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1 Introduction
Nonlocal boundary value problems have been extensively studied by many researchers.
One can witness the theoretical development and applications of this class of problems
in the related literature. The idea of nonlocal conditions dates back to the work of Hilb
[1]. However, Bitsadze and Samarskii [2] presented the systematic investigation of spatial
nonlocal problems. For motivation of nonlocal conditions, see [3, 4].

Fractional calculus, regarded as a generalization of classical calculus, deals with the
differential and integral operators of noninteger order. One can find a detailed account
of fractional-order differential equations in the monographs [5–9] and the references
therein. On the other hand, several interesting results on Hadamard-type fractional dif-
ferential equations, inclusions, and inequalities can be found in [10]. In [11], a monotone
iterative method was applied to study the existence of positive solutions for Hadamard
fractional differential equations complemented with nonlocal multi-point discrete and
Hadamard integral boundary conditions. For application of Hadamard fractional differ-
ential equations, we refer the reader to the papers [12, 13].

Boundary value problems involving systems of fractional differential equations have also
been studied by many researchers in view of their applications in the real world problems.
It prompted many investigators to explore the theoretical aspects of fractional differential
systems. For some recent results on Hadamard fractional differential systems, for instance,
see [14–19].
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Recently, in [20], the authors derived existence results for a Hadamard-type fractional
differential equation equipped with nonlocal initial condition given by

⎧
⎨

⎩

HDqx(t) = f (t, x(t)), 1 < t < T , 0 < q ≤ 1,

x(1) +
∑m

j=1 ζjx(tj) = 0,
(1)

where HDq denotes the Hadamard fractional derivative of order q, f : [1, T] × R → R, tj,
j = 1, 2, . . . , m are given points with 1 ≤ t1 ≤ · · · ≤ tm < T and ζj are real numbers such that

1 +
m∑

j=1

ζj �= 0.

The inclusions case of the problem (1) was also discussed in [20]. Problem (1) was stud-
ied for q = 1 in [21], for time scales setting in [22], and for Caputo fractional differential
equations in [23].

In the present paper, motivated by [20], we introduce and investigate the existence of
solutions for a coupled system of nonlinear Hadamard type fractional differential equa-
tions

⎧
⎨

⎩

HDpx(t) = f (t, x(t), y(t)), 1 < t < T ,
HDqy(t) = g(t, x(t), y(t)), 1 < t < T , 0 < p, q ≤ 1,

(2)

subject to nonlocal coupled initial-multipoint conditions:

⎧
⎨

⎩

x(1) +
∑m

j=1 αjy(tj) = 0,

y(1) +
∑m

j=1 βjx(tj) = 0,
(3)

where H Dp, HDq denote the Hadamard fractional derivatives of orders p and q, respec-
tively, f , g : [1, T] ×R

2 → R are Carathéodory functions, tj are given points with 1 ≤ t1 ≤
· · · ≤ tm < T , and αj, βj are real numbers such that 1 –

∑m
j=1 αj

∑m
j=1 βj �= 0.

Existence results for the system (2)–(3) are proved by applying fixed point theorems.
In Sect. 3, we discuss an existence result using the idea employed in [21–23], where the
growth condition is split into two subintervals: one containing the points involved in the
nonlocal condition, while the second deals with the rest of the interval. In Sect. 4, we
present two more results for the system (2)–(3): an existence and uniqueness result is
obtained by using Banach’s fixed point theorem, while Leray–Schauder alternative is em-
ployed to obtain an existence result by assuming a growth condition on f and g on the
whole interval.

2 Preliminaries
In this section, we introduce notation and definitions which are used throughout this
paper. Let X = {x(t) : x(t) ∈ C([1, T],R)} be endowed with the norm ‖x‖ = ‖x‖[1,T] =
maxt∈[1,T] |x(t)|. Obviously (X,‖ · ‖) is a Banach space. Also Y = {y(t) : y(t) ∈ C([1, T],R)}
endowed with the norm ‖y‖ = ‖y‖[1,T] = maxt∈[1,T] |y(t)| is a Banach space. Then the prod-
uct space (X × Y ,‖(x, y)‖) is also a Banach space equipped with the norm ‖(x, y)‖ =
‖x‖ + ‖y‖.
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We denote by L1([1, T],R) the Banach space of measurable functions x : [1, T] → R,
which are Lebesgue integrable, and normed by

‖x‖L1 =
∫ T

1

∣
∣x(t)

∣
∣dt for all x ∈ L1([1, T],R

)
.

