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Abstract
This paper studies the linear fractional-order delay differential equation

CDα
– x(t) – px(t – τ ) = 0, (*)

where 0 < α = odd integer
odd integer < 1, p,τ > 0, CDα

– x(t) = –�–1(1 – α)
∫ ∞
t (s – t)–αx′(s)ds. We

obtain the conclusion that

p1/ατ > α/e

is a sufficient and necessary condition of the oscillations for all solutions of Eq. (*). At
the same time, some sufficient conditions are obtained for the oscillations of multiple
delays linear fractional differential equation. Several examples are given to illustrate
our theorems.
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1 Introduction
In the past 30 years, fractional calculus has been developing rapidly in applications and
theory. Fractional derivative has been used in many disciplines because of its nonlocal
characteristics. A large number of fractional-order examples have also appeared in the
fields of fluid mechanics, viscoelasticity, anomalous diffusion, control system, electrical
engineering, electrochemistry, biology, etc. Many monographs [1–5] have been published.
Many important research results have been obtained for the initial value problem, sta-
bility, attractiveness, boundary value problem, bifurcation, and diffusion of solutions of
fractional differential equations. But compared with integer-order differential equations,
there are still many questions to be studied, especially in the oscillation theory.

The research on the oscillation theory of functional differential equations has been de-
veloped during the past 40 years. There have been a lot of research results and many mono-
graphs, see [6–9]. These monographs provide very good results and methods. But for the
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fractional differential equations, there are few theoretical studies on the oscillation behav-
ior, see [10–17]. This is because the functions of fractional derivatives lack good charac-
teristics of the functions of integer-order derivative, such as monotonicity, concavity and
convexity, etc. Now the oscillation theory of fractional differential equations is still in the
development stage. We want to do some research work on the oscillation behavior for
fractional differential equation.

In [11], the authors studied the fractional-order delay differential equations

ẋ(t) + pDα
–x(t) + qx(t – τ ) = 0, (**)

where 0 < α < 1, p, q, τ > 0, Dα
– is the Liouville fractional derivative on the half-axis R

+

which is defined by Definition 2.1(2) in Sect. 2. They obtained the conclusion that every
solution of Eq. (**) oscillates if and only if the characteristic equation

λ + p(–λ)α + qe–λτ = 0

has no negative real roots.
In this paper, we study the linear autonomous fractional-order delay differential equa-

tion

CDα
–x(t) – px(t – τ ) = 0, (1.1)

where 0 < α = odd integer
odd integer < 1, p, τ > 0, CDα

– is Caputo fractional derivative on the half-axis
R

+ which is defined by Definition 2.1(3) in Sect. 2.
In [6–8], the oscillation of the first-differential equation with delay

x′(t) + px(t – τ ) = 0, p, τ ∈R, (1.2)

was studied. Their conclusion was that

pτ > 1/e

is a necessary and sufficient condition for the oscillations for all solutions of Eq. (1.2).
In this paper, we obtain the following theorem.

Theorem 1.1 Assume that Condition (H) in Sect. 3 holds. Then the following statements
are equivalent:

(a) Every solution of Eq. (1.1) oscillates,
(b) p1/ατ > α/e.

The proof of Theorem 1.1 is given in Sect. 3.
The framework of this paper is as follows. In Sect. 2, we will provide some knowledge

about fractional derivative and integral on the half-axisR+. In Sect. 3, we obtain some suffi-
cient and necessary conditions for oscillations of linear autonomous fractional-order delay
differential equations via Laplace transform. At the same time, some sufficient conditions
are obtained for the oscillations of multiple delay linear fractional differential equations.
In Sect. 4, several examples are given to illustrate our theorems.
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Definition 1.1 ([6–8]) A nontrivial solution of a differential equation is said to be oscil-
latory if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory. If a solution of
a differential equation is nonoscillatory, it must be eventually positive or eventually nega-
tive.

2 Preliminaries
We will now provide some knowledge about fractional derivative and integral on the half-
axis R+, see [1–5].

