · · · MS̄1p(M)

〈k〉
2S̄2p(1)

〈k〉 · · · 2MS̄2p(M)
〈k〉

· · · · · · · · ·
MS̄Mp(1)

〈k〉 · · · M2S̄Mp(M)
〈k〉

⎞

⎟
⎟
⎟
⎟
⎠

,

G2(t) = ηβ(t)

⎛

⎜
⎜
⎜
⎜
⎝

V̄21p(1)
〈k〉 · · · MV̄21p(M)

〈k〉
2V̄22p(1)

〈k〉 · · · 2MV̄22p(M)
〈k〉

· · · · · · · · ·
MV̄2Mp(1)

〈k〉 · · · M2V̄2Mp(M)
〈k〉

⎞

⎟
⎟
⎟
⎟
⎠

,

D1(t) = D2(t) = diag(σ + μ), D3(t) = D4(t) = diag(–σ ), D5(t) = diag(γ + μ).
Let Z(t, s), t ≥ s, denote the evolution operator of the following system:

dz
dt

= –D(t)z. (2)

Then Z(t, s) satisfies

dZ(t, s)
dt

= –D(t)Z(t, s), Z(s, s) = I,∀t ≥ s,
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where I is the identity matrix and the monodromy matrix 	–D(t) of the system (2) is equal
to Z(t, 0), t ≥ 0.

Assume that BT is the ordered Banach space composed of all T-periodic functions from
R to R3M with maximum norm ‖ · ‖ and then define a linear operator L : BT → BT as
follows:

(Lx)(t) =
∫ t

–∞
Z(t, s)G(s)x(s) ds =

∫ ∞

0
Z(t, t – a)G(t – a)x(t – a) da.

Here, x ∈ BT denotes the initial distribution of infected individuals, G(s)x(s) represents
the distribution of those newly infected by the infectious persons who were introduced at
time s. For t ≥ s, Z(t, s)G(s)x(s) is the distribution of infected individuals produced at time
s and remain in this compartment at time t. We can define the basic reproduction number
of the system (1) by the spectral radius of L, i.e.

R0 = ρ(L).

For system (1), we can verify that the conditions (A1)–(A7) given in [32] hold and then
derive the following theorem.

Lemma 1 Assume that (A1)–(A7) [32] hold, then the following statements are valid:
(1) R0 = 1 if and only if ρ(	G–D(T)) = 1.
(2) R0 < 1 if and only if ρ(	G–D(T)) < 1.
(3) R0 > 1 if and only if ρ(	G–D(T)) > 1.

Theorem 1 The disease-free equilibrium E0 is globally asymptotically stable if R0 < 1, and
unstable if R0 > 1.

Proof Firstly, we illustrate that the disease-free equilibrium is locally stable. The Jacobian
matrix of the system (1) at E0 equals

J̃(E0) =

(
G(t) – D(t) 0

J1(t) J2(t)

)

,

where

J1(t) =

⎛

⎜
⎜
⎜
⎝

Ã1 Ã1 Ã1 – G1(t)
0 0 0
0 0 Ã1 – G2(t)
0 0 Ã2

⎞

⎟
⎟
⎟
⎠

, J2(t) =

⎛

⎜
⎜
⎜
⎝

Ã1 + B̃3 + B̃4 Ã1 Ã1 Ã1

B̃1 B̃2 + B̃3 0 0
0 –B̃2 B̃3 0
0 0 0 B̃3

⎞

⎟
⎟
⎟
⎠

,

with diagonal matrices Ã1, Ã2, B̃1, B̃2, B̃3, whose elements are –b, γ , p, –ω, –μ, separately.
Clearly, all eigenvalues of J2 have negative real parts. Then, combining with Lemma 1,

that is, ρ(	G–D(T)) < 1 for R0 < 1, we derive that the disease-free equilibrium E0 is locally
stable if R0 < 1. Next, we will illustrate E0 is globally attractive.
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For the system (1), it satisfies

⎧
⎪⎪⎨

⎪⎪⎩

dSk
dt ≤ b – b(Sk + V1k + V2k) – (p + μ)Sk ,

dV1k
dt ≤ pSk – (ω + μ)V1k ,

dV2k
dt ≤ ωV1k – μV2k .

Then, using the standard comparison theorem [33], we can prove that, for any ε > 0, there
is τ1 > 0 such that Sk(t) ≤ S̄k + ε, V1k(t) ≤ V̄1k + ε, V2k(t) ≤ V̄2k + ε for t > τ1.

