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Abstract
The classical Dedekind sums appear in the transformation behavior of the logarithm
of the Dedekind eta-function under substitutions from the modular group. The
Dedekind sums and their generalizations are defined in terms of Bernoulli functions
and their generalizations, and are shown to satisfy some reciprocity relations. In
contrast, Dedekind-type DC (Daehee and Changhee) sums and their generalizations
are defined in terms of Euler functions and their generalizations. The purpose of this
paper is to introduce the poly-Dedekind-type DC sums, which are obtained from the
Dedekind-type DC sums by replacing the Euler function by poly-Euler functions of
arbitrary indices, and to show that those sums satisfy, among other things, a
reciprocity relation.
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1 Introduction
Apostol [1, 2] considered the generalized Dedekind sums given by

Sp(h, m) =
m–1∑

μ=1

μ

m
Bp

(
hμ

m

)
(1)

and showed that they satisfy a reciprocity relation. Here Bp(x) = Bp(x – [x]) are the
Bernoulli functions with Bernoulli polynomials Bp(x) given by

t
et – 1

ext =
∞∑

p=0

Bp(x)
tp

p!
.

We remark that the Dedekind sum S(h, m) = S1(h, m) appears in the transformation behav-
ior of the logarithm of the Dedekind eta-function under substitutions from the modular
group, and a reciprocity law of that was demonstrated by Dedekind in 1892.
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As an extension of the sums in (1), the poly-Dedekind sums given by

S(k)
p (h, m) =

m–1∑

μ=1

μ

m
B(k)

p

(
hμ

m

)

were considered, and a reciprocity law for those sums was shown in [16, 19]. Here B(k)
p (x)

are the type 2 poly-Bernoulli polynomials of index k, B(k)
p (x) = B(k)

p (x – [x]) (see [16]), and
B(1)

p (x) = Bp(x).
The Dedekind-type DC sums (see (8)) were first introduced and shown to satisfy a reci-

procity relation in [13]. The aim of this paper is introducing the poly-Dedekind-type DC
sums (see (2)), which are obtained from the Dedekind-type DC sums by replacing the Eu-
ler function by poly-Euler functions of arbitrary indices, and showing that those sums sat-
isfy, among other things, a reciprocity relation (see (3)). The motivation of this paper is to
explore our new sums in connection with modular forms, zeta functions, and trigonomet-
ric sums, just as in the cases of Apostol–Dedekind sums, their generalizations, and some
related sums. Indeed, Simsek [22] found trigonometric representations of the Dedekind-
type DC sums and their relations to the Clausen functions, polylogarithm function, Hur-
witz zeta function, generalized Lambert series (G-series), and Hardy–Berndt sums. In
addition, Bayad and Simsek [3] studied three new shifted sums of Apostol–Dedekind–
Rademacher type. These sums generalize the classical Dedekind–Rademacher sums and
can be expressed in terms of Jacobi modular forms or cotangent functions or special val-
ues of the Barnes multiple zeta functions. They found reciprocity laws for these sums and
demonstrated that some well-known reciprocity laws can be deduced from their results.
As applications of our results, we plan to carry out this line of research in a subsequent
paper.

In this paper, we consider the poly-Dedekind-type DC sums defined by

T (k)
p (h, m) = 2

m–1∑

μ=1

(–1)μ
μ

m
E(k)

p

(
hμ

m

)
, (2)

where h, m, p ∈N, and E(k)
p are the poly-Euler functions of index k given by E(k)

p (x) = E(k)
p (x–

[x]) (see (12), (17)). We show the following reciprocity relation for the poly-Dedekind-type
DC sums given by (see Theorem 9)

mpT (k)
p (h, m) + hpT (k)

p (m, h) (3)

= 2
m–1∑

μ=0

p∑

l=0

h–1∑

ν=0

p+1–l∑

j=1

(–1)μ+ν
(mh)l–1(p

l
)
S1(p – l + 1, j)

(p – l + 1)jk–1

× (
(μh)mp–l + (νm)hp–l)El

(
ν

h
+

μ

m

)
,

where m, h, p ∈N with m ≡ 1 (mod 2) and h ≡ 1 (mod 2), and k ∈ Z.
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For k = 1, this reciprocity relation for the poly-Dedekind-type DC sums reduces to that
for the Dedekind-type DC sums given by (see Corollary 4)

mpTp(h, m) + hpTp(m, h)

= 2(mh)p–1
m–1∑

μ=0

h–1∑

ν=0

(–1)μ+ν(μh + νm)Ep

(
ν

h
+

μ

m

)
,

where m, h, p ∈N with m ≡ 1 (mod 2) and h ≡ 1 (mod 2).
For the rest of this section, we recall some necessary facts. It is well known that Euler

polynomials are defined by

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(see [1–3, 5–7, 10–17, 19, 21, 22]). (4)

When x = 0, En = En(0) are called the Euler numbers.
From (4), we note that

En(x) =
n∑

l=0

(
n
l

)
Elxn–l, (n ≥ 0), (see [1–3, 5–7, 10–17, 19–22]). (5)

