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1 Introduction
Consider the following fractional differential system with the nonlocal coupled integral
boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dβ (φp(–Dαx(t))) = f (t, x(t), y(t), Dαx(t), Dαy(t)), t ∈ (0, 1],

–Dβ (φp(–Dαy(t))) = g(t, y(t), x(t), Dαy(t)), Dαx(t)), t ∈ (0, 1],

Dαx(0) = 0,

Dβ–1(φp(–Dαx(1))) = Iσ h(η,φp(–Dαx(η))) + a1

= 1
�(σ )

∫ η

0 (η – s)σ–1h(s,φp(–Dαx(s))) ds + a1,

x(0) = 0, Dα–1x(1) = Iωx(ξ ) + d1 = 1
�(ω)

∫ ξ

0 (ξ – s)ω–1x(s) ds + d1,

Dαy(0) = 0,

Dβ–1(φp(–Dαy(1))) = Iσ k(η,φp(–Dαy(η))) + a2

= 1
�(σ )

∫ η

0 (η – s)σ–1k(s,φp(–Dαy(s))) ds + a2,

y(0) = 0, Dα–1y(1) = Iωy(ξ ) + d2 = 1
�(ω)

∫ ξ

0 (ξ – s)ω–1y(s) ds + d2,

(1.1)

where Dα and Dβ are the standard Riemann–Liouville fractional derivatives, Iσ and Iω

are the Riemann–Liouville fractional integrals, and 1 < α,β < 2, σ ,ω > 1, 0 < η, ξ < 1,
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a1, a2, d1, d2 ∈ R, a2 ≥ a1, d2 ≥ d1, f , g ∈ C([0, 1] × R × R,R), h, k ∈ C([0, 1] × R,R). The
p-Laplacian operator is defined as φp(t) = |t|p–2t, p > 1, and (φp)–1 = φq, 1

p + 1
q = 1.

Fractional differential equations have recently gained much attention. In particular,
much effort has been made toward the study of the existence of solutions for fractional
differential equations with p-Laplacian operator [1–8]. The monotone iterative technique,
combined with the method of upper and lower solutions, is a powerful tool for proving
the existence of solutions of nonlinear differential equations; see [9, 10] and the references
therein. However, only a few papers considered the upper an lower solutions method and
the monotone iteration technique for p-Laplacian boundary value problems with frac-
tional coupled systems. The purpose of this paper is developing a monotone iterative
technique to show the existence of an extremal solution for the nonlinear system (1.1)
with nonlocal integral boundary conditions.

The paper is organized as follows. In Sect. 2, we give sufficient conditions guaranteeing
that (1.1) has an extremal solution and discuss some comparison results, which play a
key role in establishing the proposed work. In Sect. 3, we give the main result. Finally, we
present an example illustrating our results.

2 Preliminaries
In this section, we introduce definitions and some useful lemmas which play an important
role in obtaining the main results of this paper.

Denote

Cα[0, 1] =
{

u : u ∈ C[0, 1], Dαu(t) ∈ C[0, 1]
}

.

It is a Banach spaces with the norm ‖u‖α = ‖u‖ + ‖Dαu‖, where ‖u‖ = max0≤t≤1 |u(t)| and
‖Dαu‖ = max0≤t≤1 |Dαu(t)|.

We need the following assumptions.
(H1) There exist x0, y0 ∈ Cα[0, 1] satisfying Dβ (φp(–Dαx0(t))), Dβ (φp(–Dαy0(t))) ∈ C[0, 1],

x0(t) ≤ y0(t), and Dαy0(t) ≤ Dαx0(t) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dβ (φp(–Dαx0(t))) ≤ f (t, x0(t), y0(t), Dαx0(t), Dαy0(t)), t ∈ (0, 1],

Dαx0(0) = 0, Dβ–1(φp(–Dαx0(1))) ≤ Iσ h(η,φp(–Dαx0(η))) + a1,

x0(0) = 0, Dα–1x0(1) ≤ Iωx0(ξ ) + d1,

–Dβ (φp(–Dαy0(t))) ≥ g(t, y0(t), x0(t), Dαy0(t)), Dαx0(t)), t ∈ (0, 1],

Dαy0(0) = 0, Dβ–1(φp(–Dαy0(1))) ≥ Iσ k(η,φp(–Dαy0(η))) + a2,

y0(0) = 0, Dα–1y0(1) ≥ Iωy0(ξ ) + d2.

(H2) There exist two constants M, N ∈R, M ≥ N , such that

f
(
t, x(t), y(t), Dαx(t), Dαy(t)

)
– f

(
t, x(t), y(t), Dαx(t), Dαy(t)

)

≤ M
[
φp

(
–Dαx(t)

)
– φp

(
–Dαx(t)

)]
+ N

[
φp

(
–Dαy(t)

)
– φp

(
–Dαy(t)

)]

g
(
t, x(t), y(t), Dαx(t), Dαy(t)

)
– g

(
t, x(t), y(t), Dαx(t), Dαy(t)

)

≤ M
[
φp

(
–Dαx(t)

)
– φp

(
–Dαx(t)

)]
+ N

[
φp

(
–Dαy(t)

)
– φp

(
–Dαy(t)

)]
,
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where x0(t) ≤ x(t) ≤ x(t) ≤ y0(t), x0(t) ≤ y(t) ≤ y(t) ≤ y0(t), and

f
(
t, x(t), y(t), Dαx(t), Dαy(t)