Furthermore, we introduce an auxiliary system

⎧
⎪⎪⎨

⎪⎪⎩

dÊk
dt = β(t)k(S̄k + ε)�̂ – σ Êk – μÊk ,

dÊvk
dt = ηβ(t)k(V̄2k + ε)�̂ – σ Êvk – μÊvk ,

dÎk
dt = σ Êk + σ Êvk – γ Îk – μÎk ,

(3)

with �̂ =
∑

m p(m|k)Îm and write it as

dẐ
dt

=
(
G(t) – D(t) + εQ(t)

)
Ẑ, (4)

where Ẑ = (Ê1, Êv1, Î1, . . . , ÊM, ÊvM, ÎM) and

Q(t) =

⎛

⎜
⎝

0 0 G̃1(t)
0 0 ηG̃1(t)
0 0 0

⎞

⎟
⎠ , G̃1(t) =

⎛

⎜
⎝

β(t)
〈k〉 p(1) · · · Mβ(t)

〈k〉 p(M)
· · · · · · · · ·

Mβ(t)
〈k〉 p(1) · · · M2β(t)

〈k〉 p(M)

⎞

⎟
⎠ .

If R0 < 1, corresponding to ρ(	G–D(T)) < 1, we get ρ(	G–D+εQ(T)) < 1 for enough small
ε > 0 and consequently φ1 = 1

T lnρ(	G–D+εQ(T)) < 0. By Lemma 2.1 of [34], it can be il-
lustrated that there is a positive T-periodic function c(t) = (c11(t), c21(t), c31(t), . . . , c1M(t),
c2M(t), c3M(t))T such that eφ1tc(t) is a solution of the system (4). We can choose a small value
α1 > 0 and τ2 > τ1 to satisfy Ẑ(τ2) ≤ α1c(0), then the inequality Ẑ(t) ≤ α1c(t – τ2)eφ1(t–τ2),
t ≥ τ2 holds.

Using the standard comparison theorem again, we get

(
E1(t), Ev1(t), I1(t), . . . , EM(t), EvM(t), IM(t)

) ≤ Ẑ(t) ≤ α1c(t – τ2)eφ1(t–τ2),

which demonstrates limt→∞ Ek(t) = 0, limt→∞ Evk(t) = 0, limt→∞ Ik(t) = 0. Furthermore,
considering the corresponding limit system

⎧
⎪⎪⎨

⎪⎪⎩

dSk
dt = b – b(Sk + V1k + V2k) – (p + μ)Sk ,

dV1k
dt = pSk – ωV1k – μV1k ,

dV2k
dt = ωV1k – μV2k ,

we can derive limt→∞ Sk(t) = S̄k , limt→∞ V1k(t) = V̄1k , limt→∞ V2k(t) = V̄2k , limt→∞ Rk(t) =
0. Above all, we have completely proved the global attractivity of E0. �
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Theorem 2 If R0 > 1, the system (1) is uniformly persistent and there exists at least a pos-
itive T-periodic solution.

Proof In the following, we first examine the uniform persistence of the system (1). This
system admits a positive constant ε̃ such that, for all initial values with S0

k , V 0
1k , V 0

2k , R0
k ≥

0, E0
k , E0

vk , I0
k > 0, k = 1, . . . , M, the solution of system (1) satisfies limt→∞ inf Ik(t) ≥ ε̃,

limt→∞ inf Ek(t) ≥ ε̃, limt→∞ inf Evk(t) ≥ ε̃.
For simplicity, we let Yk = (Sk , V1k , V2k , Ek , Evk , Ik , Rk) and define Y = {(Y1, Y2 · · · , YM) :

Sk , V1k , V2k , Ek , Evk , Ik , Rk ≥ 0, Ak ≤ 1, k = 1, . . . , M}, Y0 = {(Y1, Y2 · · · , YM) : Sk , V1k , V2k , Rk ≥
0, Ek , Evk , Ik > 0, Ak ≤ 1, k = 1, . . . , M}, ∂Y0 = Y\Y0. Obviously, Y , Y0 are positively invariant
and ∂Y0 is relatively closed in Y .

Define Poincaré map P : R7M
+ → R7M

+ to satisfy P(x0) = v(T , x0), x0 ∈ R7M
+ . v(t, x0) is the

solution of the system (1) with initial value x0. Moreover, from the equations of system
(1), we obtain limt→∞ Ak(t) = b

b+μ
, meaning that the solution of system (1) is uniformly

and ultimately bounded. Hence, the semilow P is point dissipative and compact on R7M
+ .