Let us recall some basic definitions on fractional calculus.

Definition 1 The Hadamard derivative of fractional order q for a function g : [1,∞) →R

is defined as

HDqg(t) =
1

�(n – q)

(

t
d
dt

)n ∫ t

1

(

log
t
s

)n–q–1 g(s)
s

ds, n – 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q and log(·) = loge(·).

Definition 2 The Hadamard fractional integral of order q for a function g is defined as

Iqg(t) =
1

�(q)

∫ t

1

(

log
t
s

)q–1 g(s)
s

ds, q > 0,

provided the integral exists.

In order to define the solution of problem (2)–(3), we consider the following lemma,
concerning a linear variant of problem (2)–(3).

Lemma 1 Let h, k ∈ C([1, T],R) and Q := 1 –
∑m

j=1 αj
∑m

j=1 βj �= 0. Then the solution for the
linear system of fractional differential equations

⎧
⎨

⎩

HDpx(t) = h1(t), 1 < t < T ,
HDqy(t) = h2(t), 1 < t < T , 0 < p, q ≤ 1,

(4)

supplemented with nonlocal coupled initial-multipoint conditions in (3) is equivalent to
the integral equations

x(t) =
1

�(p)

∫ t

1

(

log
t
s

)p–1 h1(s)
s

ds –
1
Q

[ m∑

j=1

αj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 h2(s)
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 h1(s)
s

ds

]

(5)

and

y(t) =
1

�(q)

∫ t

1

(

log
t
s

)q–1 h2(s)
s

ds –
1
Q

[ m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 h1(s)
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 h2(s)
s

ds

]

. (6)
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Proof For some constant x0, y0 ∈ R, we have

x(t) =
1

�(p)

∫ t

1

(

log
t
s

)p–1 h1(s)
s

ds – x0,

y(t) =
1

�(q)

∫ t

1

(

log
t
s

)q–1 h2(s)
s

ds – y0.

(7)

Then, we obtain

x(tj) =
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 h1(s)
s

ds – x0,

y(tj) =
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 h2(s)
s

ds – y0.

(8)

Using (7) and (8) in the initial conditions (3), we obtain a system of equations in the un-
known constants x0 and y0 given by

⎧
⎨

⎩

x0 +
∑m

j=1 αjy0 = A1,
∑m

j=1 βjx0 + y0 = A2,
(9)

where

A1 =
m∑

j=1

αj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 h2(s)
s

ds,

A2 =
m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 h1(s)
s

ds.

(10)

Solving the system (9) for x0 and y0, we find that

x0 =
1
Q

[

A1 –
m∑

j=1

αjA2

]

, y0 =
1
Q

[

A2 –
m∑

j=1

βjA1

]

.

Substituting the values of x0 and y0 in (7), together with the notations (10), leads to the
solution (5) and (6). The converse can be proved by direct computation. The proof is com-
pleted. �

For convenience, we set

B = 1 + |η|
m∑

j=1

|αj|
m∑

j=1

|βj|, C = |η|
m∑

j=1

|αj|, D = |η|
m∑

j=1

|βj|, η =
1
Q

,

m1 =
B(log T)p

�(p + 1)
, m2 =

C(log T)q

�(q + 1)
, n1 =

B(log T)q

�(q + 1)
, n2 =

D(log T)p

�(p + 1)
, (11)

l1 =
B

�(p)

∫ T

1

(

log
T
s

)p–1 k1(s)
s

ds, l2 =
C

�(q)

∫ T

1

(

log
T
s

)q–1 k2(s)
s

ds,

l3 =
B

�(q)

∫ T

1

(

log
T
s

)q–1 k2(s)
s

ds, l4 =
D

�(p)

∫ T

1

(

log
T
s

)p–1 k1(s)
s

ds.
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3 Existence result with mixed growth condition
We assume that f , g : [1, T] ×R

2 →R are Carathéodory functions and prove an existence
result with mixed growth condition.