)
– g

(
t, y(t), x(t), Dαy(t), Dαx(t)

)

≤ M
[
φp

(
–Dαy(t)

)
– φp

(
–Dαx(t)

)]
+ N

[
φp

(
–Dαx(t)

)
– φp

(
–Dαy(t)

)]

for x0(t) ≤ x(t) ≤ y(t) ≤ y0(t).
(H3) There exists a constant λ ≥ 0 such that

h
(
t,φp

(
–Dαy(t)

))
– h

(
t,φp

(
–Dαx(t)

)) ≥ λ
[
φp

(
–Dαy(t)

)
– φp

(
–Dαx(t)

)]
,

k
(
t,φp

(
–Dαy(t)

))
– k

(
t,φp

(
–Dαx(t)

)) ≥ λ
[
φp

(
–Dαy(t)

)
– φp

(
–Dαx(t)

)]
,

where x0(t) ≤ x(t) ≤ y(t) ≤ y0(t), Dαy0(t) ≤ Dαy(t) ≤ Dαx(t) ≤ Dαx0(t), t ∈ [0, 1], and

k
(
t,φp

(
–Dαy(t)

))
– h

(
t,φp

(
–Dαx(t)

)) ≥ λ
[
φp

(
–Dαy(t)

)
– φp

(
–Dαx(t)

)]

for x0(t) ≤ x(t) ≤ y(t) ≤ y0(t), Dαy0(t) ≤ Dαy(t) ≤ Dαx(t) ≤ Dαx0(t), t ∈ [0, 1].
(H4) �(β + σ ) > ληβ+σ–1.
(H5) 2�(β + σ )(M + N) < �(β)[�(β + σ ) – ληβ+σ–1].
(H6) For any t ∈ (0, 1), we have

�(2 – β)λησ < �(σ ).

Lemma 2.1 ([11]) Let h ∈ C[0, 1], b ∈ R, and �(β + σ ) �= ληβ+σ–1. Then the fractional
boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dβw(t) = h(t), t ∈ [0, 1],

w(0) = 0,

Dβ–1w(1) = λIσ w(η) + b = λ
�(σ )

∫ η

0 (η – s)σ–1w(s) ds + b,

(2.1)

has the following integral representation of the solution:

w(t) =
∫ 1

0
G(t, s)h(s) ds +

b�(β + σ )tβ–1

�(β)[�(β + σ ) – ληβ+σ–1]
,

where

G(t, s) =
1
�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[�(β + σ ) – λ(η – s)β+σ–1]tβ–1

– [�(β + σ ) – ληβ+σ–1](t – s)β–1, s ≤ t, s ≤ η,

�(β + σ )tβ–1 – λ(η – s)β+σ–1tβ–1, t ≤ s ≤ η,

�(β + σ )[tβ–1 – (t – s)β–1] + ληβ+σ–1(t – s)β–1, η ≤ s ≤ t,

�(β + σ )tβ–1, s ≥ t, s ≥ η,

and � = �(β)[�(β + σ ) – ληβ+σ–1].
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Lemma 2.2 ([11]) Let M, b ∈ R, h(t) ∈ C[0, 1], 2�(β + σ )|M| < �(β)[�(β + σ ) – ληβ+σ–1],
and (H4) hold. Then

⎧
⎪⎪⎨

⎪⎪⎩

–Dβw(t) + Mw(t) = h(t), t ∈ [0, 1],

w(0) = 0,

Dβ–1w(1) = λIσ w(η) + b,

has a unique solution w(t) ∈ C[0, 1].

Lemma 2.3 ([10, Lemma 2.4]) Let z(t) ∈ C[0, 1] and l ∈ R. Then the fractional value
boundary problem

⎧
⎨

⎩

–Dαu(t) = z(t), 0 < t < 1,

u(0) = 0, Dα–1u(1) = l,
(2.2)

is equivalent to

u(t) =
∫ 1

0
H(t, s)z(s) ds +

ltα–1

�(α)
,

where

H(t, s) =

⎧
⎨

⎩

tα–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

tα–1, 0 ≤ t ≤ s ≤ 1.

Lemma 2.4 Assume that 1 < α,β < 2, σ1,σ2 ∈ C[0, 1], M, N are nonnegative constants
satisfying M ≥ N , and (H4) and (H5) hold. Then the fractional differential system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dβ (φp(–Dαx(t))) = σ1(t) – M(φp(–Dαx(t))) – N(φp(–Dαy(t))), t ∈ (0, 1],

–Dβ (φp(–Dαy(t))) = σ2(t) – M(φp(–Dαy(t))) – N(φp(–Dαx(t))), t ∈ (0, 1],

Dαx(0) = 0, Dβ–1(φp(–Dαx(1))) = λIσ φp(–Dαx(η)) + b1,

x(0) = 0, Dα–1x(1) = l1,

Dαy(0) = 0, Dβ–1(φp(–Dαy(1))) = λIσ φp(–Dαy(η)) + b2,

y(0) = 0, Dα–1y(1) = l2,

(2.3)

has a unique solution in Cα[0, T] × Cα[0, T].

Proof Let

φp
(
–Dαx(t)

)
=

u(t) + v(t)
2

and φp
(
–Dαy(t)

)
=

u(t) – v(t)
2

, ∀t ∈ [0, 1].