Theorem 3.4.8 of [35] indicates that the map P has a global attractor, which attracts each
bounded set in R7M

+ .
Denote Y∂ = {y0 = (Y 0

1 , Y 0
2 , . . . , Y 0

M) ∈ ∂Y0 : Pn(y0) ∈ ∂Y0,∀n > 0}. Let Ỹ = {(Ỹ1, Ỹ2,
. . . , ỸM)}, where Ỹk = (Sk , V1k , V2k , 0, 0, 0, 0), k = 1, . . . , M. Next, we illustrate Y∂ = Ỹ . It is
obvious that Ỹ ⊆ Y∂ . In the following, we only verify the relation Y∂ ⊆ Ỹ . Supposing that
y0 ∈ Y∂\Ỹ , then a conflict occurs. For example, if E0

1 > 0, E0
k = 0 (k = 2, . . . , M), E0

vk = I0
k = 0

(k = 1, . . . , M), then by the equations of the system (1), we deduce for sufficiently small
t > 0, v(t, x0) /∈ ∂Y0. This contradicts the initial assumption. Denote � =

⋃
ω(y0), y0 ∈ Y∂ .

It is easy to see � = {E0}, that is, for any initial value from Y∂ , the solution of system (1)
will remain in Y∂ .

To show E0 is a weak repeller for Y0, we only need to prove W s(E0) ∩ Y0 = ∅, where
W s(E0) is the stable manifold of E0. First, based on the continuity of solutions in terms
of initial values, we see that ∀ε > 0, there is δ̃ > 0 such that, for any x0 ∈ Y0 which satisfy
d(x0, E0) ≤ δ̃, d(v(t, x0), v(t, E0)) ≤ ε holds for t ∈ [0, T]. In the following, we demonstrate
limn→∞ sup d(Pn(x0), E0) ≥ δ̃.

Suppose not, there is some x0 ∈ Y0 such that limn→∞ sup d(Pn(x0), E0) < δ̃. Without loss
of generality, we assume for any n > 0, d(Pn(x0), E0) < δ̃. Given t > 0, let t = nT + τ3, then
d(v(t, x0), v(t, E0)) = d(v(τ3, Pn(x0)), v(τ3, E0)) < ε. Let (Sk(t), V1k(t), V2k(t), Ek(t), Evk(t), Ik(t),
Rk(t)) = v(t, x0). The result indicates ‖Sk(t)– S̄k‖ ≤ ε, ‖V1k(t)– V̄1k‖ ≤ ε, ‖V2k(t)– V̄2k‖ ≤ ε,
‖Ek(t)‖ ≤ ε, ‖Evk(t)‖ ≤ ε, ‖Ik(t)‖ ≤ ε, k = 1, . . . , M. Then the fourth and fifth equations of
the system (1) satisfy

⎧
⎨

⎩

dEk
dt ≥ β(t)k(S̄k – ε)� – (σ + μ)Ek ,

dEvk
dt ≥ ηβ(t)k(V̄2k – ε)� – (σ + μ)Evk .

Introducing the auxiliary system

⎧
⎪⎪⎨

⎪⎪⎩

dẼk
dt = β(t)k(S̄k – ε)�̃ – (σ + μ)Ẽk ,

dẼvk
dt = ηβ(t)k(V̄2k – ε)�̃ – (σ + μ)Ẽvk ,

dĨk
dt = σ (Ẽk + Ẽvk) – (γ + μ)Ĩk ,

(5)
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with �̃ =
∑

m p(m|k)Ĩm and for convenience, we rewrite (5) as

dZ̃
dt

=
(
G(t) – D(t) – εQ(t)

)
Z̃,

where Z̃ = (Ẽ1(t), Ẽv1(t), Ĩ1(t), . . . , ẼM(t), ẼvM(t), ĨM(t)) and G(t), D(t), Q(t) have the same
form as mentioned in Theorem 1.

Following Lemma 2.1 [34], we can get a positive T-periodic function c̃(t) = (c̃11(t), c̃21(t),
c̃31(t), . . . , c̃1M(t), c̃2M(t), c̃3M(t))T such that eφ2t c̃(t) is a solution of the system (5) with
φ2 = 1

T lnρ(	G–D–εQ(T)). For R0 > 1 (i.e. ρ(	G–D(T)) > 1), there exists a enough small ε > 0
such that ρ(	G–D–εQ(T)) > 1, which corresponds to φ2 > 0. Choosing α̃1 > 0, t0 > 0 such
that Z̃(t0) ≥ α̃1c̃(0), then the inequality Z̃(t) ≥ α̃1c̃(t – t0)eφ2(t–t0) holds. Furthermore, the
standard comparison theorem [33] demonstrates that the following inequality is estab-
lished:

(
E1(t), Ev1(t), I1(t), . . . , EM(t), EvM(t), IM(t)

) ≥ Z̃(t) ≥ α̃1c̃(t – t0)eφ2(t–t0).