The first few of Euler numbers are E0 = 1, E1 = – 1
2 , E2 = 0, E3 = 1

4 , E4 = 0, E5 = – 1
2 , . . . , and

E2k = 0 for k = 1, 2, . . . .
From (4) we note that E0 = 1 and En(1) + En = 2δ0,n (n ≥ 0), where δn,k is the Kronecker

symbol. The Euler functions En(x) are defined by

En(x) = En
(
x – [x]

)
(n ≥ 0) (see [2, 6, 13, 22]), (6)

where [x] denotes the greatest integer not exceeding x.
From (4) we can easily derive the following identity:

2
n–1∑

k=0

(–1)kkl = (–1)n–1El(n) + El (n ∈N). (7)

It is known that Dedekind-type DC sums are given by

Tp(h, m) = 2
m–1∑

μ=0

(–1)μ
μ

m
Ep

(
hμ

m

)
(h, m ∈N) (see [13, 22]). (8)

Note that

T1(h, m) = 2
m–1∑

μ=0

(–1)μ
((

μ

m

))((
hμ

m

))
(see [1, 2, 6, 12, 14, 21]),

where ((x)) is defined by

((x)) =

⎧
⎨

⎩
x – [x] – 1

2 if x is not an integer,

0 if xis an integer.
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The Genocchi polynomials are defined by

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
(see [7, 11, 17]). (9)

When x = 0, Gn = Gn(0) are called the Genocchi numbers.
Note that G0 = 0, G1 = 1, G2 = –1, G3 = 0, G4 = 1, G5 = 0, G6 = –3, . . . , and G2k+1 = 0 for

k = 1, 2, 3, . . . .
By (4) and (9) we get

Gn+1(x)
n + 1

= En(x),
Gn+1

n + 1
= En (n ≥ 0).

The degenerate Hardy polyexponential function of index k is defined by

Eik,λ(x) =
∞∑

n=1

xn(1)n,λ

nk(n – 1)!
(k ∈ Z) (see [15]), (10)

where (x)0,λ = 1 and (x)n,λ = x(x – λ) · · · (x – (n – 1)λ), (n ≥ 1).
Recently, the degenerate poly-Genocchi polynomials of index k were defined in terms

of the degenerate Hardy polyexponential function of index k by

2Eik,λ(logλ(1 + t))
eλ(t) + 1

ex
λ(t) =

∞∑

n=0

G(k)
n,λ(x)

tn

n!
(see [17]), (11)

where

ex
λ(t) =

∞∑

n=0

(x)n,λ

n!
tn, eλ(t) = e1

λ(t), and logλ(t) =
1
λ

(
tλ – 1

)

is the compositional inverse to eλ(t) satisfying eλ(logλ(t)) = logλ(eλ(t)) = t. Taking λ → 0
in (11), we get the poly-Genocchi polynomials of index k given by

2Eik(log(1 + t))
et + 1

ext =
∞∑

n=0

G(k)
n (x)

tn

n!
(see [7, 17]), (12)

where G(k)
n (x) = limλ→0 G(k)

n,λ(x) (n ≥ 0), and

Eik(x) =
∞∑

n=1

xn

nk(n – 1)!
(see [10, 15]) (13)

is the polyexponential function of index k.
When x = 0, G(k)

n = G(k)
n (0), (n ≥ 0) are called the poly-Genocchi numbers of index k. By

(12) we easily get G(k)
0 = 0, G(k)

1 = 1, G(k)
2 = –2 + 21–k , . . . . Also, from (12) we note that

G(k)
n (x) =

n∑

l=0

(
n
l

)
G(k)

l xn–l (n ≥ 0). (14)
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Remark 1 The polyexponential functions were first considered by Hardy and are given
by

e(x, a|s) =
∞∑

n=0

xn

(n + a)sn!
(
Re(a) > 0

)
(see [4, 8, 9]).

Komatsu [18], defined the polylogarithm factorial function Lifk(x) by xLifk(x) = xe(x, 1|k) =
Eik(x). So the polylogarithm factorial functions are particular cases of Hardy’s polyexpo-
nential functions, but our polyexponential functions are not. In fact, a slight difference
between ours and Komatsu’s functions is crucial in defining, for example, the type 2 poly-
Bernoulli polynomials (see [10, 15]) and also in constructing poly-Dedekind sums as-
sociated with such polynomials (see [16, 19]). Here we recall from [10] that the type 2
poly-Bernoulli polynomials β

(k)
n (x) of index k are defined by

Eik(log(1 + t))
et – 1

ext =
∞∑

n=0

β (k)
n (x)

tn

n!
. (15)

We also recall that for any integer k, the poly-Bernoulli polynomials B(k)
n (x) of index k are

defined by

Lik(1 – e–t)
1 – e–t ext =

∞∑

n=0

B(k)
n (x)

tn

n!
, (16)

where the polylogarithm functions Lik(x) are given by Lik(x) =
∑∞

n=1
xn

nk .
The reason why Eik(x) is needed and Lifk(x) is not in (15) is twofold. The first reason

is that Eik(x) has order 1, so that the composition Eik(log(1 + t)) still has order 1, which
is definitely required, whereas Lifk(x) has order 0, so that Lifk(log(1 + t)) also has order
0. The second reason is that we want β

(1)
n (x) to be the ordinary Bernoulli polynomials

when k = 1. Indeed, Ei1(x) = ex – 1, so that β
(1)
n (x) are those polynomials with β

(1)
1 (x) =

x – 1
2 .