Definition 3 We say that f , g : [1, T] ×R
2 → R are L1-Carathéodory if

(i) t �−→ f (t, x, y), t �−→ g(t, x, y) are measurable for each (x, y) ∈R
2;

(ii) (x, y) �−→ f (t, x, y), (x, y) �−→ g(t, x, y) are continuous for almost all t ∈ [1, T];
(iii) For each μ > 0, there exist σμ,�μ ∈ L1([1, T],R+) such that |f (t, x, y)| ≤ σμ for

almost all t ∈ [1, T] and for all x, y ∈R
+ such that ‖x‖ ≤ μ, ‖y‖ ≤ μ, and

|g(t, x, y)| ≤ �μ for almost all t ∈ [1, T] and for all x, y ∈R
+ such that ‖x‖ ≤ μ,

‖y‖ ≤ μ.

In view of Lemma 1, we define an operator F : X × Y → X × Y by

F (x, y)(t) :=
(
F1(x, y)(t),F2(x, y)(t)

)
, (12)

where

F1(x, y)(t) =
1

�(p)

∫ t

1

(

log
t
s

)p–1 f (s, x(s), y(s))
s

ds

– η

[ m∑

j=1

αj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 g(s, x(s), y(s))
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 f (s, x(s), y(s))
s

ds

]

, t ∈ [1, T], (13)

and

F2(x, y)(t) =
1

�(q)

∫ t

1

(

log
t
s

)q–1 g(s, x(s), y(s))
s

ds

– η

[ m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 f (s, x(s), y(s))
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 g(s, x(s), y(s))
s

ds

]

, t ∈ [1, T]. (14)

Note that the operators F1 and F2 given by (13) and (14) appear as sums of two integral
operators: one of Fredholm type, whose values depend only on the restrictions of functions
to [1, tm] and which is given by

FF1 (x, y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�(p)

∫ t
1 (log t

s )p–1 f (s,x(s),y(s))
s ds

– η[
∑m

j=1αj
1

�(q)
∫ tj

1 (log
tj
s )q–1 g(s,x(s),y(s))

s ds

–
∑m

j=1 αj
∑m

j=1 βj
1

�(p)
∫ tj

1 (log
tj
s )p–1 f (s,x(s),y(s))

s ds], if t < tm,
1

�(p)
∫ tm

1 (log tm
s )p–1 f (s,x(s),y(s))

s ds

– η[
∑m

j=1αj
1

�(q)
∫ tj

1 (log
tj
s )q–1 g(s,x(s),y(s))

s ds

–
∑m

j=1 αj
∑m

j=1 βj
1

�(p)
∫ tj

1 (log
tj
s )p–1 f (s,x(s),y(s))

s ds], if t ≥ tm,
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and the other of Volterra type, defined by

FV1 (x, y)(t) =

⎧
⎨

⎩

0 if t < tm,
1

�(p)
∫ t

tm
(log t

s )p–1 f (s,x(s),y(s))
s ds, if t ≥ tm,

depending on the restriction of function to [tm, T].
Similarly, F2 = FF2 + FV2 , where

FF2 (x, y)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�(q)

∫ t
1 (log t

s )q–1 g(s,x(s),y(s))
s ds

– η[
∑m

j=1βj
1

�(p)
∫ tj

1 (log
tj
s )p–1 f (s,x(s),y(s))

s ds

–
∑m

j=1 αj
∑m

j=1 βj
1

�(q)
∫ tj

1 (log
tj
s )q–1 g(s,x(s),y(s))

s ds], if t < tm,
1

�(q)
∫ tm

1 (log tm
s )q–1 g(s,x(s),y(s))

s ds

– η[
∑m

j=1βj
1

�(p)
∫ tj

1 (log
tj
s )p–1 f (s,x(s),y(s))

s ds

–
∑m

j=1 αj
∑m

j=1 βj
1

�(q)
∫ tj

1 (log
tj
s )q–1 g(s,x(s),y(s))

s ds], if t ≥ tm,

and the Volterra type operator is defined by

FV2 (x, y)(t) =

⎧
⎨

⎩

0 if t < tm,
1

�(q)
∫ t

tm
(log t

s )q–1 g(s,x(s),y(s))
s ds, if t ≥ tm.