This indicates limm→∞ Ek(t) = +∞, limm→∞ Evk(t) = +∞, limm→∞ Ik(t) = +∞, which con-
tradicts with Ek(t), Evk(t), Ik(t) < ε. Thus, we obtain W s(E0) ∩ X0 = ∅.

Above all, based on the Theorem 3.11 of [36], it is proved that the Poincaré map P is uni-
formly persistent with respect to (Y0, ∂Y0). Furthermore, combining Theorem 1.3.6 [36], it
can be proved that the Poincaré map has a fixed point E∗ = (S∗

1, V ∗
11, V ∗

21, E∗
1 , E∗

v1, I∗
1 , R∗

1, . . . ,
S∗

M, V ∗
1M, V ∗

2M, E∗
M, E∗

vM, I∗
M, R∗

M) ∈ Int(R7M
+ ), hence we can derive that the solution v(t, E∗) is

a positive and T-periodic solution of the system (1). This completes the proof. �

2.3 Numerical study
In this section, we initially analyze the effects of waning immunity on the transmission
of measles in the random network and scale-free (SF) network. For the random network,
it follows from Fig. 2(A) that increasing the waning rate (ω) of immunity can result in a
significant increase in the basic reproduction number R0, indicating that waning of im-
munity brings about a difficulty in eliminating the measles. And it is worth noting that,
given there is no waning of immunity, like in many existing models, one may underesti-
mate the value of R0. Furthermore, Fig. 2(B) shows that an increasing waning rate leads to
an increase in the density of infected nodes, especially the peak magnitude. This implies
the waning of immunity causes many new infections and suggests us that prolonging the
protection duration of vaccine is beneficial to control transmission of measles. Note that
the plots for the SF network are similar to Fig. 2, and hence we omit them.

The basic reproduction number R0 is the threshold to determine whether the measles
dies out or not, hence it is essential to study the influence of the network structure deter-
mined by the degree distribution on R0. Here, we continue to discuss a scale-free (SF) net-
work and a random network. In the SF network, the degree distribution follows the power-
law distribution (that is, p(k) = mk–v, where m is uniquely determined by v) [37]. In the
random network, the node degree follows the Poisson distribution (that is, p(k) = Kk

a e–Ka

k! ,
the average degree Ka = Nq, where N and q represent the network size and the probability
of connection between two nodes) [38].
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Figure 2 (A) The variation in R0 with respect to the waning rate ω of immunity on the random network;
(B) the density of infected individuals (I =

∑M
k=1 Ik (t)) on the whole random network with ω = 0.05, 0.2, 0.5

Figure 3 (A)–(B) The variation in R0 with respect to v in the SF network and q in the random network; (C) the
comparison of R0 under different networks (SF network and random network) with the same average degree.
K̄a is a critical value of average degree

To study the impact of degree distribution on the basic reproduction number R0, we ex-
amine the variation in R0 with parameter v (SF network) and q (random network) chang-
ing. Figure 3(A) shows that as the parameter v in power-law distribution increases, the
proportion of nodes with large degree decreases, causing a reduction in R0. Hence, in the
SF network, treating and isolating the infected individuals who have more connections to
others can effectively control the spread of disease. Figure 3(B) indicates that in a random
network, decreasing the probability q of random contacts between nodes can reduce the
new infections.

To further explore the influence of network structure on the outbreak of disease, we
compare the basic reproduction number R0 between the SF network and the random net-
work for a given average degree. Figure 3(C) indicates that there is a critical level K̄a for
the average degree (here K̄a = 3.9) below which the basic reproduction number R0 for the
random network is greater than those for the SF network, above which the opposite result
is observed. This means that the contact structure being like random network promotes
the outbreak of measles when the average degree of nodes is small, while as the average de-
gree increases, the proportion of nodes with large degree also increases and then measles
can transmit faster in the SF network than in the random network.
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3 Optimal control strategies
In this section, we consider some feasible interventions and then extend the system (1) to
the following model with control functions u1k(t), u2k(t), u3k(t):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk
dt = b(1 – Ak) – (1 – u1k(t))β(t)kSk� – p(1 + u2k(t))Sk – μSk ,