The construction of the type 2 poly-Bernoulli polynomials is in parallel with that of
the poly-Bernoulli polynomials. Note that Lik(x) has order 1, so that the composition
Lik(1 – e–t) also has order 1. In addition, Li1(x) = – log(1 – x), so that B(1)

n (x) are the ordi-
nary Bernoulli polynomials with B(1)

1 (x) = x + 1
2 (see (16)). Thus we may say that Eik(x) is

a kind of a compositional inverse to Lik(x).

Now we define the poly-Euler polynomials of index k by

E(k)
n (x) =

G(k)
n+1(x)
n + 1

(n ≥ 0). (17)

When x = 0, E(k)
n = E(k)

n (0) are called the poly-Euler numbers of index k. Note that E(1)
n (x) =

En(x) and G(1)
n (x) = Gn(x).
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From (14) we note that

E(k)
n (x) =

1
n + 1

G(k)
n+1(x) =

1
n + 1

n+1∑

l=0

(
n + 1

l

)
G(k)

l xn+1–l (18)

=
1

n + 1

n+1∑

l=1

(
n + 1

l

)
G(k)

l xn+1–l =
1

n + 1

n∑

l=0

(
n + 1
l + 1

)
G(k)

l+1xn–l

=
n∑

l=0

(
n
l

)
G(k)

l+1
l + 1

xn–l =
n∑

l=0

(
n
l

)
E(k)

l xn–l (n ≥ 0).

Remark 2 From (8) and (2) we see that the poly-Dedekind type DC sums are obtained from
the Dedekind-type DC sums by replacing the Euler functions by poly-Euler functions of
arbitrary indices. Note that the key to this generalization is the construction of poly-Euler
polynomials defined in (17), which is done in an elaborate manner. First, we replace t by
Eik(log(1 + t)) as in (12), so that we construct the poly-Genocchi polynomials G(k)

n (x) of
index k such that G(1)

n (x) = Gn(x) are the usual Genocchi polynomials. Next, defining the
poly-Euler polynomials E(k)

n (x) as in (17), we have the desirable property E(1)
n (x) = En(x).

Consequently, for k = 1, the poly-Dedekind-type DC sums T (k)
p (h, m) in (2) reduce to the

Dedekind-type DC sums Tp(h, m) in (8).

In Sect. 2, we derive various facts about the poly-Genocchi and poly-Euler polynomials
that will be needed in the next section. In Sect. 3, we define the poly-Dedekind-type DC
sums and demonstrate, among other things, a reciprocity relation for them.

2 Poly-Genocchi polynomials and poly-Euler polynomials
By (12) we have

2Eik
(
log(1 + t)

)
=

2Eik(log(1 + t))
et + 1

et +
2Eik(log(1 + t))

et + 1
(19)

=
∞∑

n=0

(
G(k)

n (1) + G(k)
n

) tn

n!
.

On the other hand, we also have

2Eik
(
log(1 + t)

)
= 2

∞∑

m=1

1
mk(m – 1)!

(
log(1 + t)

)m (20)

=
∞∑

n=1

(
2

n∑

m=1

1
mk–1 S1(n, m)

)
tn

n!
,

where S1(n, m) are the Stirling numbers of the first kind.
Therefore by (19) and (20) we get the following theorem.

Theorem 1 For n ≥ 1, we have

2
n∑

m=1

1
mk–1 S1(n, m) = G(k)

n (1) + G(k)
n .
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Corollary 1 For n ≥ 1, we have

2
n

n∑

m=1

1
mk–1 S1(n, m) = E(k)

n–1(1) + E(k)
n–1.

From (14) and (18) we see that

d
dx

G(k)
n+1(x) = (n + 1)G(k)

n (x),
d

dx
E(k)

n (x) = nE(k)
n–1(x) (n ≥ 1).

Thus we note that
∫ x

0
G(k)

n (x) dx =
1

n + 1
(
G(k)

n+1(x) – G(k)
n+1

)
,

∫ x

0
E(k)

n–1(x) dx =
1
n

(
E(k)

n (x) – E(k)
n

)
(n ≥ 1).

From (5) and (11) we have

2Eik(log(1 + t))
et + 1

ext =
∞∑

m=1

(log(1 + t))m

mk(m – 1)!

∞∑

l=0

El(x)
tl

l!
(21)

=
∞∑

j=1

j∑

m=1

S1(j, m)
mk–1

tj

j!

∞∑

l=0

El(x)
tl

l!

=
∞∑

n=1

( n∑

j=1

j∑

m=1

(
n
j

)
S1(j, m)

mk–1 En–j(x)

)
tn

n!
.