Using (2.3), we have that

⎧
⎪⎪⎨

⎪⎪⎩

–Dβu(t) = σ1(t) + σ2(t) – (M + N)u(t),

u(0) = 0,

Dβ–1u(1) = λIσ u(η) + b1 + b2,

(2.4)
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and

⎧
⎪⎪⎨

⎪⎪⎩

–Dβv(t) = σ1(t) – σ2(t) – (M – N)v(t),

u(0) = 0,

Dβ–1v(1) = λIσ v(η) + b1 – b2.

(2.5)

Since M, N are nonnegative constants and M ≥ N , by assumption (H5) we see that

2�(β + σ )(M – N) ≤ 2�(β + σ )(M + N) < �(β)
[
�(β + σ ) – ληβ+σ–1]. (2.6)

By (2.6) and Lemma 2.2 we know that (2.4) and (2.5) have a unique solution. In conse-
quence, φp(–Dαx(t)) and φp(–Dαy(t))) are also unique, that is,

φp
(
–Dαx(t)

)
= ω1(t) ∈ C[0, 1], φp

(
–Dαy(t)

)
= ω2(t) ∈ C[0, 1].

Then

–Dαx(t) = φq
(
ω1(t)

)
, –Dαy(t)) = φq

(
ω2(t)

)
.

In view of the boundary value condition (2.3), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dαx(t) = φq(ω1(t)),

–Dαy(t)) = φq(ω2(t)),

x(0) = 0, Dα–1x(1) = l1,

y(0) = 0, Dα–1y(1) = l2.

(2.7)

Let

x(t) =
p(t) + q(t)

2
and y(t) =

p(t) – q(t)
2

.

Using (2.7), we have

⎧
⎪⎪⎨

⎪⎪⎩

–Dαp(t) = φq(ω1(t)) + φq(ω2(t)),

p(0) = 0,

Dα–1p(1) = l1 + l2,

(2.8)

and

⎧
⎪⎪⎨

⎪⎪⎩

–Dαq(t) = φq(ω1(t)) – φq(ω2(t)),

q(0) = 0,

Dα–1q(1) = l1 – l2,

(2.9)

By Lemma 2.3 we know that both (2.8) and (2.9) have a unique solution. In consequence,
x and y are also unique. �
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Lemma 2.5 ([9, Lemma 2.6]) Let M be nonnegative constant, and let (H6) hold. If w(t) ∈
C[0, 1] satisfies Dβw(t) ∈ C[0, 1] and

⎧
⎪⎪⎨

⎪⎪⎩

–Dβw(t) ≥ –Mw(t), t ∈ [0, 1],

w(0) = 0,

Dβ–1w(1) ≥ λIσ w(η),

then w(t) ≥ 0 for all t ∈ [0, 1].

Lemma 2.6 ([10, Lemma 2.7]) If x(t) ∈ C[0, 1] satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–Dαx(t) ≥ 0, 0 < t < 1,

x(0) = 0,

Dα–1x(1) ≥ 0,

then x(t) ≥ 0 for all t ∈ [0, 1].

Lemma 2.7 Let M, N be nonnegative constants and M ≥ N . If u, v ∈ C[0, 1] satisfy
Dβu(t), Dβv(t) ∈ C[0, 1], and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dβu(t) ≥ –Mu(t) + Nv(t), t ∈ [0, T),

–Dβv(t) ≥ –Mv(t) + Nu(t), t ∈ [0, T),

u(0) = 0, Dβ–1u(1) ≥ λIσ u(η),

v(0) = 0, Dβ–1v(1) ≥ λIσ v(η),

(2.10)

then u(t) ≥ 0 and v(t) ≥ 0 for all t ∈ [0, 1].

Proof Let p(t) = u(t) + v(t), t ∈ [0, 1]. Then by (2.10) we have

⎧
⎪⎪⎨

⎪⎪⎩

–Dβp(t) ≥ –(M – N)p(t), t ∈ [0, 1],

p(0) = 0,

Dβ–1p(1) ≥ λIσ p(η).

(2.11)

Thus by (2.11) and Lemma 2.5 we have that

p(t) ≥ 0, ∀t ∈ [0, 1], i.e., u(t) + v(t) ≥ 0, ∀t ∈ [0, 1]. (2.12)

Next, we show that u(t) ≥ 0 and v(t) ≥ 0 for all t ∈ [0, 1]. Using (2.10) and (2.12), we find
that

⎧
⎪⎪⎨

⎪⎪⎩

–Dβu(t) ≥ –(M + N)u(t), t ∈ [0, 1],

u(0) = 0,

Dβ–1u(1) ≥ λIσ u(η),

(2.13)

which, in view of (2.13) and Lemma 2.5, yield u(t) ≥ 0 for all t ∈ [0, 1]. In a similar way, we
can show that v(t) ≥ 0 for all t ∈ [0, 1]. �
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3 Main results
Theorem 3.1 Suppose that conditions (H1)–(H6) hold. Then there is an extremal solution
(x∗, y∗) ∈ [x0, y0] × [x0, y0] of the nonlinear problem (1.1). Moreover, there exist monotone
iterative sequences {xn}, {yn} ⊂ [x0, y0] such that xn → x∗, yn → y∗ (n → ∞) uniformly for
t ∈ [0, 1] and

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤ x∗ ≤ y∗ ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0.

Moreover, we have

Dαy0 ≤ Dαy1 ≤ · · · ≤ Dαyn ≤ · · · ≤ Dαy∗ ≤ Dαx∗ ≤ · · · ≤ Dαxn ≤ · · · ≤ Dαx1 ≤ Dαx0,

where

[x0, y0] =
{

x ∈ Cα[0, 1] : x0(t) ≤ x(t) ≤ y0(t), t ∈ [0, 1]
}

.

