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Abstract
The principal aim of the current article is to establish new formulas of Chebyshev
polynomials of the sixth-kind. Two different approaches are followed to derive new
connection formulas between these polynomials and some other orthogonal
polynomials. The connection coefficients are expressed in terms of terminating
hypergeometric functions of certain arguments; however, they can be reduced in
some cases. New moment formulas of the sixth-kind Chebyshev polynomials are also
established, and in virtue of such formulas, linearization formulas of these
polynomials are developed.
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1 Introduction
Special functions in general and orthogonal polynomials, in particular, have been used
for centuries. These functions and polynomials play essential parts in various disciplines
such as theoretical physics, chemistry, and numerical analysis (see, for example, [1–3]). In
particular, they occupy significant parts in the solution of differential equations of different
types.

It is well known that there are several kinds of Chebyshev polynomials. The one most
commonly used is of the first kind, but it is shown that all kinds have their roles to play (see
[2]). The four kinds Tn(x), Un(x), Vn(x) and Wn(x) denote, respectively, the first-, second-,
third-, and fourth-kind Chebyshev polynomials. They are particular classes of Jacobi poly-
nomials. The first- and second-kind polynomials are ultraspherical polynomials, however,
the third- and fourth-kinds are not ultraspherical polynomials. They are special non-
symmetric Jacobi polynomials. The third- and fourth-kind polynomials were first defined
by Gautschi (see [4]). He named them Chebyshev polynomials since they have trigonomet-
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ric definitions, like the first- and second-kinds. There were two other kinds of Chebyshev
polynomials introduced by Jamei [5]. He named them Chebyshev polynomials of the fifth-
and sixth-kinds. Furthermore, he classified them as two half-trigonometric orthogonal
polynomials because he could express only the even-order polynomials in trigonometric
definitions. Recently, Abd-Elhameed and Youssri found full trigonometric representations
for the fifth- and sixth-kinds of any order (see [6, 7]). It should be pointed out here that
all the six kinds of Chebyshev polynomials were employed in several applications in dif-
ferential equations. For some articles concerned with the first four kinds see [8–10], and
for some other contributions concerning the fifth- and sixth-kinds see [6, 7, 11].

Of the important problems related to the topic of special functions are the linearization
problems and their related and generalizing problems. In this regard, we mention some of
these problems accompanied by some contributions regarding them.

• Linearization problems of different orthogonal polynomials. For example, and in this
regard, recently, the author in [12] developed new linearization formulas of
generalized Laguerre polynomials. More recently, the authors in [13] established some
specific and general linearization formulas of certain classes of Jacobi polynomials.
The author in [14] established linearization formulas of certain non-symmetric
classes of Jacobi polynomials. The authors in [15] derived some formulas of the
linearization coefficients of some classes of Jacobi polynomials.

• Summing finite products of different orthogonal polynomials. This important
problem was investigated by some authors. In this regard, the authors in [16]
represented certain sums of finite products of Chebyshev polynomials in terms of
Chebyshev polynomials. The authors in [17] represented sums of finite products of
Chebyshev polynomials of the first-kind and Lucas polynomials in terms of some
orthogonal polynomials. Other expressions of sums of finite products of Legendre and
Laguerre polynomials were developed in [18]. Recently, the authors in [19] developed
new sums of finite products of the second-, third-, and fourth-kind Chebyshev
polynomials.

• Connection problems between different orthogonal polynomials. Some studies were
devoted to solving these problems via different approaches. For some articles
interested in investigating these problems, one can be referred for example to [20, 21].

In this paper, we concentrate on developing some important formulas of Chebyshev
polynomials of the sixth-kind including connection and linearization formulas. Regarding
the general linearization problem, if we have three polynomial sets {φm(x)}m≥0, {ψn(x)}n≥0,
and {ξp(x)}p≥0, then the problem

φm(x)ψn(x) =
m+n∑

r=0

Lr,m,nξr(x) (1)

is called the general linearization problem, and the coefficients Lr,m,n are called the lin-
earization coefficients. To solve the linearization problem (1), we should find the coeffi-
cients Lr,m,n. In particular, we have two important problems considered as special cases of
problem (1):
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(i) The linearization problem,

φm(x)φn(x) =
m+n∑

r=0

Mr,m,nφr(x),

where Mr,m,n are the linearization coefficients to be determined.
(ii) The connection problem,

φm(x) =
m+n∑

r=0

Sr,m,nξr(x),

where Sr,m,n are the connection coefficients to be determined.
Several algorithms were described to solve the connection and linearization problems. In
most cases, the connection and linearization coefficients are expressed in terms of hyper-
geometric functions of certain arguments; see, for example [20, 22–24].

There are extensive studies regarding the first four kinds of Chebyshev polynomials form
theoretical and numerical points of view, however, the studies regarding the fifth- and
sixth-kinds of Chebyshev polynomials are not complete. This gives us a strong motivation
to study these kinds of polynomials. In this paper, we are interested in developing some
new formulas of the sixth-kind Chebyshev polynomials. To the best of our knowledge, the
following formulas are not found in the literature:

• The connection formulas of Chebyshev polynomials of the sixth-kind with other
orthogonal polynomials and their inversion ones.

• The moment formulas of Chebyshev polynomials of the sixth-kind.
• The linearization formulas of Chebyshev polynomials of the sixth-kind.