On the other hand, we also have

2Eik(log(1 + t))
et + 1

ext =
∞∑

n=1

G(k)
n (x)

tn

n!
=

∞∑

n=1

nE(k)
n–1(x)

tn

n!
. (22)

Therefore by (21) and (22) we obtain the following theorem.

Theorem 2 For n ∈N, we have

E(k)
n–1(x) =

1
n

n∑

j=1

j∑

m=1

(
n
j

)
S1(j, m)

mk–1 En–j(x).

For m ∈N with m ≡ 1 (mod 2), we have

2
et + 1

ext =
2

1 + emt

m–1∑

i=0

(–1)ieitext (23)

=
m–1∑

i=0

(–1)i 2
emt + 1

e( i+x
m )mt

=
∞∑

n=0

(
mn

m–1∑

i=0

(–1)iEn

(
x + i
m

))
tn

n!
.
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By (4) and (23) we get the distribution relation

En(x) = mn
m–1∑

i=0

(–1)iEn

(
x + i
m

)
, (24)

where m ∈N with m ≡ 1 (mod 2), and n ≥ 0.
For x ∈ N, we have

2
x–1∑

i=0

(–1)ieitEik
(
log(1 + t)

)
= 2

x–1∑

i=0

(–1)i
∞∑

l=0

il tl

l!

∞∑

j=1

(log(1 + t))j

jk(j – 1)!
(25)

=
∞∑

l=0

2
x–1∑

i=0

(–1)iil tl

l!

∞∑

m=1

m∑

j=1

S1(m, j)
jk–1

tm

m!

=
∞∑

n=1

(
2

n∑

m=1

m∑

j=1

x–1∑

i=0

(–1)iin–m
(

n
m

)
S1(m, j)

jk–1

)
tn

n!
.

On the other hand, we also have

2
x–1∑

i=0

(–1)ieitEik
(
log(1 + t)

)
=

2Eik(log(1 + t))
et + 1

(
(–1)x–1ext + 1

)
(26)

=
∞∑

n=0

(
(–1)x–1G(k)

n (x) + G(k)
n

) tn

n!
.

Therefore by (25) and (26) we obtain the following theorem.

Theorem 3 For x, n ∈N, we have

(–1)x–1G(k)
n (x) + G(k)

n = 2
n∑

m=1

m∑

j=1

x–1∑

i=0

(–1)iin–m
(

n
m

)
S1(m, j)

jk–1 .

Note that, for k = 1, we have

(–1)x–1G(1)
n (x) + G(1)

n = 2n
x–1∑

i=0

(–1)iin–1.

Corollary 2 For x, n ∈N, we have

(–1)x–1E(k)
n–1(x) + E(k)

n–1 =
2
n

n∑

m=1

m∑

j=1

x–1∑

i=0

(–1)iin–m
(

n
m

)
S1(m, j)

jk–1 .

Note that

(–1)x–1E(1)
n–1(x) + E(1)

n–1 = 2
x–1∑

i=0

(–1)iin–1 (n, x ∈N).
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For m ∈N with m ≡ 1 (mod 2), we note that

2
Eik(log(1 + t))

et + 1
ext (27)

=
1
m

m–1∑

s=0

(–1)se( s+x
m )mt 2mt

emt + 1
1
t

Eik
(
log(1 + t)

)

=
∞∑

l=0

ml–1
m–1∑

s=0

(–1)sGl

(
s + x

m

)
tl

l!
1
t

∞∑

j=1

(log(1 + t))j

jk(j – 1)!

=
∞∑

l=0

ml–1
m–1∑

s=0

(–1)sGl

(
s + x

m

)
tl

l!
1
t

∞∑

i=1

i∑

j=1

S1(i, j)
jk–1

ti

i!

=
∞∑

l=0

ml–1
m–1∑

s=0

(–1)sGl

(
s + x

m

)
tl

l!

∞∑

i=0

i+1∑

j=1

1
jk–1

S1(i + 1, j)
i + 1

ti

i!

=
∞∑

n=0

( n∑

l=0

(
n
l

)
ml–1

n–l+1∑

j=1

m–1∑

s=0

(–1)sGl

(
s + x

m

)
1

jk–1
S1(n – l + 1, j)

n – l + 1

)
tn

n!
.

Therefore by (27) we obtain the following theorem.

Theorem 4 For n ≥ 0 and m ∈N with m ≡ 1 (mod 2), we have

G(k)
n (x) =

n∑

l=0

(
n
l

)
ml–1

n–l+1∑

j=1

m–1∑

s=0

(–1)sGl

(
s + x

m

)
1

jk–1
S1(n – l + 1, j)

n – l + 1
.