dV1k
dt = p(1 + u2k(t))Sk – ωV1k – μV1k ,

dV2k
dt = ωV1k – η(1 – u1k(t))β(t)kV2k� – μV2k ,

dEk
dt = (1 – u1k(t))β(t)kSk� – σEk – μEk ,

dEvk
dt = η(1 – u1k(t))β(t)kV2k� – σEvk – μEvk ,

dIk
dt = σEk + σEvk – (1 + u3k(t))γ Ik – μIk ,

dRk
dt = (1 + u3k(t))γ Ik – μRk ,

(6)

where � =
∑M

m=1 p(m|k)Im = 1
〈k〉

∑M
m=1 mp(m)Im, 〈k〉 =

∑M
k=1 kp(k). The control function

u1k(t) represents the reduction in contacts of susceptible individuals with degree k by per-
sonal protection or social distancing measures. The control functions u2k(t), u3k(t) denote
the enhanced vaccination and treatment in the group with degree k. For minimizing the
infected individuals in the time interval [0, T] with minimal cost, we define the objective
function

O(u1k , u2k , u3k) =
M∑

k=1

∫ T

0

(

NkIk(t) +
1
2

W1ku2
1k(t) +

1
2

W2ku2
2k(t) +

1
2

W3ku2
3k(t)

)

dt,

where W1k = W1Nk , W2k = W2Nk , W3k = W3Nk are the weights in terms of the control
functions u1k , u2k , u3k with positive constants Wi, i = 1, 2, 3, k = 1, . . . , M. We can derive
the optimal control strategies by searching for the optimal control function U∗(t) subject
to the system (6) such that

O
(
U∗(t)

)
= min

�̃

O
(
U(t)

)
,

where �̃ = {U(t) = (u11(t), u21(t), u31(t), . . . , u1M(t), u2M(t), u3M(t)) ∈ L2(0, T)3M|0 ≤
u1k(t) ≤ û1k , 0 ≤ u2k(t) ≤ û2k , 0 ≤ u3k(t) ≤ û3k , k = 1, . . . , M} with positive upper bounds
ûik , i = 1, 2, 3.

3.1 Optimal control and optimal solutions
Since the state system is a linear function for U and satisfies the Lipschitz prop-
erty for the state variables, while the integrand of O is a convex function in terms of
(u11(t), u21(t), u31(t), . . . , u1M(t), u2M(t), u3M(t)), we can easily prove the existence of op-
timal controls by Corollary 4.1 of Fleming’s reference [39] and derive the following re-
sult.

Theorem 3 There are the optimal control function U∗(t) and the corresponding optimal
solution C∗(t) to minimize O(U(t)) over the �̃. In order to make the above statement correct,
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it is necessary to have continuous functions λik(t) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
1k(t) = λ1kb + (λ1k – λ4k)(1 – u1k(t))β(t)k� + (λ1k – λ2k)p(1 + u2k(t))

+ λ1kμ,

λ′
2k(t) = λ1kb + (λ2k – λ3k)ω + λ2kμ,

λ′
3k(t) = λ1kb + (λ3k – λ5k)η(1 – u1k(t))β(t)k� + λ3kμ,

λ′
4k(t) = λ1kb + (λ4k – λ6k)σ + λ4kμ,

λ′
5k(t) = λ1kb + (λ5k – λ6k)σ + λ5kμ,

λ′
6k(t) = –Nk + λ1kb + (λ1k – λ4k)(1 – u1k(t)) β(t)k2p(k)Sk

〈k〉 + (λ3k – λ5k)

× (1 – u1k(t)) ηβ(t)k2p(k)V2k
〈k〉 + (λ6k – λ7k)(1 + u3k(t))γ + λ6kμ,

λ′
7k(t) = λ1kb + λ7kμ,

(7)

with the transversality conditions,

λ1k(T) = λ2k(T) = · · · = λ7k(T) = 0.

Furthermore, the optimal controls are

u∗
1k(t) = min

{

max
{

(λ4k – λ1k)β(t)kS∗
k (t)�∗(t) + (λ5k – λ3k)ηβ(t)kV ∗

2k(t)�∗(t)
W1k

, 0
}

,

û1k

}

,

u∗
2k(t) = min

{

max
{

(λ1k – λ2k)pS∗
k (t)

W2k
, 0

}

, û2k

}

,

u∗
3k(t) = min

{

max
{

(λ6k – λ7k)γ I∗
k (t)

W3k
, 0

}

, û3k

}

, k = 1, 2, . . . , M.