The importance of the above formulas of course gives a motivation to establish them.
In this article, to solve the connection problems between the sixth-kind Chebyshev poly-

nomials and some other orthogonal polynomials, we follow two different approaches. Fur-
thermore, and in order to establish the linearization formulas of Chebyshev polynomials
of the sixth-kind, we first develop the moment formulas of these polynomials and then
utilize them to establish the linearization formulas.

The arrangement of the paper is as follows. In the next section, some elementary prop-
erties and useful formulas of the sixth-kind Chebyshev polynomials are presented. Sec-
tion 3 is concerned with the solutions to the connection problems between the sixth-kind
Chebyshev polynomials and some other orthogonal polynomials and their inversion ones.
New moment formulas of the sixth-kind Chebyshev polynomials are established in Sect. 4.
Based on these formulas, the linearization formulas of the sixth-kind Chebyshev polyno-
mials are derived in Sect. 5. We end the paper by presenting some conclusions in Sect. 6.

2 Some properties and essential formulas
This section is devoted to presenting some fundamental properties of the sixth-kind
Chebyshev polynomials. These polynomials satisfy the following orthogonality relation
(see [6]):

∫ 1

–1
x2

√
1 – x2Yi(x)Yj(x) dx =

⎧
⎨

⎩
hi, if i = j,

0, if i �= j,
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with

hi =
π

22i+3

⎧
⎨

⎩
1, i even,
i+3
i+1 , i odd.

They also can be generated with the aid of the recurrence relation:

Yj(x) = xYj–1(x) –
j(j + 1) + (–1)j(2j + 1) + 1

4j(j + 1)
Yj–2(x),

Y0(x) = 1, Y1(x) = x, j ≥ 2.
(2)

These polynomials can be expressed in the following power form representations (see [5]):

Y2n(x) =
�( 3

2 + n)
(2n + 1)!

n∑

k=0

(–1)k( n
n–k

)
(1 + 2n – k)!

�( 3
2 + n – k)

x2n–2k , (3)

Y2n+1(x) =
�(n + 5

2 )
(2n + 2)!

n∑

k=0

(–1)k( n
n–k

)
(2 + 2n – k)!

�(n – k + 5
2 )

x2n–2k+1. (4)

The inversion formula to the power form representation of any polynomial is among the
essential formulas associated with any set of polynomials. In the following lemma, we give
the inversion formulas to the power form representations in (3) and (4).

Lemma 1 Let n be any non-negative integer. The inversion formulas to the power form
representations in (3) and (4) are given as follows:

x2n = (2n + 1)!
n∑

k=0

21–2k(1 – k + n)
k!(2n – k + 2)!

Y2n–2k(x), (5)

x2n+1 = (3 + 2n)(2n + 1)!
n∑

k=0

21–2k(1 – k + n)
k!(2n – k + 3)!

Y2n–2k+1(x). (6)

Proof The two inversion formulas in (5) and (6) can be written in the form

xn =
⌊

n
2

⌋
!
(

3
2

)

� 1+n
2 �

� n
2 �∑

k=0

(n – 2k + 2)!
k!� 1

2 (n – 2k)�!(n – k + 2)!( 3
2 )� 1

2 (1+n–2k)�
Yn–2k(x), (7)

where (u)m represents the well-known Pochhammer symbol, that is, (u)m = �(u+m)
�(u) , and

�z� denotes the greatest integer less than or equal to z.
With the aid of the recurrence relation (2), Eq. (7) can be proved through induction. �

The next two lemmas are helpful in the sequel. A trigonometric representation of the
polynomials Yn(x) is given in the first lemma. In contrast, the second lemma is concerned
with the definition of Yj(x) for all j ∈ Z.
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Lemma 2 ([7]) Let n be any integer. We have

Yn(cos θ ) =

⎧
⎨

⎩

sin((n+2)θ )
2n sin(2θ ) , n even,

sin((n+1)θ )+(n+1) cos(θ ) sin((n+2)θ )
2n+1(n+1) cos2(θ ) sin(θ ) , n odd.

(8)

Lemma 3 For n ≤ –3, we have

Yn(x) =
–1

22n+4 Y–n–4(x)

⎧
⎨

⎩
1, n even,
n+3
n+1 , n odd.

(9)

Proof The identity (9) is a direct consequence of the trigonometric identity (8). �

3 Connection formulas between the sixth-kind Chebyshev polynomials and
some orthogonal polynomials

This section deals with the connection problems between the sixth-kind Chebyshev poly-
nomials and some other orthogonal polynomials. We will show that the connection co-
efficients can be expressed in terms of hypergeometric functions of certain arguments.
Furthermore, we will show that in some cases they can be reduced to obtain some con-
nection formulas whose coefficients are free of any hypergeometric functions.

3.1 Solution of the sixth-kind Chebyshev-ultraspherical connection problem
Theorem 1 Let k be any non-negative integer. The sixth-kind Chebyshev-ultraspherical
connection formula is

Yk(x) =
k∑

m=0

Am,k,μC(μ)
k–2m(x), (10)

with

Am,k,μ =
21–k–2μ

√
π (k – 2m + μ)k!�(k – 2m + 2μ)

(k – 2m)!m!�( 1
2 + μ)�(1 + k – m + μ)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3F2

(
– 1

2 – k
2 , –m, –k + m – μ

–1 – k, 1
2 – k

2

∣∣∣1
)

, k even,

3F2

(
–1 – k

2 , –m, –k + m – μ

–1 – k, – k
2

∣∣∣1
)

, k odd.