This allows us to split the growth condition on the nonlinear terms f (t, x, y) and g(t, x, y)
into two parts, namely, for t ∈ [1, tm] and t ∈ [tm, T].

Theorem 1 Assume that
(H1) f , g : [1, T] ×R

2 →R are L1-Carathéodory functions;
(H2) There exist continuous functions ω1, ω2 nondecreasing in their second argument,

k ∈ L1[tm, T], and nondecreasing functions 
1,
2 : R+ →R
+ such that

∣
∣f (t, x, y)

∣
∣ =

⎧
⎨

⎩

ω1(t, |x|, |y|), if t ∈ [1, tm],

k(t)
1(|x|, |y|), if t ∈ [tm, T],
(15)

∣
∣g(t, x, y)

∣
∣ =

⎧
⎨

⎩

ω2(t, |x|, |y|), if t ∈ [1, tm],

k(t)
2(|x|, |y|), if t ∈ [tm, T];
(16)

(H3) There exists R0 > 0 such that

ρ > R0 
⇒ B + D
�(p)

∫ tm

1

(

log
tm

s

)p–1
ω1(s, |ρ1|, |ρ2|)

s
ds

+
B + C
�(q)

∫ tm

1

(

log
tm

s

)q–1
ω2(s, |ρ1|, |ρ2|)

s
ds < ρ;
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(H4) lim supR→∞
R

�1+�2
> 1, where

�1 =
B + D
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
ds

+ 
1(R, R)
1

�(p)

∫ T

tm

(

log
T
s

)p–1 k(s)
s

ds, (17)

�2 =
B + C
�(q)

∫ tm

1

(

log
t
s

)q–1
ω2(s, R0, R0)

s
ds

+ 
2(R, R)
1

�(q)

∫ T

tm

(

log
t
s

)q–1 k(s)
s

ds. (18)

Then, problem (2)–(3) has at least one solution on [1, T].

Proof We show that the solutions of (2)–(3) are a priori bounded. Let (x, y) be a solution.
Then, for t ∈ [1, tm], we have

∣
∣x(t)

∣
∣ =

∣
∣λF1(x, y)(t)

∣
∣

= λ

∣
∣
∣
∣
∣

1
�(p)

∫ t

1

(

log
t
s

)p–1 f (s, x(s), y(s))
s

ds

– η

[ m∑

j=1

αj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 g(s, x(s), y(s))
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 f (s, x(s), y(s))
s

ds

]∣
∣
∣
∣
∣

≤ 1
�(p)

∫ tm

1

(

log
tm

s

)p–1 |f (s, x(s), y(s))|
s

ds

+ |η|
[ m∑

j=1

|αj| 1
�(q)

∫ tm

1

(

log
tj

s

)q–1 |g(s, x(s), y(s))|
s

ds

+
m∑

j=1

|αj|
m∑

j=1

|βj| 1
�(p)

∫ tm

1

(

log
tj

s

)p–1 |f (s, x(s), y(s))|
s

ds

]

≤ B
1

�(p)

∫ tm

1

(

log
tm

s

)p–1
ω1(s, |x(s)|, |y(s)|)

s
ds

+ C
1

�(q)

∫ tm

1

(

log
tm

s

)q–1
ω2(s, |x(s)|, |y(s)|)

s
ds,

which, on taking the supremum for t ∈ [1, tm], yields

‖x‖[1,tm] ≤ B
�(p)

∫ tm

1

(

log
tm

s

)p–1
ω1(s,‖x‖[1,tm],‖y‖[1,tm])

s
ds

+
C

�(q)