(8)

Proof Based on the Pontryagin’s maximum principles [40], we can get the necessary con-
ditions satisfied by the optimal controls. Specifically, we first define the Hamilton function
H as

H =
M∑

k=1

(

NkIk +
1
2

W1ku2
1k +

1
2

W2ku2
2k +

1
2

W3ku2
3k + λ1k

dSk

dt
+ λ2k

dV1k

dt

+ λ3k
dV2k

dt
+ λ4k

dEk

dt
+ λ5k

dEvk

dt
+ λ6k

dIk

dt
+ λ7k

dRk

dt

)

.

The corresponding adjoint equations with transversality conditions are λ′
1k = – ∂H

∂Sk
, λ′

2k =
– ∂H

∂V1k
, λ′

3k = – ∂H
∂V2k

, λ′
4k = – ∂H

∂Ek
, λ′

5k = – ∂H
∂Evk

, λ′
6k = – ∂H

∂Ik
, λ′

7k = – ∂H
∂Rk

, with λ1k(T) = λ2k(T) =
λ3k(T) = λ4k(T) = λ5k(T) = λ6k(T) = λ7k(T) = 0.

Differentiating H concerning u1k , u2k , u3k on the set �̃, respectively, the Hamilton func-
tion H can reach the minimum with the following optimal conditions:

∂H
∂u1k

= 0,
∂H
∂u2k

= 0,
∂H
∂u3k

= 0.
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Solving for u∗
1k(t), u∗

2k(t), u∗
3k(t), we get

u∗
1k(t) =

(λ4k – λ1k)β(t)kS∗
k (t)�∗(t) + (λ5k – λ3k)ηβ(t)kV ∗

2k(t)�∗(t)
W1k

,

u∗
2k(t) =

(λ1k – λ2k)pS∗
k (t)

W2k
, u∗

3k(t) =
(λ6k – λ7k)γ I∗

k (t)
W3k

.

Combining with the bounds 0 ≤ u1k(t) ≤ û1k , 0 ≤ u2k ≤ û2k , 0 ≤ u2k ≤ û3k , k = 1, . . . , M,
we derive the properties as Theorem 3. �

3.2 Numerical simulation
In the following simulations, we mainly discuss the optimal control strategies and their
corresponding effects on the incidence under two kinds of networks: random network
and SF network. Here, we assume the community size N = 300 and the maximum degree
M = 21.

3.2.1 Optimal control strategy on random network
To study the effect of optimal control strategies on the transmission of measles under
different groups, we plot the time series of optimal control functions and the correspond-
ing densities of infected nodes with degree k = 2, 11, 21, respectively. It is observed from
Fig. 4(A)–(C) that the optimal control function u∗

1k(t) begins to decline after a period of
plateau with the highest level, and u∗

2k(t) monotonically decreases while the optimal con-
trol function u∗

3k(t) initially increases and then decreases which behaves like infection in-
cidence. This demonstrates that we should initiate personal protection and enhance vac-
cination as soon as possible when disease takes off while the implementation of treatment

Figure 4 (A)–(C) The time series of optimal control functions for 3 groups with degree 2,11,21; (D) the
densities of infected nodes for these 3 groups in the absence of control (solid line) and under optimal control
(dotted line)
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measures should be in sync with transmission of measles. Moreover, the optimal con-
trol curves show that the nodes with high degrees require relatively long duration of self
protection with maximum level and strong initial vaccination strength to minimize the
objective function. Figure 4(D) indicates that with optimal controls, the outbreak can be
significantly mitigated. Furthermore, the larger the degree k is, the higher the peak value
of Ik(t) is, which means the population with high degree is easily and seriously invaded by
disease, so we should pay more attention to the individuals in these groups.

To further explore what interventions should be taken for different groups and their
effectiveness on disease spread, we define the average control strength

ūik =
1
T

∫ T

0
u∗

ik(t) dt, i = 1, 2, 3,

under the optimal controls and compare the cumulative densities of infected individuals
Īk , Ī∗

k over a period under two cases: without/with optimal control, where

Īk =
∫ T

0
Ik(t) dt, Ī∗

k =
∫ T

0
I∗

k (t) dt, k = 1, 2, . . . , M.

It follows from Fig. 4 (A) that the average control strength ūik increases with the degree k
increasing. This indicates that the control measures related to the highly connected indi-
viduals should be strengthened to achieve optimal control. And further, for a given degree
k, we have ū1k > ū2k > ū3k , which means that the control strategies such as personal pro-
tection and social distance, associated with reducing transmission, should be significantly
implemented for each group. Figure 5(B) demonstrates that the implementation of opti-
mal controls yields a reduction of more than 50% in the cumulative density of infected
individuals for each group.