Proof The connection formula (10) can be split into the following two connection formu-
las:

Y2k(x) =
√

π21–2k–2μ(2k)!
�( 1

2 + μ)

k∑

m=0

(2k – 2m + μ)�(2(k – m + μ))
(2k – 2m)!m!�(1 + 2k – m + μ)

× 3F2

(
–m, –k – 1

2 , –2k – μ + m
–2k – 1, 1

2 – k

∣∣∣∣1
)

C(μ)
2k–2m(x)

(11)
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and

Y2k+1(x) =
2–2(k+μ)√π (1 + 2k)!

�( 1
2 + μ)

k∑

m=0

(1 + 2k – 2m + μ)�(1 + 2k – 2m + 2μ)
m!(1 + 2k – 2m)!�(2 + 2k – m + μ)

× 3F2

(
–m, – 3

2 – k, –1 – 2k + m – μ

–2 – 2k, – 1
2 – k

∣∣∣∣1
)

C(μ)
2k–2m+1(x).

(12)

We prove (12). The proof of (11) is similar. Now, consider the following connection for-
mula:

Y2k+1(x) =
k∑

m=0

ξm,k,μC(μ)
2k–2m+1(x),

where ξm,k,μ are the connection coefficients to be determined. We make use of the or-
thogonality relation of ultraspherical polynomials ([25]) to get the integral form of these
coefficients,

ξk,m,μ =
21–2μ(1 + 2k – 2m + μ)�(1 + 2k – 2m + 2μ)

(2k – 2m + 1)!(�( 1
2 + μ))2

×
∫ 1

–1

(
1 – x2)μ– 1

2 Y2k+1(x)C(μ)
2k–2m+1(x) dx.

(13)

In virtue of Rodrigues’ formula of C(μ)
j (x) (see [25]), Eq. (13) turns into the form

ξk,m,μ =
–4–k+m–μ(1 + 2k – 2m + μ)�(1 + 2k – 2m + 2μ)

(2k – 2m + 1)!�( 1
2 + μ)�( 3

2 + 2k – 2m + μ)

×
∫ 1

–1
Y2k+1(x)D2k–2m+1(1 – x2)2k–2m+μ+ 1

2 dx.

(14)

Integrating the right-hand side of the last equation by parts (2k – 2m + 1) times enables
one to rewrite (14) as

ξk,m,μ =
4–k+m–μ(1 + 2k – 2m + μ)�(1 + 2k – 2m + 2μ)

(2k – 2m + 1)!�( 1
2 + μ)�( 3

2 + 2k – 2m + μ)

×
∫ 1

–1

(
1 – x2)2k–2m+μ+ 1

2 D2k–2m+1Y2k+1(x) dx.

(15)

Making use of the power form representation of Y2k+1(x) in (4) transforms (15) into the
following form:

ξk,m,μ =
( 3

2 + k)(1 + 2k – 2m + μ)�(1 + 2k – 2m + 2μ)
(1 + k)(2k – 2m + 1)!�( 1

2 + μ)�( 3
2 + 2k – 2m + μ)

×
k∑

j=0

(–1)j2–2(k–m+j+μ)(2k – j + 2)!
(3 + 2k – 2j)j!(2m – 2j)!

∫ 1

–1

(
1 – x2)2k–2m+μ+ 1

2 x2m–2j dx.
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If we note the identity

∫ 1

–1

(
1 – x2)2k–2m+μ+ 1

2 x2m–2j dx =
�( 1

2 + m – j)�( 3
2 + 2k – 2m + μ)

�(2 + 2k – m – j + μ)
,

then the coefficients ξk,m,μ are given by

ξk,m,μ =
√

π2–2(k+μ)( 3
2 + k)(1 + 2k – 2m + μ)�(1 + 2k – 2m + 2μ)
(1 + k)(2k – 2m + 1)!�( 1

2 + μ)

×
k∑

j=0

(–1)j(2k – j + 2)!
(3 + 2k – 2j)j!(m – j)!�(2 + 2k – m – j + μ)

.

(16)

The summation in (16) can be written in a hypergeometric form as

k∑

j=0

(–1)j(2k – j + 2)!
(3 + 2k – 2j)j!(m – j)!�(2 + 2k – m – j + μ)

=
(2k + 2)!

(3 + 2k)m!�(2 + 2k – m + μ) 3F2

(
–m, – 3

2 – k, –1 – 2k + m – μ

–2 – 2k, – 1
2 – k

∣∣∣∣1
)

,

and therefore, the following connection formula is obtained:

Y2k+1(x) =
2–2(k+μ)√π (1 + 2k)!

�( 1
2 + μ)

k∑

m=0

(1 + 2k – 2m + μ)�(1 + 2k – 2m + 2μ)
m!(1 + 2k – 2m)!�(2 + 2k – m + μ)

× 3F2

(
–m, – 3

2 – k, –1 – 2k + m – μ

–2 – 2k, – 1
2 – k

∣∣∣∣1
)

C(μ)
2k–2m+1(x). �

Noting that Chebyshev polynomials of the first- and second-kinds and Legendre polyno-
mials are special ones of the ultraspherical polynomials, the connection formulas between
the sixth-kind Chebyshev polynomials and these polynomials can be deduced as special
cases of (11) and (12). These results are given in the following corollaries.