From Theorem 4 we have

G(k)
n (x)
n

=
1
n

n∑

l=1

(
n
l

)
ml–1

n–l+1∑

j=1

m–1∑

s=0

(–1)sGl

(
s + x

m

)
1

jk–1
S1(n – l + 1, j)

n – l + 1

=
1
n

n–1∑

l=0

(
n

l + 1

)
ml

n–l∑

j=1

m–1∑

s=0

(–1)sGl+1

(
s + x

m

)
1

jk–1
S1(n – l, j)

n – l

=
n–1∑

l=0

(
n – 1

l

)
ml

n–l∑

j=1

m–1∑

s=0

(–1)s Gl+1( s+x
m )

l + 1
1

jk–1
S1(n – l, j)

n – l

=
n–1∑

l=0

(
n – 1

l

)
ml

n–l∑

j=1

m–1∑

s=0

(–1)sEl

(
s + x

m

)
1

jk–1
S1(n – l, j)

n – l
,

where n, m ∈ N with m ≡ 1 (mod 2). Thus we obtain the important corollary, which will
be used in deriving the reciprocity law in Theorem 9.

Corollary 3 For n, m ∈N with m ≡ 1 (mod 2), we have

E(k)
n–1(x) =

n–1∑

l=0

(
n – 1

l

)
ml

n–l∑

j=1

m–1∑

s=0

(–1)sEl

(
s + x

m

)
1

jk–1
S1(n – l, j)

n – l
.
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Note that

E(1)
n–1(x) = mn–1

m–1∑

s=0

(–1)sEn–1

(
s + x

m

)
,

where n, m ∈N with m ≡ 1 (mod 2).
For p, s ∈N with s < p, we have

ds

dxs

(
xE(k)

p (x)
)|x=1 = s!

(
p
s

)
E(k)

p–s(1) + s!
(

p
s – 1

)
E(k)

p–s+1(1). (28)

On the other hand, by (18) we get

ds

dxs

(
xE(k)

p (x)
)|x=1 = s!

p∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
E(k)

ν . (29)

Therefore by (28) and (29) we obtain the following lemma.

Lemma 1 For p, s ∈N with s < p, we have

p∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
E(k)

ν =
(

p
s

)
E(k)

p–s(1) +
(

p
s – 1

)
E(k)

p–s+1(1).

In particular, for k = 1 and p, s ∈ N with p ≡ 1 (mod 2) and s ≡ 0 (mod 2), we have

p∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
Eν =

(
p
s

)
Ep–s(1) = –

(
p
s

)
Ep–s.

Note that

∫ 1

0
xE(k)

p (x) dx =
1

p + 1
E(k)

p+1(1) –
1

p + 1

∫ 1

0
E(k)

p+1(x) dx (30)

=
1

p + 1
E(k)

p+1(1) –
1

(p + 1)(p + 2)
(
E(k)

p+2(1) – E(k)
p+2

)
.

On the other hand, from (18) we have

∫ 1

0
xE(k)

p (x) dx =
p∑

ν=0

(
p
ν

)
E(k)

ν

∫ 1

0
xp–ν+1 dx (31)

=
p∑

ν=0

(
p
ν

)
E(k)

ν

p – ν + 2
.

Therefore by (30) and (31) we obtain the following lemma.

Lemma 2 For p ∈N, we have

p∑

ν=0

(
p
ν

)
E(k)

ν

p – ν + 2
=

1
p + 1

E(k)
p+1(1) –

1
(p + 1)(p + 2)

E(k)
p+2(1) +

1
(p + 1)(p + 2)

E(k)
p+2.
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In particular, for p ∈ N with p ≡ 1 (mod 2) and k = 1, we get

p∑

ν=0

(
p
ν

)
Eν

p – ν + 2
=

2
(p + 1)(p + 2)

Ep+2.

3 Poly-Dedekind type DC sums
The Dedekind type DC sums are defined by

Tp(h, m) = 2
m–1∑

μ=1

(–1)μ
μ

m
Ep

(
hμ

m

)
(h, m ∈N), (32)

where Ep(x) is the pth Euler function (see [13, 22]).
For p ∈ N with p ≡ 1 (mod 2) and relative prime positive integers m, h with m ≡

1 (mod 2) and h ≡ 1 (mod 2), the reciprocity law of Tp(h, m) is given by

mpTp(h, m) + hpTp(m, h)

= 2
∑

μ

(
mh

(
E +

μ

m

)
+ m

(
E + h –

[
hμ

m

]))p

+ (hE + mE)p + (p + 2)Ep,

where μ runs over all integers satisfying 0 ≤ μ ≤ m – 1 and μ – [ hμ

m ] ≡ 1 (mod 2), and

(hE + mE)p =
p∑

l=0

(
p
l

)
hlElhlmp–lEp–l.

For the rest of our discussion, we assume that k is any integer. In light of (32), we define
the poly-Dedekind-type DC sums by

T (k)
p (h, m) = 2

m–1∑

μ=1

(
μ

m

)
(–1)μE(k)

p

(
hμ

m

)
, (33)

where h, m, p ∈N, and E(k)
p are the poly-Euler functions

E(k)
p (x) = E(k)

p
(
x – [x]

)
.

By (32) and (33) we get

T (1)
p (h, m) = 2

m–1∑

μ=1

(–1)μ
(

μ

m

)
Ep

(
μ

m

)
= Tp(h, m). (34)

Let us take h = 1. Then we have

T (k)
p (1, m) = 2

m–1∑

μ=0

(–1)μ
(

μ

m

) p∑

ν=0

(
p
ν

)(
μ

m

)p–ν

E(k)
ν (35)
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=
p∑

ν=0

(
p
ν

)
E(k)

ν m–(p–ν+1)

(
2

m–1∑

μ=1

(–1)μμp–ν+1

)
.