∫ tm

1

(

log
tm

s

)q–1
ω2(s,‖x‖[1,tm],‖y‖[1,tm])

s
ds. (19)
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Similarly,

‖y‖[1,tm] ≤ B
�(q)

∫ tm

1

(

log
tm

s

)q–1
ω2(s,‖x‖[1,tm],‖y‖[1,tm])

s
ds

+
D

�(p)

∫ tm

1

(

log
tm

s

)p–1
ω1(s,‖x‖[1,tm],‖y‖[1,tm])

s
ds. (20)

Let ρ1 = ‖x‖[1,tm], ρ2 = ‖y‖[1,tm]. Then from (19) and (20), we deduce

⎧
⎨

⎩

ρ1 ≤ B
�(p)

∫ tm
1 (log tm

s )p–1 ω1(s,ρ1,ρ2)
s ds + C

�(q)
∫ tm

1 (log tm
s )q–1 ω2(s,ρ1,ρ2)

s ds,

ρ2 ≤ B
�(q)

∫ tm
1 (log tm

s )q–1 ω2(s,ρ1,ρ2)
s ds + D

�(p)
∫ tm

1 (log tm
s )p–1 ω1(s,ρ1,ρ2)

s ds.

Then

ρ = ρ1 + ρ2

≤ B + D
�(p)

∫ tm

1

(

log
tm

s

)p–1
ω1(s, |ρ1|, |ρ2|)

s
ds

+
B + C
�(q)

∫ tm

1

(

log
tm

s

)q–1
ω2(s, |ρ1|, |ρ2|)

s
ds.

Then, assumption (H3) guarantees that

ρ ≤ R0. (21)

Next, we let t ∈ [tm, T]. Then

∣
∣x(t)

∣
∣ =

∣
∣λF1(x, y)(t)

∣
∣

= λ

∣
∣
∣
∣
∣

1
�(p)

∫ t

1

(

log
t
s

)p–1 f (s, x(s), y(s))
s

ds

– η

[ m∑

j=1

αj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 g(s, x(s), y(s))
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 f (s, x(s), y(s))
s

ds

]∣
∣
∣
∣
∣

≤ 1
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
dt

+ |η|
[ m∑

j=1

|αj| 1
�(q)

∫ tj

1

(

log
tj

s

)q–1
ω2(s, R0, R0)

s
dt

+
m∑

j=1

|αj|
m∑

j=1

|βj| 1
�(p)

∫ tj

1

(

log
tj

s

)p–1
ω1(s, R0, R0)

s
dt

]

+
1

�(p)

∫ t

tm

(

log
t
s

)p–1 k(s)
1(|x(s)|, |y(s)|)
s

ds
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≤ B
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
ds +

C
�(q)

∫ tm

1

(

log
t
s

)q–1
ω2(s, R0, R0)

s
ds

+
1

�(p)

∫ t

tm

(

log
t
s

)p–1 k(s)
1(|x(s)|, |y(s)|)
s

ds

≤ B
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
ds +

C
�(q)

∫ tm

1

(

log
t
s

)q–1
ω2(s, R0, R0)

s
ds

+ 
1
(‖x‖[tm ,T],‖y‖[tm ,T]

) 1
�(p)

∫ T

tm

(

log
T
s

)p–1 k(s)
s

ds,

and consequently,

‖x‖[tm ,T]

≤ B
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
ds +

C
�(q)

∫ tm

1

(

log
t
s

)q–1
ω2(s, R0, R0)

s
ds

+ 
1
(‖x‖[tm ,T],‖y‖[tm ,T]

) 1
�(p)

∫ T

tm

(

log
T
s

)p–1 k(s)
s

ds.

Similarly,

∣
∣y(t)

∣
∣

≤ B
�(q)

∫ tm

1

(

log
t
s

)q–1
ω2(s, R0, R0)

s
ds +

D
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
ds

+ 
2
(‖x‖[tm ,T],‖y‖[tm ,T]

) 1
�(q)

∫ T

tm

(

log
t
s

)q–1 k(s)
s

ds

and

‖y‖[tm ,T]

≤ B
�(q)

∫ tm

1

(

log
t
s

)q–1
ω2(s, R0, R0)

s
ds +

D
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
ds

+ 
2
(‖x‖[tm ,T],‖y‖[tm ,T]

) 1
�(q)

∫ T

tm

(

log
t
s

)q–1 k(s)
s

ds.