Proof For any xn–1, yn–1 ∈ Cα[0, 1], n ≥ 1, we define

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 1
n (t) = f (t, xn–1(t), yn–1(t), Dαxn–1(t), Dαyn–1(t))

+ Mφp(–Dαxn–1(t)) + Nφp(–Dαyn–1(t)),

σ 2
n (t) = g(t, yn–1(t), xn–1(t), Dαyn–1(t), Dαxn–1(t))

+ Mφp(–Dαyn–1(t)) + Nφp(–Dαxn–1(t)).

Consider (2.3) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dβ (φp(–Dαxn(t))) = σ 1
n (t) – M(φp(–Dαxn(t))) – N(φp(–Dαyn(t))),

–Dβ (φp(–Dαyn(t))) = σ 2
n (t) – M(φp(–Dαyn(t))) – N(φp(–Dαxn(t))),

Dαxn(0) = 0,

Dβ–1(φp(–Dαxn(1)))

= Iσ {h(η,φp(–Dαxn–1(η))) + λ[φp(–Dαxn(η)) – φp(–Dαxn–1(η))]} + a1,

xn(0) = 0, Dα–1xn(1) = Iωxn–1(ξ ) + d1,

Dαyn(0) = 0,

Dβ–1(φp(–Dαyn(1)))

= Iσ {k(η,φp(–Dαyn–1(η))) + λ[φp(–Dαyn(η)) – φp(–Dαyn–1(η))]} + a2,

yn(0) = 0, Dα–1yn(1) = Iωyn–1(ξ ) + d2.

(3.1)

In view of Lemma 2.4, problem (3.1) has a unique solution in Cα[0, 1] × Cα[0, 1].
Now we show that {xn(t)} and {yn(t)} satisfy the relations

xn–1 ≤ xn ≤ yn ≤ yn–1 and Dαyn–1 ≤ Dαyn ≤ Dαxn ≤ Dαxn–1, n = 1, 2, . . . . (3.2)
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Let u(t) = φp(–Dαx1(t)) – φp(–Dαx0(t)), v(t) = φp(–Dαy0(t)) – φp(–Dαy1(t)). By condition
(3.1) and (H1) we have

–Dβu(t) = –Dβ
(
φp

(
–Dαx1(t)

))
+ Dβ

(
φp

(
–Dαx0(t)

))

≥ f
(
t, x0(t), y0(t), Dαx0(t), Dαy0(t)

)
+ Mφp

(
–Dαx0(t)

)
+ Nφp

(
–Dαy0(t)

)

– Mφp
(
–Dαx1(t)

)
– Nφp

(
Dαy1(t)

)
– f

(
t, x0(t), y0(t), Dαx0(t), Dαy0(t)

)

= –Mu(t) + Nv(t).

Also, u(0) = 0, and

Dβ–1u(1) = Dβ–1(φp
(
–Dαx1(1)

))
– Dβ–1(φp

(
–Dαx0(1)

))

≥ Iσ
{

h
(
η,φp

(
–Dαx0(η)

))
+ λ

[
φp

(
–Dαx1(η)

)
– φp

(
–Dαx0(η)

)]}
+ a1

– Iσ h
(
η,φp

(
–Dαx0(η)

))
– a1

= λIσ u(η).

In a similar way, we can prove that

–Dβv(t) ≥ –Mv(t) + Nu(t), v(0) = 0, Dβ–1v(1) ≥ λIσ v(η).

So, from the above inequality we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dβu(t) ≥ –Mu(t) + Nv(t),

–Dβv(t) ≥ –Mv(t) + Nu(t),

u(0) = 0, Dβ–1u(1) ≥ λIσ u(η),

v(0) = 0, Dβ–1v(1) ≥ λIσ v(η).

Thus, in view of Lemma 2.7, we get φp(–Dαx1(t)) ≥ φp(–Dαx0(t)), φp(–Dαy0(t)) ≥
φp(–Dαy1(t)) for all t ∈ [0, 1]. Since �p(x) is nondecreasing, we have Dαx1(t) ≤ Dαx0(t)
and Dαy0(t) ≤ Dαy1(t) for all t ∈ [0, 1].

Let ε(t) = x1(t) – x0(t), θ (t) = y0(t) – y1(t). From (3.1) and (H1) we have

⎧
⎪⎪⎨

⎪⎪⎩

–Dαε(t) ≥ 0, t ∈ (0, 1],

ε(0) = 0,

Dα–1ε(1) ≥ Iωx0(ξ ) + d1 – Iωx0(ξ ) – d1 = 0,

(3.3)

and

⎧
⎪⎪⎨

⎪⎪⎩

–Dαθ (t) ≥ 0, t ∈ (0, 1],

θ (0) = 0,

Dα–1θ (1) ≥ 0.