Assume that m ∈N with m ≡ 1 (mod 2). Then, by (7) and (35) we get

T (k)
p (1, m) =

p∑

ν=0

(
p
ν

)
E(k)

ν m–(p+1–ν)(Ep+1–ν(m) + Ep+1–ν

)
(36)

=
p∑

ν=0

(
p
ν

)
E(k)

ν m–(p+1–ν)

(p+1–ν∑

i=0

(
p + 1 – ν

i

)
mp+1–ν–iEi + Ep+1–ν

)

=
p∑

ν=0

(
p
ν

)
E(k)

ν m–(p+1–ν)
p–ν∑

i=0

(
p – ν + 1

i

)
mp+1–ν–iEi

+ 2
p∑

ν=0

(
p
ν

)
E(k)

ν Ep+1–νm–(p+1–ν).

From (36) we have

mpT (k)
p (1, m) =

p∑

ν=0

(
p
ν

)
E(k)

ν

p–ν∑

i=0

(
p – ν + 1

i

)
mp–iEi + 2

p∑

ν=0

(
p
ν

)
E(k)

ν Ep+1–νmν–1. (37)

Let us define S(k)
p (1, m) as

mpT (k)
p (1, m) – 2

p∑

ν=0

(
p
ν

)
E(k)

ν Ep+1–νmν–1 = S(k)
p (1, m), (38)

where p, m ∈N with m ≡ 1 (mod 2).
Therefore, by (37) and (38) we obtain the following theorem.

Theorem 5 For m, p ∈N with m ≡ 1 (mod 2), we have

S(k)
p (1, m) =

p∑

ν=0

(
p
ν

)
E(k)

ν

p–ν∑

i=0

(
p – ν + 1

i

)
Eimp–i. (39)

Now, we assume that p ≥ 3 is an odd integer, so that Ep–1 = 0. Interchanging the order
of summation in (39), we have

S(k)
p (1, m) =

p∑

i=0

p–i∑

ν=0

(
p
ν

)(
p – ν + 1

i

)
E(k)

ν Eimp–i (40)

=
p–2∑

i=1

p–i∑

ν=0

(
p
ν

)(
p – ν + 1

i

)
E(k)

ν Eimp–i +
(

p + 1
p

)
Ep

+
p∑

ν=0

(
p
ν

)
E(k)

ν mp +
1∑

ν=0

(
p
ν

)
E(k)

ν

(
p – ν + 1

p – 1

)
Ep–1m

=
p–2∑

i=1

p–i∑

ν=0

(
p
ν

)(
p – ν + 1

i

)
E(k)

ν Eimp–i + (p + 1)Ep +
p∑

ν=0

(
p
ν

)
E(k)

ν mp
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=
p–2∑

i=1

p–i∑

ν=0

(
p
ν

)(
p – ν + 1

i

)
E(k)

ν Eimp–i + (p + 1)Ep + mpE(k)
p (1).

Therefore we obtain the following theorem.

Theorem 6 For m ∈ N with m ≡ 1 (mod 2) and p ≡ 1 (mod 2) with p > 1, we have

S(k)
p (1, m) =

p–2∑

i=1

p–i∑

ν=0

(
p
ν

)(
p – ν + 1

i

)
E(k)

ν Eimp–i + (p + 1)Ep + mpE(k)
p (1).

In other words, we have

mpT (k)
p (1, m) (41)

=
p–2∑

i=1

p–i∑

ν=0

(
p
ν

)(
p – ν + 1

i

)
E(k)

ν Eimp–i + (p + 1)Ep + mpE(k)
p (1)

+ 2
p∑

ν=0

(
p
ν

)
E(k)

ν Ep+1–νmν–1.

We observe that

p∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
E(k)

ν =
p–s+1∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
E(k)

ν (42)

=
p–s∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
E(k)

ν +
(

p
s – 1

)
E(k)

p–s+1.

From (42) and Lemma 1 we have

p–s∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
E(k)

ν (43)

=
p∑

ν=0

(
p – ν + 1

s

)(
p
ν

)
E(k)

ν –
(

p
s – 1

)
E(k)

p–s+1

=
(

p
s

)
E(k)

p–s(1) +
(

p
s – 1

)
E(k)

p–s+1(1) –
(

p
s – 1

)
E(k)

p–s+1.

By (43) we get

p–2∑

i=1

p–i∑

ν=0

(
p
ν

)(
p – ν + 1

i

)
E(k)

ν Eimp–i (44)

=
p–2∑

i=1

(
p
i

)
E(k)

p–i(1)Eimp–i +
p–2∑

i=1

(
p

i – 1

)(
E(k)

p–i+1(1) – Ep–i+1
)
Eimp–i.
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From (41) and (44) we note that

mpT (k)
p (1, m) (45)

=
p–2∑

i=1

(
p
i

)
E(k)

p–i(1)Eimp–i +
p–2∑

i=1

(
p

i – 1

)(
E(k)

p–i+1(1) – E(k)
p–i+1

)
Eimp–i

+ (p + 1)Ep + mpE(k)
p (1) + 2

p∑

ν=0

(
p
ν

)
E(k)

ν Ep+1–νmν–1.