Corollary 1 Let k be any non-negative integer. The sixth-and first-kind Chebyshev poly-
nomials are connected by the following two formulas:

Y2k(x) =
1

22k–1

� k
2 �∑

m=0

T2k–4m(x),

Y2k+1(x) =
1

(k + 1)22k

( � k
2 �∑

m=0

(1 + k – m)T2k–4m+1(x) +
� k–1

2 �∑

m=0

(1 + m)T2k–4m–1(x)

)
. (17)

Proof We prove (17). Setting μ = 0 in Eq. (12) yields

Y2k+1(x) =
(1 + 2k)!

22k

k∑

m=0

1
m!(2k – m + 1)!

× 3F2

(
–m, – 3

2 – k, –1 – 2k + m
–2 – 2k, – 1

2 – k

∣∣∣∣1
)

T2k–2m+1(x).
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Based on Zeilberger’s algorithm (see Koepf [26]), and if we set

Gm,k = 3F2

(
–m, – 3

2 – k, –1 – 2k + m
–2 – 2k, – 1

2 – k

∣∣∣∣1
)

,

then Gm,k satisfies the following recurrence relation of order two:

m(1 – m)(–1 – k + m)Gm–2,k – m(–3 – 2k + m)Gm–1,k

+ (–3 – 2k + m)(–2 – 2k + m)(–2 – k + m)Gm,k = 0,

G0,k = 1, G1,k =
1

(k + 1)(2k + 1)
.

The last recurrence relations can be exactly solved to give

Gm,k =

⎧
⎨

⎩

m!(2k–m+2)!
(2k+2)! , m even,

(m+1)!(2k–m+1)!
(2k+2)! , m odd,

and therefore, the connection formula (17) can be obtained. �

Corollary 2 Let k be any non-negative integer. The sixth- and second-kind Chebyshev poly-
nomials are connected by the following two formulas:

Y2k(x) =
1

22k

k∑

m=0

(–1)mU2k–2m(x), (18)

Y2k+1(x) =
1

(k + 1)22k+1

k∑

m=0

(–1)m(k – m + 1)U2k–2m+1(x).

Proof
We prove (18). Setting μ = 1 in the connection formula (11) yields

Y2k(x) =
(2k + 1)!

22k

k∑

m=0

1 + k – m
(2k – m + 2)!m!

× 3F2

(
–m, – 3

2 – k, –2 – 2k + m
–2 – 2k, – 1

2 – k

∣∣∣∣1
)

U2k–2m+1(x).

The Pfaff–Saalschütz identity ([27]) reduces the above hypergeometric function to the
form

3F2

(
–m, – 3

2 – k, –2 – 2k + m
–2 – 2k, – 1

2 – k

∣∣∣∣1
)

=
(–1)mm!(2k – m + 2)!

(2k + 2)!
,

and therefore, the following connection formula is obtained:

Y2k+1(x) =
1

(k + 1)22k+1

k∑

m=0

(–1)m(k – m + 1)U2k–2m+1(x). �
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Corollary 3 Let k be any non-negative integer. The sixth-kind Chebyshev polynomials and
Legendre polynomials are connected by the following two formulas:

Y2k(x) =
√

π (2k)!
22k+1

k∑

m=0

1 + 4k – 4m
m!�( 3

2 + 2k – m)

× 3F2

(
–m, –k – 1

2 , –2k + m – 1
2

–2k – 1, 1
2 – k

∣∣∣∣1
)

P2k–2m(x),

(19)

Y2k+1(x) =
√

π (2k + 1)!
22k+2

k∑

m=0

3 + 4k – 4m
m!�( 5

2 + 2k – m)

× 3F2

(
–m, – 3

2 – k, – 3
2 – 2k + m

–2 – 2k, – 1
2 – k

∣∣∣∣1
)

P2k–2m+1(x).

(20)

Proof The two connection formulas (19) and (20) can be immediately concluded by setting
μ = 1

2 , in (11) and (12), respectively. �

3.2 Solution of the ultraspherical sixth-kind Chebyshev connection problem
This section derives the inversion connection formulas to those given in the last subsec-
tion.

Theorem 2 Let k be any non-negative integer. The ultraspherical sixth-kind Chebyshev
polynomial connection formula is

C(μ)
k (x) =

k∑

m=0

Hm,k,μYk–2m(x), (21)

with

Hm,k,μ =
2–1+k–2m+2μk!�( 1

2 + μ)�(k – m + μ)�(–2 + m + μ)√
πm!(2 + k – m)!�(–1 + μ)�(k + 2μ)

×
⎧
⎨

⎩
(2 + k – 2m)(–2 – 2k + 4m + 2km – 2m2 + μ + kμ), k even,

(1 + k – 2m)(–4 – 2k + 4m + 2km – 2m2 + 2μ + kμ), k odd.

Proof The connection formula (21) can be split into the following two connection formu-
las:

C(μ)
2k (x) =

(2k)!�( 1
2 + μ)√

π�(–1 + μ)�(2(k + μ)

k∑

m=0

4k–m+μ(1 + k – m)�(2k – m + μ)
m!(2k – m + 2)!

× �(–2 + m + μ)
{

–2(–1 + m)2 + μ + 2k(–2 + 2m + μ)
}

Y2k–2m(x),

(22)

C(μ)
2k+1(x) =

(1 + 2k)!�( 5
2 + k)�( 1

2 + μ)�(1 + 2k + μ)√
π (3 + 2k)(2k + μ)�( 3

2 + k)�(1 + 2k + 2μ)

×
k∑

m=0

22(1+k–m+μ)(1 + k – m)(μ – 1)m–1

(2k – m + 3)!m!(1 + 2k – m + μ)m–1

× {
(–6 + 6m – 2m2 + 3μ + 2k(–2 + 2m + μ)

}
Y2k–2m+1(x).