(3.4)

By Lemma 2.6 we have x1(t) ≥ x0(t) and y0(t) ≥ y1(t) for all t ∈ [0, 1].
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Now we put w(t) = φp(–Dαy1(t))–φp(–Dαx1(t)). Applying (H2), (H3), and (3.1), we obtain

–Dβw(t) = g
(
t, y0(t), x0(t), Dαy0(t), Dαx0(t)

)
+ Mφp

(
–Dαy0(t)

)
+ Nφp

(
–Dαx0(t)

)

– Mφp
(
–Dαy1(t)

)
– Nφp

(
–Dαx1(t)

)
– f

(
t, x0(t), y0(t), Dαx0(t), Dαy0(t)

)

– Mφp
(
–Dαx0(t)

)
– Nφp

(
–Dαy0(t)

)
+ Mφp

(
–Dαx1(t)

)
+ Nφp

(
–Dαy1(t)

)

≥ –M
[
φp

(
–Dαy0(t)

)
– φp

(
–Dαx0(t)

)]
– N

[
φp

(
–Dαx0(t)

)
– φp

(
–Dαy0(t)

)]

+ Mφp
(
–Dαy0(t)

)
+ Nφp

(
–Dαx0(t)

)
– Mφp

(
–Dαy1(t)

)
– Nφp

(
–Dαx1(t)

)

– Mφp
(
–Dαx0(t)

)
– Nφp

(
–Dαy0(t)

)
+ Mφp

(
–Dαx1(t)

)
+ Nφp

(
–Dαy1(t)

)

= –(M – N)w(t).

Also, w(0) = φp(–Dαy1(0)) – φp(–Dαx1(0)) = 0, and

Dβ–1w(1) = Iσ
{

k
(
η,φp

(
–Dαy0(η)

))
+ λ

[
φp

(
–Dαy1(η)

)
– φp

(
–Dαy0(η)

)]}
+ a2

– Iσ
{

h
(
η,φp

(
–Dαx0(η)

))
+ λ

[
φp

(
–Dαx1(η)

)
– φp

(
–Dαx0(η)

)]}
– a1

≥ Iσ
{
λ
[
φp

(
–Dαy0(η)

)
– φp

(
–Dαx0(η)

)]
+ λ

[
φp

(
–Dαy1(η)

)
– φp

(
–Dαy0(η)

)]

– λ
[
φp

(
–Dαx1(η)

)
– φp

(
–Dαx0(η)

)]}
+ (a2 – a1)

≥ λIσ w(η).

In view of Lemma 2.5, we have that w(t) ≥ 0 for all t ∈ [0, 1]. Thus we have the rela-
tion φp(–Dαx1(t)) ≤ φp(–Dαy1(t)), that is, Dαx1(t) ≥ Dαy1(t), since �p(x) is nondecreasing.
Therefore Dαy0(t) ≤ Dαy1(t) ≤ Dαx1(t) ≤ Dαx0(t) for all t ∈ [0, 1].

Let δ(t) = y1(t) – x1(t). It follows from (3.1) that

⎧
⎪⎪⎨

⎪⎪⎩

–Dαδ(t) = –Dαy1(t) + Dαx1(t) ≥ 0,

δ(0) = 0,

Dα–1δ(1) = Iωy0(ξ ) + d2 – Iωx0(ξ ) – d1 ≥ 0.

By Lemma 2.6 we obtain y1(t) ≥ x1(t) for all t ∈ [0, 1]. Hence we have the relation x0(t) ≤
x1(t) ≤ y1(t) ≤ y0(t).

Now we assume that

xk–1 ≤ xk ≤ yk ≤ yk–1 and Dαyk–1 ≤ Dαyk ≤ Dαxk ≤ Dαxk–1 for some k ≥ 1.

We will prove that (3.2) is also true for k + 1. Let

u(t) = φp
(
–Dαxk+1(t)

)
– φp

(
–Dαxk(t)

)
, v(t) = φp

(
–Dαyk(t)

)
– φp

(
–Dαyk+1(t)

)
,

w(t) = φp
(
–Dαyk+1(t)

)
– φp

(
–Dαxk+1(t)

)
, ε(t) = xk+1(t) – xk(t),

θ (t) = yk(t) – yk+1(t), δ(t) = yk+1(t) – xk+1(t).
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By (H2), (H3), and (3.1) we have that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dβu(t) ≥ –Mu(t) + Nv(t),

–Dβv(t) ≥ –Mv(t) + Nu(t),

u(0) = 0, Dβ–1u(1) ≥ λIσ u(η),

v(0) = 0, Dβ–1v(1) ≥ λIσ v(η),
⎧
⎪⎪⎨

⎪⎪⎩

–Dαε(t) ≥ 0,

ε(0) = 0,

Dα–1ε(1) ≥ 0,
⎧
⎪⎪⎨

⎪⎪⎩

–Dαθ (t) ≥ 0,

θ (0) = 0,

Dα–1θ (1) ≥ 0,

and

⎧
⎪⎪⎨

⎪⎪⎩

–Dβw(t) ≥ –(M – N)w(t),

w(0) = 0,

Dβ–1w(1) ≥ λIσ w(η),
⎧
⎪⎪⎨

⎪⎪⎩

–Dαδ(t) ≥ 0,

δ(0) = 0,

Dα–1δ(1) ≥ 0.

In view of Lemmas 2.5–2.7, we obtain

xk ≤ xk+1 ≤ yk+1 ≤ yk and Dαyk ≤ Dαyk+1 ≤ Dαxk+1 ≤ Dαxk , ∀t ∈ [0, 1].

From the above, by induction, it is not difficult to prove that x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤
yn ≤ · · · ≤ y1 ≤ y0 and Dαy0 ≤ Dαy1 ≤ · · · ≤ Dαyn ≤ · · · ≤ Dαxn ≤ · · · ≤ Dαx1 ≤ Dαx0.