Definition 2.1 ([4]) Let α ∈ (0, 1).
(1) Liouville fractional integral for a function f is defined by

Iα
– f (t) =

1
�(α)

∫ ∞

t

f (s)
(s – t)1–α

ds, t ∈R
+,

where �(·) > 0 is the gamma function, that is, �(α) =
∫ ∞

0 tα–1e–t dt.
(2) Liouville fractional derivative for a function f is defined by

Dα
–f (t) = –

1
�(1 – α)

d
dt

∫ ∞

t

f (s)
(s – t)α

ds, t ∈R
+.

(3) Caputo fractional derivative for a function f is defined by

CDα
–f (t) = –

1
�(1 – α)

∫ ∞

t

f ′(s)
(s – t)α

ds, t ∈R
+.

Remark 2.1 In [4, p. 83], Liouville fractional integral Iα
– f (t) and Liouville fractional deriva-

tive Dα
–f (t) exist for “sufficient good” functions f (t); for example, for functions f (t) in the

space C∞
0 (R+) of all infinitely differentiable functions on R

+ with a compact support.

Remark 2.2 CDα
–f (t) = Dα

–f (t), α ∈ (0, 1).
In fact,

CDα
–f (t) = –

1
�(1 – α)

∫ ∞

t

f ′(s)
(s – t)α

ds = –
1

�(1 – α)

∫ ∞

0

f ′(ξ + t)
ξα

dξ ,

Dα
–f (t) = –

1
�(1 – α)

d
dt

∫ ∞

t

f (s)
(s – t)α

ds

= –
1

�(1 – α)
d
dt

∫ ∞

0

f (ξ + t)
ξα

dξ = –
1

�(1 – α)

∫ ∞

0

f ′(ξ + t)
ξα

dξ .

Lemma 2.1 ([2, p. 242]; [4, p. 89]) Let α ∈ (0, 1), then

Iα
– Dα

–f (t) = Dα
–Iα

– f (t) = f (t),

for all “sufficient good” functions f (t). In particular, these formulas hold for f (x) ∈ L1(R+).

By Remark 2.2 and Lemma 2.1, we obtain the following lemma.
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Lemma 2.2 Let α ∈ (0, 1), then

Iα
–

CDα
–f (t) = CDα

–Iα
– f (t) = f (t).

Lemma 2.3 ([4, p. 98]) Let α ∈ (0, 1), Re(λ) < 0, then CDα
–eλt = (–λ)αeλt .

Lemma 2.4 ([2, p. 248]) Let α ∈ (0, 1), β > 0, then

Dα
– cosβt = βα cos

(

βt –
α

2
π

)

, Dα
– sinβt = βα sin

(

βt –
α

2
π

)

.

By Remark 2.2 and Lemma 2.4, we obtain the following lemma.

Lemma 2.5 Let α ∈ (0, 1), β > 0, then

CDα
– cosβt = βα cos

(

βt –
α

2
π

)

, CDα
– sinβt = βα sin

(

βt –
α

2
π

)

.

3 Main theorems
Consider the linear autonomous fractional-order delay differential equation

CDα
–x(t) –

m∑

i=1

pix(t – τi) = 0, (3.1)

where 0 < α = odd integer
odd integer < 1, pi, τi ≥ 0 for i = 1, 2, . . . , m.

In this paper, we need the following Condition (H):
(H) The solutions for Eqs. (1.1) and (3.1) are exponentially bounded, that is, there exist

positive constants M and β such that

∣
∣x(t)

∣
∣ ≤ Meβt , for t ≥ 0.

Remark 3.1 The functions e–t and sin t are exponentially bounded.

Substituting function x(t) = est (s < 0) into Eq. (3.1), we get

(–s)α –
m∑

i=1

pie–sτi = 0, s < 0.

Since α = odd integer
odd integer , we obtain that the characteristic equation of Eq. (3.1) is

sα +
m∑

i=1

pie–sτi = 0, s < 0. (3.2)

Theorem 3.1 Assume that Condition (H) holds. Then the following statements are equiv-
alent:

(a) Every solution of Eq. (3.1) oscillates;
(b) Equation (3.2) has no negative real roots.
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Proof (a) ⇒ (b) It is obvious that if Eq. (3.2) has a negative real root s0, then es0t is a
nonoscillatory solution of Eq. (3.1).