It is easy to show that

E(k)
1 (1) – E(k)

1 = 1. (46)

By (45) and (46) we get

mpT (k)
p (1, m) (47)

=
p∑

i=0

(
p
i

)
E(k)

p–i(1)Eimp–i +
p∑

i=1

(
p

i – 1

)(
E(k)

p–i+1(1) – E(k)
p–i+1

)
mp–iEi

+ 2
p∑

ν=0

(
p
ν

)
E(k)

ν Ep+1–νmν–1.

Therefore by (47) we obtain the following theorem.

Theorem 7 For m ∈ N with m ≡ 1 (mod 2) and p ≡ 1 (mod 2) with p > 1, we have

mpT (k)
p (1, m)

=
p∑

i=0

(
p
i

)
E(k)

p–i(1)Eimp–i +
p∑

i=1

(
E(k)

p–i+1(1) – E(k)
p–i+1

)
mp–iEi

(
p

i – 1

)

+ 2
p∑

ν=0

(
p
ν

)
E(k)

ν Ep+1–νmν–1.

Now we employ the symbolic notations En(x) = (E + x)n, E(k)
n (x) = (E(k) + x)n (n ≥ 0).

Then we first observe that

mp
m–1∑

μ=0

(–1)μ
p∑

s=0

(
p
s

)
hsE(k)

s

(
μ

m

)
Ep–s

(
h –

[
hμ

m

])
(48)

= mp
m–1∑

μ=0

(–1)μ
(

h
(

E(k) +
μ

m

)
+

(
E + h –

[
hμ

m

]))p

= mp
m–1∑

μ=0

(–1)μ
(

hE(k) + E + h +
1
2

–
1
2

+ hμm–1 –
[

hμ

m

])p

= mp
m–1∑

μ=0

(–1)μ
(

hE(k) + E + h +
1
2

+ E1

(
hμ

m

))p

.
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Assume that h, m are relatively prime positive integers. Then, as the index μ ranges over
the values μ = 0, 1, 2, . . . , m – 1, the product hμ does over a complete residue system mod-
ulo m, and due to the periodicity of E1(x), the term E1( hμ

m ) may be replaced by E1( μ

m )
without alternating the sum over μ.

For m ∈N with m ≡ 1 (mod 2), by (48) and (24) we get

mp
m–1∑

μ=0

(–1)μ
p∑

s=0

(
p
s

)
hsE(k)

s

(
μ

m

)
Ep–s

(
h –

[
hμ

m

])
(49)

= mp
m–1∑

μ=0

(–1)μ
(

hE(k) + h + E +
1
2

+ E1

(
μ

m

))p

= mp
m–1∑

μ=0

(–1)μ
(

h
(
E(k) + 1

)
+ E +

μ

m

)p

= mp
m–1∑

μ=0

(–1)μ
p∑

s=0

(
p
s

)(
E +

μ

m

)s

hp–s(E(k) + 1
)p–s

= mp
m–1∑

μ=0

(–1)μ
p∑

s=0

(
p
s

)
Es

(
μ

m

)
hp–sE(k)

p–s(1)

=
p∑

s=0

(
p
s

)
mp–s

(
ms

m–1∑

μ=0

(–1)μEs

(
μ

m

))
hp–sE(k)

p–s(1)

=
p∑

s=0

(
p
s

)
(mh)p–sEsE(k)

p–s(1).

Therefore by (48) and (49) we obtain the following theorem.

Theorem 8 For h, m, p ∈N with (h, m) = 1 and m ≡ 1 (mod 2), we have

mp
m–1∑

μ=0

(–1)μ
p∑

s=0

(
p
s

)
hsE(k)

s

(
μ

m

)
Ep–s

(
h –

[
hμ

m

])

=
p∑

s=0

(
p
s

)
(mh)p–sEsE(k)

p–s(1).

From Corollary 3 we note that

E(k)
n (x) =

n∑

l=0

n+1–l∑

j=1

m–1∑

s=0

(
n
l

)
ml(–1)sEl

(
s + x

m

)
S1(n + 1 – l, j)
jk–1(n + 1 – l)

, (50)

where m ∈N with m ≡ 1 (mod 2), and n ≥ 0.
For m, h ∈N with m ≡ 1 (mod 2) and h ≡ 1 (mod 2), by (50) we get

mpT (k)
p (h, m) + hpT (k)

p (m, h) (51)

= 2mp
m–1∑

μ=0

μ

m
(–1)μE(k)

p

(
hμ

m

)
+ 2hp

h–1∑

ν=0

ν

h
(–1)νE(k)

p

(
mν

h

)
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= 2mp
m–1∑

μ=0

(–1)μ
μ

m

p∑

l=0

(
p
l

)
hl

h–1∑

ν=0

p+1–l∑

j=1

(–1)νEl

(
ν

h
+

μ

m

)
S1(p + 1 – l, j)
jk–1(p + 1 – l)