Then we have

‖x‖[tm ,T] + ‖y‖[tm ,T]

≤ B + D
�(p)

∫ tm

1

(

log
t
s

)p–1
ω1(s, R0, R0)

s
ds +

B + C
�(q)

∫ tm

1

(

log
t
s

)q–1
ω2(s, R0, R0)

s
ds

+ 
1
(‖x‖[tm ,T],‖y‖[tm ,T]

) 1
�(p)

∫ T

tm

(

log
T
s

)p–1 k(s)
s

ds

+ 
2
(‖x‖[tm ,T],‖y‖[tm ,T]

) 1
�(q)

∫ T

tm

(

log
t
s

)q–1 k(s)
s

ds

= �1 + �2
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and

‖x‖[tm ,T] + ‖y‖[tm ,T]

�1 + �2
≤ 1. (22)

Now (H4) implies that there exists R∗ > 0 such that for all R > R∗, we have

R
�1 + �2

> 1. (23)

Comparing inequalities (22) and (23), we find that

‖x‖[tm ,T] + ‖y‖[tm ,T] ≤ R∗.

Let γ = max{R0, R∗}. We have ‖x‖[1,T] ≤ γ and ‖y‖[1,T] ≤ γ . It follows from (H1) that
there exist σγ ,�γ ∈ L1([1, T],R+) such that |f (t, x, y)| ≤ σγ and |g(t, x, y)| ≤ �γ for almost
all t ∈ [1, T].

The operator F : Bγ → C[1, T] is continuous and completely continuous. Indeed, F is
continuous in view of (H1), and for complete continuity, we remark that the operator is
uniformly bounded as

∣
∣F1

(
x(t), y(t)

)∣
∣ =

∣
∣
∣
∣
∣

1
�(p)

∫ t

1

(

log
t
s

)p–1 f (s, x(s), y(s))
s

ds

– η

[ m∑

j=1

αj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 g(s, x(s), y(s))
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 f (s, x(s), y(s))
s

ds

]∣
∣
∣
∣
∣

≤ 1
�(p)

∫ T

1

(

log
T
s

)p–1
σγ

s
ds

+ |η|
[ m∑

j=1

|αj| 1
�(q)

∫ T

1

(

log
T
s

)q–1
�γ

s
ds

+
m∑

j=1

|αj|
m∑

j=1

|βj| 1
�(p)

∫ T

1

(

log
T
s

)p–1
σγ

s
ds

]

≤ B
1

�(p)

∫ T

1

(

log
T
s

)p–1
σγ

s
ds + C

1
�(q)

∫ T

1

(

log
T
s

)q–1
�γ

s
ds.

Similarly,

∣
∣F2

(
x(t), y(t)

)∣
∣ ≤ B

�(q)

∫ T

1

(

log
T
s

)q–1
�γ

s
ds +

D
�(p)

∫ T

1

(

log
T
s

)p–1
σγ

s
ds,

and it is equicontinuous since

∣
∣F1

(
x(ν2), y(ν2)

)
– F1

(
x(ν1), y(ν1)

)∣
∣

=
∣
∣
∣
∣

1
�(p)

∫ ν1

1

[(

log
ν2

s

)p–1

–
(

log
ν1

s

)p–1] f (s, x(s), y(s))
s

ds
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+
1

�(p)

∫ ν2

ν1

(

log
ν2

s

)p–1 f (s, x(s), y(s))
s

ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

1
�(p)

∫ ν1

1

[(

log
ν2

s

)p–1

–
(

log
ν1

s

)p–1]
σγ

s
ds

+
1

�(p)

∫ ν2

ν1

(

log
ν2

s

)p–1
σγ

s
ds

∣
∣
∣
∣.