(b) ⇒ (a) Assume, on the contrary, that Eq. (3.1) has a positive solution x(t). By Condi-
tion (H), the Laplace transform X(s) of x(t) exists and is given by

X(s) = L(x)(s) =
∫ ∞

0
e–stx(t) dt. (3.3)

First, by taking the Laplace transform for CDα
–x(t), we get

L
(CDα

–x
)
(s)

= –
1

�(1 – α)

∫ ∞

0
e–st

(∫ ∞

t

x′(u)
(u – t)α

du
)

dt

= –
1

�(1 – α)

∫ ∞

0
x′(u)

(∫ u

0
e–st(u – t)–α dt

)

du

=
1

�(1 – α)

∫ ∞

0
x′(u)e–su

(∫ 0

u
esvv–α dv

)

du (t = u – v)

=
1

s1–α�(1 – α)

∫ ∞

0
x′(u)e–su

(∫ 0

–su
e–zz–α dz

)

du (z = –sv)

= –sα–1
∫ ∞

0
x′(u)e–su

(∫ –su
0 e–zz–α dz
∫ ∞

0 e–zz–α dz

)

du
(

�(1 – α) =
∫ ∞

0
e–zz(1–α)–1 dz

)

= –Asα–1
∫ ∞

0
x′(u)e–su du

(

0 < A =
∫ –sξ

0 e–zz–α dz
∫ ∞

0 e–zz–α dz
< 1, 0 ≤ ξ ≤ ∞

)

= –Asα–1
(

[
x(u)e–su]∞

0 + s
∫ ∞

0
x(u)e–su du

)

= –Asα–1
(

x(0) + s
∫ ∞

0
x(u)e–su du

)

= –Asα–1x(0) – AsαX(s),

where A exists by Lemma 2.2 [11], the mean value theorem for the infinite interval.
Now, taking the Laplace transforms on both sides of Eq. (3.1), we get

–AsαX(s) – Asα–1x(0) –
m∑

i=1

pi

∫ ∞

0
e–stx(t – τi) dt = 0,

that is,

AsαX(s) + Asα–1x(0) +
m∑

i=1

pie–sτi X(s) +
m∑

i=1

pie–sτi

∫ 0

–τi

e–stx(t) dt = 0,

or
(

Asα +
m∑

i=1

pie–sτi

)

X(s) = –Asα–1x(0) –
m∑

i=1

pie–sτi X(s)
∫ 0

–τi

e–stx(t) dt. (3.4)

Then

H(s)X(s) = 	(s), (3.5)
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where

H(s) = Asα +
m∑

i=1

pie–sτi , 	(s) = –Asα–1x(0) –
m∑

i=1

pie–sτi X(s)
∫ 0

–τi

e–stx(t) dt.

Let

F(s) = sα +
m∑

i=1

pie–sτi .

Since F(0) > 0, F(s) > 0 for s < 0 from condition (b). Hence H(s) > F(s) > 0 for s < 0. As
s → –∞, we get a contradiction in (3.5), since H(s)X(s) > 0, but 	(s) < 0. �

Proof of Theorem 1.1 The characteristic equation of Eq. (1.1) is

F(s) = sα + pe–sτ = 0, s < 0. (3.6)

By Theorem 3.1, we need to prove that

p1/ατ > α/e ⇔ F(s) > 0, for s < 0. (3.7)

From (3.6), we have

F(s) = (–s)α
[

–1 +
pe–sτ

(–s)α

]

.

Let

h(λ) = –1 +
peλτ

λα
, for λ > 0.

Then

h(λ) ≥ min
λ>0

h(λ) = h
(

α

τ

)

= –1 + pτα

(
e
α

)α

.

So, we get

p1/ατ > α/e ⇔ pτα > (α/e)α ⇔ h(λ) > 0, λ > 0 ⇔ F(s) > 0, s < 0.

(3.8)

The proof of Theorem 1.1 is complete. �

In the following, we obtain some sufficient conditions given explicitly in terms of the
coefficients and the delays, for the oscillations of all solutions of Eq. (3.1).