(23)
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We prove (22). The power form representation of ultraspherical polynomials enables one
to write

C(μ)
2k (x) =

(2k)!�(1 + 2μ)
�(1 + μ)�(2(k + μ))

k∑

r=0

(–1)r2–1+2k–2r�(2k – r + μ)
r!(2k – 2r)!

x2k–2r. (24)

With the aid of Eq. (5), Eq. (24) can be converted into

C(μ)
2k (x) =

(2k)!�(1 + 2μ)
�(1 + μ)�(2(k + μ))

k∑

r=0

(–1)r2–1+2k–2r(1 + 2k – 2r)�(2k – r + μ)
r!

×
k–r∑

m=0

21–2m(k – m – r + 1)
m!(2k – m – 2r + 2)!

Y2k–2m–2r(x).

Carrying out certain algebraic computations on the last formula transforms it into the
following form:

C(μ)
2k (x) =

(2k)!�( 1
2 + μ)√

π�(2(k + μ))

k∑

m=0

4k–m+μ(1 + k – m)

×
m∑

p=0

(–1)p(1 + 2k – 2p)�(2k – p + μ)
p!(m – p)!(2k – m – p + 2)!

Y2k–2m(x),

and therefore the following connection formula is obtained:

C(μ)
2k (x) =

2–1+2μ(2k)!�( 1
2 + μ)�(2k + μ)

( 1
2 + k)�(2(k + μ))

k∑

m=0

(–1)m( 3
2 + k – m)m

(k – m)!m!�(–2 – 2k + m)m

× 3F2

(
–m, 1

2 – k, –2 – 2k + m
– 1

2 – k, 1 – 2k – μ

∣∣∣∣1
)

Y2k–2m(x).

Based on symbolic computation, and in particular, on Zeilberger’s and Petkovsek’s algo-
rithms (see Koepf [26]), it can be shown that

3F2

(
–m, 1

2 – k, –2k + m – 2
–k – 1

2 , –2k – μ + 1

∣∣∣∣1
)

=
(μ – 1)m–1�(2k – m + μ)

(2k + 1)�(2k + μ)
{

–2(–1 + m)2 + μ + 2k(–2 + 2m + μ)
}

,

then after performing some calculations, the connection formula (22) can be obtained.
Equation (23) can be similarly proved. �

Now, setting μ = 0, 1 and 1
2 , respectively, in the connection formulas (22) and (23), and

performing some reductions yield three special connection formulas. The results are given
in the following corollaries.
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Corollary 4 Let k be any non-negative integer. The first-kind and sixth-kind Chebyshev
polynomials connection formulas are

T2k(x) = 22k–5{16Y2k(x) – Y2k–4(x)
}

,

T2k+1(x) = 4k–2
(

16Y2k+1(1) –
4

1 + k
Y2k–1(x) +

1 – k
k

Y2k–3(x)
)

.

Corollary 5 Let k be any non-negative integer. The second-kind and sixth-kind Chebyshev
polynomials connection formulas are

U2k(x) = 22k–2{4Y2k(x) + Y2k–2(x)
}

,

U2k+1(x) = 22k–1
(

4Y2k+1 +
k

1 + k
Y2k–1(x)

)
.

Corollary 6 Let k be any non-negative integer. The Legendre polynomials and sixth-kind
Chebyshev polynomials connection formulas are

P2k(x) =
1
π

k∑

m=0

2–1+2k–2m(1 + k – m)�( 1
2 + 2k – m)�(– 3

2 + m)
m!(2k – m + 2)!

× {
3 + 4(–2 + m)m + 2k(3 – 4m)

}
Y2k–2m(x),

P2k+1(x) =
1
π

k∑

m=0

4k–m(1 + k – m)�( 3
2 + 2k – m)�(– 3

2 + m)
m!(2k – m + 3)!

× {
(3 – 2m)2 + 2k(3 – 4m)

}
Y2k–2m+1(x).

4 Development of the moment formulas of the sixth-kind Chebyshev
polynomials

This section focuses on the development of the moment formulas of Chebyshev polyno-
mials of the sixth-kind. First, the following lemma serves in the proof of the main theorem
of the moment formulas.

Lemma 4 Let �, j and m be any non-negative integers. The following reduction formula
holds:

4F3

(
–i, –k – 3

2 , –k, i – 2k – 2r – 4
–2k – 2, –k – r – 3

2 , –k – r – 1

∣∣∣∣1
)

=
(2r)!

2(1 + k)(2 – i + k + r)(3 + 2k + 2r)!

×
⎧
⎨

⎩

(1+i+k+2(1+k)r)(–i+2(2+k+r))!
(1–i+2r)! , 0 ≤ i ≤ k,

(–5+i–3k–2(2+k)r)i!
(i–2k–3)! + (1+i+k+2(1+k)r)(–i+2(2+k+r))!

(–i+2r+1)! , i ≥ k + 1.