To investigate the allocation of costs (or resources) in different groups under the optimal
controls, we compute the fraction Fi,k of costs occupied by each group for each strategy,
as shown in Fig. 6(A), where

Fi,k =
∫ T

0
Wiku∗

ik(t) dt
/ M∑

k=1

∫ T

0
Wiku∗

ik(t) dt, i = 1, 2, 3, k = 1, . . . , M.

Figure 5 (A) Under the optimal controls, the average control strength ū1k , ū2k , ū3k for different groups
k = 2, 7, 12, 17, 21; (B) the cumulative densities of infected nodes for each group with/without optimal control
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Figure 6 The distribution of each control costs among total groups in the random network (A) and SF
network (B), which is illustrated by the fraction Fi,k =

∫ T
0 Wiku∗

ik (t)dt/
∑M

k=1

∫ T
0 Wiku∗

ik (t)dt, i = 1, 2, 3, k = 1, . . . ,M

It displays that the cost distribution among different groups represents the shape of normal
distribution and a substantially large fraction of the costs is occupied by the nodes with
medium degrees, indicating that when the measles spreads among individuals whose con-
tact structure is more like random network, more resources such as facial masks, vaccines,
medicines should be allocated to the population with medium degrees.

The timing of the implementation of interventions is always a critical issue. To do this,
we incorporate a time delay in our model simulations by varying the start time of inter-
ventions: 1 month, 2 months, 3 months after the disease onset. The effect of time delay is
evaluated in terms of optimal control functions, average control strength and densities of
infected nodes among different groups. It is observed that the general shapes of control
functions are similar except for the magnitudes among different groups, so we only illus-
trate the group 10 (i.e. k = 10). Comparing the optimal control functions u∗

1,10(t), u∗
2,10(t),

u∗
3,10(t) under different starting times the control measures are carried out in Fig. 7(A)–(C),

we see that as the time delay increases, the duration that the optimal control u∗
1,10(t) being

at the maximum level reduces while the initial intensity of optimal control u∗
2,10(t) also de-

creases. In contrast, the initial intensity of optimal control u∗
3,10(t) first increases and then

declines with delaying the implementation of control strategies. Figure 7(D) displays that
the delay in carrying out interventions leads to a significant increase in the densities of
infected individuals. This indicates that the earlier the control measures is strengthened,
the lower the outbreak size is.

Furthermore, we plot the average control strength ū1k , ū2k , ū3k under four different start-
ing times of control measures. Figure 8 shows that as the starting time is delayed, the aver-
age control strength of interventions ū1k , ū2k declines, especially for the group with high
degree k. This is because the relatively late implementation of control measures leads to
the disease spreading out and then susceptible individuals quickly declining. In particular,
the subpopulation with great connectivity is infected faster. Hence, the highest intensity
of control measures associated with personal protection and enhancement of vaccination
is implemented in the groups with medium degrees rather than in the groups with high
degrees. This means that with time delay increasing, the control intensity for groups with
medium degrees should be relatively stronger, compared to other classes, to achieve more
effective control.



Xue et al. Advances in Difference Equations        (2021) 2021:138 Page 15 of 18

Figure 7 (A)–(C) The time series of optimal control function for group 10 (i.e. k = 10) under four different
timings of the implementation of control measures (delay time = 0, 1, 2, 3 month); (D) the corresponding
densities of infected nodes in group 10

Figure 8 (A)–(C) Under the optimal controls, the average control strength of each group under four different
starting times of controls (delay time = 0, 1, 2, 3 month)

3.2.2 Optimal control strategy on SF network
To investigate the effect of different network structures on the control of disease, we com-
pare the main results on scale-free network with those on random network. In contrast to
the random network, we find from Fig. 6 (B) that, for the SF network, the costs among total
groups follows the exponential distribution and a substantially large fraction of the costs
is occupied by the nodes with low degrees, which suggests in SF network, more resources
should be allocated to these corresponding groups. This indicates that the distribution of
costs among various groups coincides with the distribution of contact pattern. In the SF
network, most nodes have low degrees, which yields great resource requirement, while in
the random network, most nodes are those with medium degrees and hence they occupy
most resources.

Numerical studies exhibit that the optimal control functions in the SF network behave
like those in the random network, and particularly, the nodes with high degree require
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high intensity of interventions. The specific plots are like Fig. 4 and we omit them. Sim-
ilarly, with the starting time of control measures being delayed, the optimal control in-
tensity for total groups decreases, especially for the group with large k, while the corre-
sponding densities of infected individuals increase. Again, the plots for the SF network are
almost the same as Fig. 7 and Fig. 8, hence we omit them.