Theorem 3.2 Assume that pi, τi ≥ 0 for i = 1, 2, . . . , m. Then each of the following two con-
ditions is sufficient for the oscillation for all solutions of Eq. (3.1):

(a)
∑m

i=1 piτ
α
i > ( α

e )α ;
(b)

∏m
i=1 p1/m

i τα/m
i > ( α

e )α .
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Proof (a) For s < 0,

sα +
m∑

i=1

pie–sτi = (–s)α
[

–1 +
m∑

i=1

pi
e–sτi

(–s)α

]

≥ (–s)α
[

–1 +
(

e
α

)α m∑

i=1

piτ
α
i

]

> 0,

which shows that Eq. (3.2) has no negative real roots. So F(s) > 0 for s < 0, the result follows
as a consequence of Theorem 3.1.

(b) By using the arithmetic–geometric mean inequality

( m∏

i=1

pi

)1/m

≤ 1
m

m∑

i=1

pi,

we find that for s < 0,

sα +
m∑

i=1

pie–sτi ≥ sα + m

( m∏

i=1

pie–sτi

)1/m

= (–s)α
(

–1 +
m∏

i=1

p1/m
i

e–sτi/m

(–s)α/m

)

≥ (–s)α
(

–1 +
(

e
α

)α m∏

i=1

p1/m
i τα/m

i

)

> 0,

which shows that Eq. (3.2) has no negative real roots. So F(s) > 0 for s < 0, the result follows
as a consequence of Theorem 3.1. The proof Theorem 3.2 is complete. �

Theorem 3.3 Assume that pi, τi ≥ 0 for i = 1, 2, . . . , m.
(1) If

( m∑

i=1

pi

)
(

max
1≤i≤m

τα
i

)
≤

(
α

e

)α

(3.9)

holds, then Eq. (3.1) has a nonoscillatory solution.
(2) If

( m∑

i=1

pi

)
(

min
1≤i≤m

τα
i

)
>

(
α

e

)α

(3.10)

holds, then every solution of Eq. (3.1) oscillates.

Proof (1) Let

τ = max
1≤i≤m

τi, F(s) = sα +
m∑

i=1

pie–sτi .

If τ = 0, F(s) = 0 has a real root s = –(
∑m

i=1 pi)1/α .
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If τ 
= 0, we have

F(0)F
(

–
α

τ

)

=

( m∑

i=1

pi

)[

–
(

α

τ

)α

+
m∑

i=1

pieατi/τ

]

≤
( m∑

i=1

pi

)[

–
(

α

τ

)α

+
m∑

i=1

pieα

]

=
(

e
τ

)α
( m∑

i=1

pi

)[

–
(

α

e

)α

+
m∑

i=1

piτ
α

]

≤ 0,

which shows that Eq. (3.2) has a negative real root s0 ∈ [–α/τ , 0). Then es0t is a nonoscil-
latory solution of Eq. (3.1).

(2) The fact that (3.10) is a sufficient condition for all solutions of Eq. (3.1) to oscillate
follows immediately as a corollary of condition (a) of Theorem 3.1. The proof Theorem 3.3
is complete. �

4 Examples
Example 4.1 Consider the fractional differential equation without delay

CDα
–x(t) – px(t) = 0, (4.1)

where 0 < α = odd integer
odd integer < 1, p > 0. Then x(t) = e–p1/α t is a solution of Eq. (4.1).

Example 4.2 Consider the fractional-order delay differential equation

CDα
–x(t) –

(
α

e

)α

x(t – 1) = 0, (4.2)

where 0 < α = odd integer
odd integer < 1, p = (α/e)α , τ = 1. Since p1/ατ = α/e, by Theorem 1.1, Eq. (4.2)

has nonoscillatory solutions. In fact, x(t) = e–αt is a nonoscillatory solution of Eq. (4.2).

Example 4.3 Consider the fractional-order delay differential equation

CDα
–x(t) – x

(

t –
απ

2

)

= 0, (4.3)

where 0 < α = odd integer
odd integer < 1, p = 1, τ = απ/2. Since p1/ατ > α/e, by Theorem 1.1, every

solution of Eq. (4.3) oscillates. In fact, x(t) = sin t is an oscillatory solution of Eq. (4.3).
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