(25)

Proof Let

Ai,r,k = 4F3

(
–i, –k, –k – 3

2 , i – 2k – 2r – 4
–2k – 2, –k – r – 3

2 , –k – r – 1

∣∣∣∣1
)

.
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First, since the terminating hypergeometric function in (25) involves two non-negative
integers i and k, we have to take into consideration the following two cases:

(i) For i ≤ k, Zeilberger’s algorithm enables one to obtain the following recurrence rela-
tion that is satisfied by Ai,r,k :

(i – 1)(–3 + i – 2r)(–4 – k + i – r)Ai–2,r,k

+ 2
(
i2 – 2ik – 2ir + 2kr – 6i + 3k + 4r + 7

)
(3 + k + r – i)Ai–1,r,k

+ (–5 – 2k + i – 2r)(–3 – 2k + i)(–2 – k – r + i)Ai,r,k = 0,

(26)

with the following initial values:

A0,r,k = 1, A1,r,k =
2 + k + 2r + 2kr

2(1 + k)(1 + k + r)
.

The recurrence relation (26) can be exactly solved to give

Ai,r,k =
(2r)!(1 + i + k + 2(1 + k)r)(–i + 2(2 + k + r))!

2(1 + k)(2 – i + k + r)(1 – i + 2r)!(3 + 2k + 2r)!
.

(ii) For i ≥ k + 1, Zeilberger’s algorithm again enables one to obtain the following recur-
rence relation that is satisfied by Ai,r,k :

(k – 1)(k + 1)(i – 2k + 1)(i – 2k)(–1 – 2k + i – 2r)(–2 – 2k + i – 2r)

× (–r – k + i)
(
2ik – 4k2 – 2kr + 2i – 9k – 2r – 4

)
Ai,r,k–2 – 4k(1 + 2k + 2r)

× (k + r)(–k – 1 + i – r)
(
2i3k2 – 12i2k3 – 6i2k2r + 24ik4 + 24ik3r + 8ik2r2

– 16k5 – 24k4r – 16k3r2 – 4k2r3 + 2i3k – 21i2k2 – 6i2kr + 60ik3 + 46ik2r

+ 8ikr2 – 52k4 – 68k3r – 32k2r2 – 4kr3 + i3 – 10i2k – 3i2r + 41ik2 + 24ikr

+ 2ir2 – 50k3 – 55k2r – 14kr2 – 2i2 + 6ik + 2ir – 10k2 – 6kr + 2r2 – i

+ 6k + 5r + 2
)
Ai,r,k–1 + 4k(1 + k)(1 + k + r)(k + r)(3 + 2k + 2r)

× (1 + 2k + 2r)
(
2ik – 4k2 – 2kr – k + 1

)
(–2 – k – r + i)Ai,r,k = 0,

(27)

with the initial values

Ai,r,0 = 1, Ai,r,1 = 1 +
5i(i – 2(r + 3))
4(r + 2)(2r + 5)

.

The recurrence relation (27) can be exactly solved to give

Ai,r,k =
i!(2r)!(–i + 2(2 + k + r))!

2(1 + k)(2 – i + k + r)(3 + 2k + 2r)!

×
{

1 + i + k + 2(1 + k)r
i!(1 – i + 2r)!

+
–5 + i – 3k – 2(2 + k)r

(–3 + i – 2k)!(–i + 2(2 + k + r))!

}
.

Lemma 4 is now proved. �
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Theorem 3 The following moment formula holds for all non-negative integers r and k:

xrYk(x) =
r∑

i=0

Bi,r,kYr+k–2i(x), (28)

where the coefficients Bi,r,k are given explicitly as

Bi,r,k =
(r

i
)

22i

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, r, k even,
–4i2+(1+k)(–1+r)(3+k+r)+2i(2+k–kr)

(1+k)(–1+r)(3–2i+k+r) , r even, k odd,
r(3+k+r)–2i(1+r)

r(3–2i+k+r) , r odd, k even,
2i+r+kr
(1+k)r , r, k odd.

(29)

Proof The proof of the theorem is lengthy. The idea depends on proving its alternative
form. In fact, the moments formula (28) with the coefficients in (29) can be split into the
following four moment formulas:

x2rY2k(x) = (2r)!
2r∑

i=0

1
22ii!(2r – i)!

Y2k+2r–2i(x),

x2rY2k+1(x) =
(2r)!

(2r – 1)(1 + k)

2r∑

i=0

1
22i+1(2 + k – i + r)i!(2r – i)!

× {
–4 + 3i + 6r – 2k(–3 + i – r)(–1 + 2r) – 2(i – r)(i + 2r) – 2k2(1 – 2r)

}

× Y2k+2r–2i+1(x),

x2r+1Y2k(x) = (2r)!
2r+1∑

i=0

k + 2kr – 2i(1 + r) + (2 + r)(1 + 2r)
22ii!(2 + k – i + r)(1 – i + 2r)!

Y2k+2r–2i+1(x),

x2r+1Y2k+1(x) =
(2r)!
k + 1

2r+1∑

i=0

1 + k + i + 2(1 + k)r
22ii!(2r – i + 1)!

Y2k+2r–2i+2(x). (30)

Now, we are going to prove the moment formula (30). The remaining moment formulas
can be proved similarly. The power form expression in (4) along with the inversion formula
in (5) enables one to write

x2r+1Y2k+1(x) =
3 + 2k

4(1 + k)

k+r∑

i=0

(–1)i(–i + 2k + 2)!(–2i + 2k + 2r + 3)!
22i–1(3 – 2i + 2k)i!(–2i + 2k + 1)!

×
k+r–i+1∑

�=0

(k – � + r – i + 2)
22�–1�!(2k – � + 2r – 2i + 4)!

Y2k+2r–2�–2i+2(x).
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Performing some computations on the last formula turns it into the formula

x2r+1Y2k+1(x) =
3 + 2k
1 + k

k+r+1∑

i=0

2 + k – i + r
22i

×
( i∑

p=0

(–1)p(2k – p + 2)!(2k + 2r – 2p + 3)!
(3 + 2k – 2p)(2k – 2p + 1)!p!(i – p)!(2k – i + 2r – p + 4)!