4 Discussion
In recent years, the repeated outbreaks of domestic measles were of small-scale and clus-
tered patterns, which presented obvious heterogeneity and attracted the public concern
to design effective control measures against measles. To investigate the influence of het-
erogeneity on the measles transmission dynamics, we extend the homogeneous measles
model to the heterogeneous network model. We further consider the waning of immunity
in the proposed model and then divide the vaccinated individuals into two classes (fully
protected with high antibody titer, probably infected with low antibody titer). We explore
what control strategies should be implemented for individuals with different connectiv-
ities by using the optimal control method on the network model (high dimension). This
network modeling approach provides a natural description to the transmission of measles
among heterogeneous communities and we can obtain the detailed control scheme for
individuals with different activities.

We initially analyze the threshold dynamics for the network model by defining the basic
reproduction number R0, which is the spectral radius of the next generation operator. We
prove that the disease-free equilibrium E0 is globally asymptomatically stable for R0 < 1.
While, if R0 > 1, the disease-free equilibrium E0 is unstable and the system is uniformly
persistent. The basic reproduction number R0 can act as a threshold to determine whether
the disease dies out or not. Then we numerically study the effect of waning immunity and
find the larger the waning rate is, the greater the basic reproduction number R0 and the
density of infected individuals are, which demonstrates that the long-term protection of
vaccine is effective in controlling transmission of measles. We investigate the influence
of network structure on R0 for two kinds of networks: the SF network (with degree dis-
tribution p(k) = mk–v) and the random network (with degree distribution p(k) = Kk

a e–Ka

k! ,
Ka = Nq). Our results demonstrate that R0 varies with the degree distribution for each
network. The larger the parameter v or the smaller the parameter q of degree distribution
is, the smaller R0 is. This means we can effectively mitigate the outbreak of the disease by
reducing the proportion of the highly connected individuals given contact structure in the
case of the SF network, or restricting the contacts between nodes in the random network.
Moreover, the comparison of R0 between SF network and random network indicates that
there exists a critical average degree K̄a below which the basic reproduction number R0

for the random network is larger than that, for the SF network, above which increasing
the average degree induces a quick increase in R0 (and thence new infections) for the SF
network.

Furthermore, we extend the above network model by including three types of inter-
ventions (personal protection, enhancement of vaccination and treatment) to design the
optimal control measures for achieving a low level of infections at a minimal cost. First, we
prove the existence of the optimal solutions and characterize the optimal control functions
using Pontryagin’s maximal principle. The numerical results indicate that, no matter what
the network is, the outbreak peaks early with relatively large magnitude for the subpopu-
lation with high activity, hence these individuals require a high intensity of interventions.
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With the optimal controls, the densities of infected nodes decrease by more than 50% for
each group. Given delays of initiation of control measures, we see that late implementation
of the interventions induces the relatively high density of infected individuals. This sug-
gests that the control measures should be carried out as soon as possible. With the timing
of implementation of control measures varying, the objective subpopulation implemented
to the highest control strength also changes from individuals with high degrees to indi-
viduals with medium degrees, which is due to the delay of initiating controls results in the
rapid spread of disease and further a rapid reduction of susceptible individuals, especially
for those with great activities.

Our findings also demonstrate that, for the random network and the SF network, the
costs occupied by different groups follow their own contact distribution. In particular, the
distribution of costs is the normal distribution in the random network, while it follows
the exponential distribution in the SF network. The results suggest us when the disease
takes off in a community whose contact structure is more like random network, more
resources should be allocated to the subpopulation with medium degrees due to most
nodes are located in these groups. Conversely, in the SF network, most individuals have
low degrees, so they should be paid more attention to and require more resources.

In summary, we developed a heterogeneous model with periodic transmission rate to in-
vestigate the effect of contact network and waning immunity on transmission of measles,
which is an advantage compared to most existing homogeneous measles models. Further-
more, the effective control strategies for subpopulation with different activities are given
by investigating the optimal control problem for the heterogeneous model. The results im-
prove our understanding for the spread of measles and provide us with a detailed control
scheme for different subpopulations, which cannot be obtained from the homogeneous
models. However, it is challenging to obtain the realistic contact network due to the lack
of reliable contact data, hence our simulations remain more qualitative. Moreover, it is
essential to consider the effect of both age structure and contact heterogeneity on measles
transmission, and we leave this for future work.
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