Since the solution space is Cα[0, 1], the sequences {xn} and {yn} are uniformly bounded
and equicontinuous. The Arzelà–Ascoli theorem guarantees that they are relatively com-
pact sets in the space Cα[0, 1]. Therefore {xn} and {yn} converge to x∗(t) and y∗(t) uniformly
on [0, 1], respectively, that is,

lim
n→∞ xn(t) = x∗(t), lim

n→∞ yn(t) = y∗(t), ∀t ∈ [0, 1],

and

lim
n→∞ Dαxn(t) = Dαx∗(t), lim

n→∞ Dαyn(t) = Dαy∗(t), ∀t ∈ [0, 1],

uniformly in t ∈ [0, 1]. Moreover, from (3.1) and (3.2) we obtain that x∗(t) and y∗(t) are
solutions of problem (1.1).
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Finally, we show that (x∗, y∗) is an extremal solution of system (1.1). Let (x, y) ∈ [x0, y0] ×
[x0, y0] be any solution of problem (1.1), that is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Dβ (φp(–Dαx(t))) = f (t, x(t), y(t), Dαx(t), Dαy(t)), t ∈ (0, 1],

–Dβ (φp(–Dαy(t))) = g(t, y(t), x(t), Dαy(t)), Dαx(t)), t ∈ (0, 1],

Dαx(0) = 0,

Dβ–1(φp(–Dαx(1))) = Iσ h(η,φp(–Dαx(η))) + a1

= 1
�(σ )

∫ η

0 (η – s)σ–1h(s,φp(–Dαx(s))) ds + a1,

x(0) = 0, Dα–1x(1) = Iωx(ξ ) + d1 = 1
�(ω)

∫ ξ

0 (ξ – s)ω–1x(s) ds + d1,

Dαy(0) = 0,

Dβ–1(φp(–Dαy(1))) = Iσ k(η,φp(–Dαy(η))) + a2

= 1
�(σ )

∫ η

0 (η – s)σ–1k(s,φp(–Dαy(s))) ds + a2,

y(0) = 0, Dα–1y(1) = Iωy(ξ ) + d2 = 1
�(ω)

∫ ξ

0 (ξ – s)ω–1y(s) ds + d2.

(3.5)

Applying (3.1), (3.5), (H2), (H3), Lemma 2.6, and Lemma 2.7, we have

xn ≤ x, y ≤ yn, Dαx ≤ Dαxn, Dαyn ≤ Dαy, n = 1, 2, . . . . (3.6)

Taking the limit as n → ∞ in (3.6), we have x∗ ≤ x, y ≤ y∗, that is, (x∗, y∗) is an extremal
solution of system (1.1) in [x0, y0] × [x0, y0]. This completes the proof. �

4 Iteration procedure and a numerical example
In this section, we introduce a numerical procedure to obtain an appropriate solution of
(1.1). Define

E(n) =
∥
∥xn(t) – yn(t)

∥
∥

1 =
∫ 1

0

∣
∣xn(t) – yn(t)

∣
∣dt.

For the iteration Eq. (3.1), let φp(–Dαxn(t)) = un. Then –Dαxn(t) = φq(un), and with
the boundary conditions xn(0) = 0 and Dα–1xn(1) = D 2

3 xn(1) = Iωxn–1(ξ ) + d1 = l1, by
Lemma 2.3 we have

xn(t) =
l1

�(α)
tα–1 +

∫ 1

0
H(t, s)φq

(
un(s)

)
ds, (4.1)

where l1 = 1
�(ω)

∫ ξ

0 (ξ – s)ω–1xn–1(s) ds + d1 and

H(t, s) =

⎧
⎨

⎩

tα–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

tα–1, 0 ≤ t ≤ s ≤ 1.

We can also put φp(–Dαyn(t)) = vn. Then –Dαyn(t) = φq(vn). In a similar way, we can
prove that

yn(t) =
l2

�(α)
tα–1 +

∫ 1

0
H(t, s)φq

(
vn(s)

)
ds, (4.2)
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where l2 = 1
�(ω)

∫ ξ

0 (ξ – s)ω–1yn–1(s) ds + d2 = 1.1284
∫ 1

2
0 ( 1

2 – s) 1
2 yn–1(s) ds + 0.004. Thus the

iteration Eq. (3.1) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dβun = –Mun – Nvn + f (t, xn–1, yn–1, –φq(un–1), –φq(vn–1)) + Mun–1 + Nvn–1,

–Dβvn = –Mvn – Nun + g(t, yn–1, xn–1, –φq(vn–1), –φq(un–1)) + Mvn–1 + Nun–1,

un(0) = 0, Dβ–1un(1) = λIσ un(η) + b1,

vn(0) = 0, Dβ–1vn(1) = λIσ vn(η) + b2.