)

× Y2k+2r–2i+2,

which can be written alternatively as

x2r+1Y2k+1(x) = (3 + 2k + 2r)!
k+r+1∑

i=0

(2 + k – i + r)
22i–1i!(4 + 2k – i + 2r)!

× 4F3

(
–k, –i, – 3

2 – k, –4 – 2k + i – 2r
–2 – 2k, – 3

2 – k – r, –1 – k – r

∣∣∣∣1
)

Y2k+2r–2i+2(x).

(31)

A closed-form of the term 4F3(1) that appears in (31) is given in Lemma 4, and accordingly
this enables one to write

x2r+1Y2k+1(x) =
r+k+1∑

i=0

Bi,r,kY2k+2r–2i+2(x), (32)

where the moments’ coefficients Bi,r,k are given as

Bi,r,k =
(2r)!

22i(k + 1)

×
⎧
⎨

⎩

(1+i+k+2(1+k)r)
i!(–i+2r+1)! , 0 ≤ k ≤ i,
–5+i–3k–2(2+k)r

(–i+2(2+k+r))!(i–2k–3)! + 1+i+k+2(1+k)r
i!(–i+2r+1)! , k + 1 ≤ i ≤ k + r + 1.

(33)

Due to Eq. (32) along with Eq. (33), we get

x2r+1Y2k+1(x) =
(2r)!
k + 1

r–k–2∑

i=0

2–2(1+k–i+r)
{

2 – i + 3r + 2k(1 + r)
(–k + i + r)!(k – i + r + 1)!

–
4 + i + 3r + 2k(1 + r)

(–k – i + r – 2)!(k + i + r + 3)!

}
Y2i(x)

+
r+k+1∑

i=r–k–1

2–2(1+k–i+r)(2 – i + 3r + 2k(1 + r))
(–k + i + r)!(k – i + r + 1)!

Y2i(x),

which can be written as

x2r+1Y2k+1(x) =
(2r)!
1 + k

{k+r+1∑

i=0

2–2(1+k–i+r)(2 – i + 3r + 2k(1 + r))
(–k + i + r)!(k – i + r + 1)!

Y2i(x)

–
r–k–2∑

i=0

4–1–k+i–r(4 + i + 3r + 2k(1 + r))
(–k – i + r – 2)!(k + i + r + 3)!

Y2i(x)

}
.

(34)
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Now, based on identity (9), we have

Y–2j(x) = –24j–4Y2j–4, j ≥ 1.

If we perform some suitable transformations on the second sum of (34), we can write

r–k–2∑

i=0

4–1–k+i–r(4 + i + 3r + 2k(1 + r))
(–k – i + r – 2)!(k + i + r + 3)!

Y2i(x)

= –
r–k∑

t=2

2–2(1+k+r+t)(2 + 3r + 2k(1 + r) + t)
(–k + r – t)!(k + r + t + 1)!

Y–2t(x)

= –
2r+1∑

i=k+r+2

2–2i(1 + k + i + 2(1 + k)r)
i!(1 – i + 2r)!

Y2k+2r–2i+2(x),

and accordingly, Eq. (34) can be rewritten in the form

x2r+1Y2k+1(x) =
(2r)!
1 + k

{k+r+1∑

i=0

(1 + k + i + 2(1 + k)r)
22ii!(1 – i + 2r)!

Y2k+2r–2i+2(x)

+
2r+1∑

i=k+r+2

(1 + k + i + 2(1 + k)r)
22ii!(1 – i + 2r)!

Y2k+2r–2i+2(x)

}
,

which is equivalent to

x2r+1Y2k+1(x) =
(2r)!
k + 1

2r+1∑

i=0

1 + k + i + 2(1 + k)r
22ii!(2r – i + 1)!

Y2k+2r–2i+2(x).

The proof is now complete. �

5 Linearization formulas of Chebyshev polynomials of the sixth-kind
In this section, and based on the moment formulas introduced in Sect. 4, the linearization
formulas of Chebyshev polynomials of the sixth-kind are established.

Theorem 4 For all non-negative integers m and n, the following linearization formula is
valid:

Ym(x)Yn(x) =
m∑

r=0

Lr,m,nYm+n–2r(x), (35)

and the linearization coefficients Lr,m,n are given explicitly as

Lr,m,n =
1

22r+1

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + (–1)r , m, n even,
(2+n)(2+m+n–2r)+(–1)r(2+4n+mn+n2–2(2+m+n)r+2r2)

(n+1)(3+m+n–2r) , m even, n odd,
(2+m)(2+m+n–2r)+(–1)r(2+4m+m2+mn–2(2+m+n)r+2r2)

(m+1)(3+m+n–2r) , m odd, n even,
(2+m)(2+n)+(–1)r(–2+mn–2(2+m+n)r+2r2)

(m+1)(n+1) , m odd,n odd.
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Proof The proof of the theorem is lengthy. Equation (35) can be split into the following
four relations:

Y2m(x)Y2n(x) =
m∑

r=0

1
24r Y2m+2n–4r(x),

Y2m(x)Y2n+1(x) =
1

n + 1

2m+1∑

r=0

1
22r+3(2 + m + n – r)

{
(3 + 2n)(3 + 2m + 2n – 2r)