+ 2hp
h–1∑

ν=0

(–1)ν
ν

h

p∑

l=0

(
p
l

)
ml

m–1∑

μ=0

p+1–l∑

j=1

(–1)μEl

(
μ

m
+

ν

h

)
S1(p + 1 – l, j)
jk–1(p + 1 – l)

= 2
m–1∑

μ=0

(–1)μ
μ

m

p∑

l=0

mp–l(mh)l
(

p
l

) h–1∑

ν=0

p+1–l∑

j=1

(–1)νEl

(
μ

m
+

ν

h

)
S1(p – l + 1, j)
(p – l + 1)jk–1

+ 2
h–1∑

ν=0

(–1)ν
ν

h

p∑

l=0

hp–l(mh)l
(

p
l

) m–1∑

μ=0

p–l+1∑

j=1

(–1)μEl

(
ν

h
+

μ

m

)
S1(p – l + 1, j)
(p – l + 1)jk–1

= 2
m–1∑

μ=0

p∑

l=0

h–1∑

ν=0

p+1–l∑

j=1

(–1)μ+ν(μh)(mh)–1mp–l(mh)l
(

p
l

)
El

(
μ

m
+

ν

h

)
S1(p – l + 1, j)
(p – l + 1)jk–1

+ 2
m–1∑

μ=0

p∑

l=0

h–1∑

ν=0

p+1–l∑

j=1

(–1)μ+ν(νm)(mh)–1hp–l(mh)l
(

p
l

)
El

(
ν

h
+

μ

m

)
S1(p – l + 1, j)
(p – l + 1)jk–1

= 2
m–1∑

μ=0

p∑

l=0

h–1∑

ν=0

p+1–l∑

j=1

(–1)μ+ν
(mh)l–1(p

l
)
S1(p – l + 1, j)

(p – l + 1)jk–1

× (
(μh)mp–l + (νm)hp–l)El

(
ν

h
+

μ

m

)
.

Therefore by (51) we obtain the following reciprocity relation.

Theorem 9 For m, h, p ∈N with m ≡ 1 (mod 2) and h ≡ 1 (mod 2) and k ∈ Z, we have

mpT (k)
p (h, m) + hpT (k)

p (m, h)

= 2
m–1∑

μ=0

p∑

l=0

h–1∑

ν=0

p+1–l∑

j=1

(–1)μ+ν
(mh)l–1(p

l
)
S1(p – l + 1, j)

(p – l + 1)jk–1

× (
(μh)mp–l + (νm)hp–l)El

(
ν

h
+

μ

m

)
.

In case of k = 1, we obtain the following reciprocity relation for the Dedekind type DC
sums.

Corollary 4 For m, h, p ∈ N with m ≡ 1 (mod 2) and h ≡ 1 (mod 2), we have

mpTp(h, m) + hpTp(m, h)

= 2(mh)p–1
m–1∑

μ=0

h–1∑

ν=0

(–1)μ+ν(μh + νm)Ep

(
ν

h
+

μ

m

)
.
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4 Conclusions
The generalized Dedekind sums considered by Apostol are given by

Sp(h, m) =
m–1∑

μ=1

μ

m
Bp

(
hμ

m

)

and satisfy a reciprocity relation (see [1, 2]), where Bp(x) is the pth Bernoulli function.
Recently, the type 2 poly-Bernoulli polynomials of index k were defined in terms of the

polyexponential function of index k by

Eik(log(1 + t))
et – 1

ext =
∞∑

n=0

B(k)
n (x)

tn

n!
(k ∈ Z).

As a further extension of the generalized Dedekind sums, the poly-Dedekind sums de-
fined by

S(k)
p (h, m) =

m–1∑

μ=1

μ

m
B(k)

p

(
hμ

m

)

were considered and shown to satisfy a reciprocity relation in [16], where B(k)
p (x) = B(k)

p (x –
[x]) are the type 2 poly-Bernoulli functions of index k, and S(1)

p (h, m) = Sp(h, m).
The Dedekind-type DC sums defined by

Tp(h, m) = 2
m–1∑

μ=1

(–1)μ
μ

m
Ep

(
hμ

m

)

were introduced and shown to satisfy a reciprocity relation in [13], where Ep(x) is the
pth Euler function. Simsek found trigonometric representations of the Dedekind-type DC
sums and their relations to Clausen functions, polylogarithm function, Hurwitz zeta func-
tion, generalized Lambert series (G-series), and Hardy–Berndt sums.

In this paper, as a further generalization of the Dedekind type DC sums,we considered
the poly-Dedekind-type DC sums

T (k)
p (h, m) = 2

m–1∑

μ=1

(–1)μ
μ

m
E(k)

p

(
hμ

m

)

and showed, among other things, that they satisfy a reciprocity relation in Theorem 9.
Finally, we defined the Dedekind sums and their generalizations in terms of Bernoulli

functions and their generalizations and the Dedekind-type DC sums and their generaliza-
tions in terms of Euler functions and their generalizations.
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