(4.3)

Applying Lemma 2.1 to (4.3), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un(t) = b1�(β+σ )
�(β)[�(β+σ )–ληβ+σ–1] tβ–1

+
∫ 1

0 G(t, s)[–Mun(s) – Nvn(s) + f (s, xn–1(s), yn–1(s), –φq(un–1(s)),

– φq(vn–1(s))) + Mun–1(s) + Nvn–1(s)] ds,

vn(t) = b2�(β+σ )
�(β)[�(β+σ )–ληβ+σ–1] tβ–1

+
∫ 1

0 G(t, s)[–Mvn(s) – Nun(s) + g(s, yn–1(s), xn–1(s), –φq(vn–1(s)),

– φq(un–1(s))) + Mvn–1(s) + Nun–1(s)] ds,

(4.4)

where b1 = Iσ h(η, un–1(η)) – λIσ un–1(η) + a1, b2 = Iσ k(η, vn–1(η)) – λIσ vn–1(η) + a2, and

G(t, s) =
1
�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[�(β + σ ) – λ(η – s)β+σ–1]tβ–1

– [�(β + σ ) – ληβ+σ–1](t – s)β–1, s ≤ t, s ≤ η,

�(β + σ )tβ–1 – λ(η – s)β+σ–1tβ–1, t ≤ s ≤ η,

�(β + σ )[tβ–1 – (t – s)β–1] + ληβ+σ–1(t – s)β–1, η ≤ s ≤ t,

�(β + σ )tβ–1, s ≥ t, s ≥ η,

� = �(β)[�(β + σ ) – ληβ+σ–1].
Discretize the interval [0, 1] with the nodes ti = ih, h = 1

K , K ∈ N. Let x(i)
n ≈ xn(ti), u(i)

n ≈
un(ti), H(i, j) = H(ti, sj), G(i, j) = G(ti, sj), and

⎧
⎨

⎩

f (j)
n–1 = f (sj, xn–1(sj), yn–1(sj), –φq(un–1(sj)), –φq(vn–1(sj))) + Mun–1(sj) + Nvn–1(sj),

g(j)
n–1 = g(sj, yn–1(sj), xn–1(sj), –φq(vn–1(sj)), –φq(un–1(sj))) + Mvn–1(sj) + Nun–1(sj).

Using the trapezoidal quadrature rule to approximate the integrals in the right-hand sides
of (4.4), (4.2), and (4.1), we obtain the following linear systems of equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(i)
n = b1�(β+σ )

�(β)[�(β+σ )–ληβ+σ–1] tβ–1
i – h

2
∑K

j=0 MG(i, j)dju
(j)
n

– h
2
∑K

j=0 NG(i, j)djv
(j)
n + h

2
∑K

j=0 G(i, j)djf
(j)

n–1,

v(i)
n = b2�(β+σ )

�(β)[�(β+σ )–ληβ+σ–1] tβ–1
i – h

2
∑K

j=0 MG(i, j)djv
(j)
n

– h
2
∑K

j=0 NG(i, j)dju
(j)
n + h

2
∑K

j=0 G(i, j)djg
(j)
n–1,

(4.5)

and
⎧
⎨

⎩

x(i)
n = l1

�(α) tα–1
i + h

2
∑K

j=0 H(i, j)djφq(u(j)
n ),

y(i)
n = l2

�(α) tα–1
i + h

2
∑K

j=0 H(i, j)djφq(v(j)
n ),

(4.6)
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for the unknown u(i)
n , x(i)

n , 0 ≤ i ≤ K , where {dj} are the coefficients in the rule, d0 = dK = 1,
and dj = 2 for 1 ≤ j ≤ K – 1.

Setting Gij = h
2
∑K

j=0 G(i, j)dj, Hij = h
2
∑K

j=0 H(i, j)dj, the matrix � = (Gij), and B = (Hij)
with the identity matrix I. Systems (4.5) and (4.6) can be written as a system of matrix–
vector equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(I + M�)
−→
U n + N�

−→v n = b1�(β+σ )
�(β)[�(β+σ )–ληβ+σ–1] Sβ–1 +

−→
F n–1,

(I + M�)
−→
V n + N�

−→u n = b2�(β+σ )
�(β)[�(β+σ )–ληβ+σ–1] Sβ–1 +

−→
G n–1,

−→
X n = l1

�(α) Sα–1 + Bφq(
−→
U n),

−→
Y n = l2

�(α) Sα–1 + Bφq(
−→
V n),

(4.7)

where
−→
X n = [x(0)

n , x(1)
n , . . . , x(K )

n ],
−→
Y n = [y(0)

n , y(1)
n , . . . , y(K )

n ],
−→
U n = [u(0)

n , u(1)
n , . . . , u(K )

n ],
−→
V n =

[v(0)
n , v(1)

n , . . . , v(K )
n ], S = [t0, t1, . . . , tK ]T , and

−→
F n–1,

−→
G n–1 are column vectors of their com-

ponents F (i)
n–1 = h

2
∑K

j=0 G(i, j)djf
(j)

n–1, G(i)
n–1 = h

2
∑K

j=0 G(i, j)djg
(j)
n–1.

Example 4.1 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–D 7
4 (φ4((–D 5

3 x(t)))

= 1
6 x 1

3 (t)[(–D 5
3 x(t)) 1

3 – 18 – t
2
9 ] – y(t)[(–D 5

3 y(t)) – 2t 2
3 ], t ∈ (0, 1],

–D 7
4 (φ4(–D 5

3 y(t)))

= 1
6 y 1

3 (t)[(–D 5
3 y(t)) 1

3 – 18 – t
2
9 ] – x(t)[(–D 5

3 x(t)) – 2t 2
3 ], t ∈ (0, 1],

D 5
3 x(0) = 0,

D 3
4 (φ4(–D 5

3 x(1))) = I 5
4 h( 1

4 ,φ4(–D 5
3 x( 1

4 ))) + 0.1

= 1
�( 5

4 )

∫ 1
4

0 ( 1
4 – s) 1

4 (s + 1)(φ4(–D 5
3 x(s))) ds + 0.1,

x(0) = 0, D 2
3 x(1) = 1

�( 3
2 )