+ (–1)r(7 + 4n2 + m(2 + 4n – 4r) – 4n(–3 + r) + 2(–3 + r)r
)}

× Y2m+2n–2r+1(x),

Y2m+1(x)Y2n(x) =
1

m + 1

2m+1∑

r=0

1
22r+3(2 + m + n – r)

{
(3 + 2m)(3 + 2m + 2n – 2r)

+ (–1)r(7 + 2n + 4m(3 + m + n) – 6r – 4(m + n)r + 2r2)}

× Y2m+2n–2r+1(x),

Y2m+1(x)Y2n+1(x) =
1

(m + 1)(n + 1)

2m+1∑

r=0

1
22r+3

{
(3 + 2m)(3 + 2n)

+ (–1)r(–1 + 2m + 2n + 4mn – 4(2 + m + n)r + 2r2)}

× Y2m+2n–2r+2(x).

(36)

Now, we prove formula (36). The other formulas can be proved similarly. Based on Eq. (4),
we can write

Y2m+1(x)Y2n+1(x) =
�( 5

2 + m)
(2m + 2)!

m∑

r=0

(–1)r( m
m–r

)
(2m – r + 2)!

�( 5
2 + m – r)

x2m–2r+1Y2n+1(x).

In virtue of the moment formula (30), the last formula turns into the form

Y2m+1(x)Y2n+1(x)

=
�( 5

2 + m)
(2 + 2m)!

m∑

r=0

(–1)r( m
m–r

)
(2 + 2m – r)!

�( 5
2 + m – r)

×
2m–2r+1∑

�=0

(� + (1 + n)(1 + 2m – 2r))(2(m – r))!
22�(1 + n)�!(–� + 2m – 2r + 1)!

Y2m+2n–2r–2�+2(x).

(37)

Rearrangement of the terms in the right-hand side of (37), enables one to write

Y2m+1(x)Y2n+1(x)

=
( 3

2 + m)
(1 + m)(1 + n)

2m+1∑

p=0

1
22p

×
p∑

�=0

(–1)�(1 – 3� + n – 2�n + 2m(1 + n) + p)(2 – � + 2m)!
(1 – 2� + 2m)(3 – 2� + 2m)�!(1 – � + 2m – p)!(p – �)!

Y2m+2n–2p+2(x).
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After some lengthy manipulation, the last linearization formula can be written in the fol-
lowing form:

Y2m+1(x)Y2n+1(x) =
2m+1∑

p=0

Gp,mY2m+2n–2p+2(x) +
2m+1∑

p=1

Sp,mY2m+2n–2p+2(x),

where

Gp,m =
(2m)!(1 + n + 2m(1 + n) + p)

22p(1 + n)p!(2m – p + 1)! 3F2

(
–p, – 3

2 – m, –1 – 2m + p
–2 – 2m, 1

2 – m

∣∣∣∣1
)

and

Sp,m =
(2m)!(3 + 2m)(3 + 2n)(1 + 2m – p)p

22p+1(1 + n)p!(2m – p + 1)!(–1 + m + 2m2)

× 3F2

(
1 – p, – 1

2 – m, –2m + p
–1 – 2m, 3

2 – m

∣∣∣∣1
)

.

The 3F2(1) that appears in the coefficient Gp,m can be summed with the aid of the Pfaff–
Saalschütz identity to give

3F2

(
–p, – 3

2 – m, –1 – 2m + p
–2 – 2m, 1

2 – m

∣∣∣∣1
)

=
(–1)p(1 + 2m)(p + 1)!

(1 + 2m – 2p)(2m – p + 3)p
,

while the 3F2(1) that appears in the coefficient Sp,m for all p ≥ 1 can be summed with
Zeilberger’s and Petkovsek’s algorithms (see [26]) to give

3F2

(
1 – p, – 1

2 – m, –2m + p
–1 – 2m, 3

2 – m

∣∣∣∣1
)

=
(–1 + 2m – 2p + (–1)p(1 – 2p(1 + p) + 2m(3 + 2p)))p!

8m(–1 + 2m – 2p)(2m – p)p–1
.

The reductions of the above two hypergeometric functions enable one to express explicitly
the coefficients Gp,m and Sp,m in the following reduced forms:

Gp,m =
(–1)p(1 + p)(–2 – 2m + p)(1 + n + 2m(1 + n) + p)

22p+1(1 + m)(1 + n)(–1 – 2m + 2p)
,

Sp,m =
(3 + 2m)(3 + 2n)(–1 – 2m + 2p + (–1)p(1 – 2(–1 + p)p + 2m(1 + 2p)))

22p+3(1 + m)(1 + n)(–1 – 2m + 2p)
,

and this leads to the following linearization formula:

Y2m+1(x)Y2n+1(x) =
1

(m + 1)(n + 1)

2m+1∑

r=0

1
22r+3

{
(3 + 2m)(3 + 2n)

+ (–1)r(–1 + 2m + 2n + 4mn – 4(2 + m + n)r + 2r2)}

× Y2m+2n–2r+2(x). �
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6 Conclusions
We have established some new formulas concerned with the sixth-kind Chebyshev poly-
nomials. Connection formulas between the sixth-kind Chebyshev polynomials and some
other orthogonal polynomials and their inversion formulas are derived with two different
approaches. New moment formulas of the sixth-kind Chebyshev polynomials are also es-
tablished. Based on the moment formulas, the linearization formulas of these polynomials
are derived. Most of the formulas derived in this paper are new and useful to the best of
our knowledge.
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