∫ 1
2

0 ( 1
2 – s) 1

2 x(s) ds + 0.3,

D 5
3 y(0) = 0,

D 3
4 (φ4(–D 5

3 y(1))) = I 5
4 k( 1

4 ,φ4(–D 5
3 y( 1

4 ))) + 0.2

= 1
�( 5

4 )

∫ 1
4

0 ( 1
4 – s) 1

4 (es + 1)(φ4(–D 5
3 y(s))) ds + 0.2,

y(0) = 0, D 2
3 y(1) = 1

�( 3
2 )

∫ 1
2

0 ( 1
2 – s) 1

2 y(s) ds + 0.4,

(4.8)

where β = 7
4 , α = 5

3 , σ = 5
4 , ω = 3

2 , η = 1
4 , ξ = 1

2 , a1 = 0.1, a2 = 0.2, d1 = 0.003, d2 = 0.004,
p = 4, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (t, x(t), y(t), D 5
3 x(t), D 5

3 y(t))

= 1
6 x 1

3 (t)[(–D 5
3 x(t)) 1

3 – 18 – t
2
9 ] – y(t)[(–D 5

3 y(t)) – 2t 2
3 ],

g(t, y(t), x(t), D 5
3 y(t), D 5

3 x(t))

= 1
6 y 1

3 (t)[(–D 5
3 y(t)) 1

3 – 18 – t
2
9 ] – x(t)[(–D 5

3 x(t)) – 2t 2
3 ],

h(t,φ4(–D 5
3 x)) = (t + 1)(φ4(–D 5

3 x)),

k(t,φ4(–D 5
3 y)) = (et + 1)(φ4(–D 5

3 y)).
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Take x0(t) = 0 and y0(t) = 3t 2
3 – 9�( 2

3 )
14�( 1

3 )
t 7

3 . Then –1 ≤ –t 2
3 = D 5

3 y0(t) ≤ D 5
3 x0(t) = 0. It is not

difficult to verify that (H1) holds.
Since the function 3√x + x3 is increasing for x ∈ R, we obtain

f
(
t, x(t), y(t), D

5
3 x(t), D

5
3 y(t)

)
– f

(
t, x(t), y(t), D

5
3 x(t), D

5
3 y(t)

)

=
1
6

x(t)
1
3 [(

–D
5
3 x(t)

) 1
3 – 600t

1
100 – t

1
9
]

– y(t)
[(

–D
5
3 y(t)

)
– 2t

1
3
]

–
1
6

x
1
3 (t)

[(
–D

5
3 x(t)

) 1
3 – 600t

1
100 – t

1
9
]

+ y(t)
[(

–D
5
3 y(t)

)
– 2t

1
3
]
,

≤ 1
6

x
1
3 (t)

[(
–D

5
3 x(t)

) 1
3 –

(
–D

5
3 x(t)

) 1
3
]

≤ 1
6

3√3
[(

–D
5
3 x(t)

)3 –
(
–D

5
3 x(t)

)3]

=
1
6

3√3
[
�4

(
–D

5
3 x(t)

)
– �4

(
–D

5
3 x(t)

)]
, (4.9)

k
(
t,φ4

(
–D

5
3 y

))
– k

(
t,φ4

(
–D

5
3 x

))

=
(
et + 1

)(
φ4

(
–D

5
3 y

))
–

(
et + 1

)(
φ4

(
–D

5
3 x

))

=
(
et + 1

)[
φ4

(
–D

5
3 y

)
–

(
φ4

(
–D

5
3 x

))]

≥ (t + 1)
[
φ4

(
–D

5
3 y

)
–

(
φ4

(
–D

5
3 x

))]

≥ φ4
(
–D

5
3 y

)
–

(
φ4

(
–D

5
3 x

))
, (4.10)

where x0(t) ≤ x(t) ≤ x(t) ≤ y0(t), x0(t) ≤ y(t) ≤ y(t) ≤ y0(t), and x0(t) ≤ x(t) ≤ y(t) ≤ y0(t).
Thus (H2) and (H3) hold. From (4.9) and (4.10) we have M = 1

6
3√3, N = 0, and λ = 1. Then

�(β + σ ) = �

(
7
4

+
5
4

)

= �(3) = 2 > ληβ+σ–1 = 1 ·
(

1
4

)2

= 0.0625,

2�(β + σ )(M + N)

= 2 · �(3) ·
3√3
6

≈ 0.9614 < �(β)
[
�(β + σ ) – ληβ+σ–1]

= �

(
7
4

)[

�(3) – 1 ·
(

1
4

)2]

≈ 1.7808,

�(2 – β)λησ = �

(
1
4

)

· 1 ·
(

1
4

) 5
4 ≈ 0.6410 < �(σ ) = �

(
5
4

)

≈ 0.9064,

which show that (H4), (H5), and (H6) hold. Thus all conditions of Theorem 3.1 are sat-
isfied. In consequence, the nonlinear system (4.8) has an extremal solution (x∗, y∗) ∈
[x0(t), y0(t)] × [x0(t), y0(t)]. Moreover, for this example, we found that for δ = 10–10, which
took N = 16 iterations for E(N) < δ. The graphs of xn and yn for some values of n are shown
in Table 1 and Fig. 1.
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Table 1 E(n) = 3n + 1, n = 0, 1, 2, 3, 4, 5

n 1 4 7 10 13 16

E(n) 0.6696 0.0096 2.6171e–04 2.3360e–07 1.5608e–8 1.3942e–11

Figure 1 Graphs of Xn and Yn
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