Similarly,

∣
∣F2

(
x(ν2), y(ν2)

)
– F2

(
x(ν1), y(ν1)

)∣
∣

≤
∣
∣
∣
∣

1
�(q)

∫ ν1

1

[(

log
ν2

s

)q–1

–
(

log
ν1

s

)q–1]
�γ

s
ds

+
1

�(q)

∫ ν2

ν1

(

log
ν2

s

)q–1
�γ

s
ds

∣
∣
∣
∣,

where 1 < ν1 < ν2 < T . Hence, by the Leray–Schauder alternative [24], we deduce that the
operator F has a fixed point in Bγ , which is a solution of problem (2)–(3). The proof is
completed. �

4 Further existence and uniqueness results
In the next theorem, we prove the uniqueness of solutions for problem (2)–(3) via Banach’s
fixed point theorem.

Theorem 2 Let f , g : [1, T] × R
2 → R be jointly continuous functions and satisfy the as-

sumption
(K1) There exist constants L1, L2 > 0 such that ∀t ∈ [1, T] and xε , yε ∈R, ε = 1, 2,

∣
∣f (t, x1, y1) – f (t, x2, y2)

∣
∣ ≤ L1

(|x1 – y1| + |x2 – y2|
)
,

∣
∣g(t, x1, y1) – g(t, x2, y2)

∣
∣ ≤ L2

(|x1 – y1| + |x2 – y2|
)
.

Then, problem (2)–(3) has a unique solution on [1, T] if � < 1, where

� = L1(m1 + n1) + L2(m2 + n2). (24)

Proof Let us define M1, M2 as finite numbers given by

M1 = sup
t∈[1,T]

∣
∣f (t, 0, 0)

∣
∣, M2 = sup

t∈[1,T]

∣
∣g(t, 0, 0)

∣
∣,

and show that FBr ⊂ Br , where Br = {(x, y) ∈ C[1, T]2 : ‖(x, y)‖ ≤ r} with

r >
M1(m1 + n2) + M2(m2 + n2)

1 – �
.

For any (x, y) ∈ Br , t ∈ [1, T], using (K1), we get

∣
∣f (t, x, y)

∣
∣ =

∣
∣f (t, x, y) – f (t, 0, 0) + f (t, 0, 0)

∣
∣
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≤ ∣
∣f (t, x, y) – f (t, 0, 0)

∣
∣ +

∣
∣f (t, 0, 0)

∣
∣

≤ L1
(∣
∣x(t)

∣
∣ +

∣
∣y(t)

∣
∣
)

+ M1 ≤ L1
(‖x‖ + ‖y‖) + M1 ≤ L1r + M1.

Similarly, we can establish that |g(t, x, y)| ≤ L2r + M2. Then

∥
∥F1(x, y)

∥
∥

≤ 1
�(p)

∫ t

1

(

log
t
s

)p–1 |f (s, x(s), y(s))|
s

ds

+ |η|
[ m∑

j=1

|αj| 1
�(q)

∫ tj

1

(

log
tj

s

)q–1 |g(s, x(s), y(s))|
s

ds

+
m∑

j=1

|αj|
m∑

j=1

|βj| 1
�(p)

∫ tj

1

(

log
tj

s

)p–1 |f (s, x(s), y(s))|
s

ds

]

≤ (L1r + M1)
�(p)

[∫ t

1

(

log
t
s

)p–1 ds
s

+ |η|
m∑

j=1

|αj|
m∑

j=1

|βj|
∫ tj

1

(

log
tj

s

)p–1 ds
s

]

+
(L2r + M2)

�(q)

[

|η|
m∑

j=1

|αj|
∫ tj

1

(

log
tj

s

)q–1 ds
s

]

≤ (L1r + M1)
�(p + 1)

[

(log T)p + |η|(log T)p
m∑

j=1

|αj|
m∑

j=1

|βj|
]

+
(L2r + M2)
�(q + 1)

[

|η|(log T)q
m∑

j=1

|αj|
]

= (L1m1 + L2m2)r + m1M1 + m2M2.

Similarly, we can find that

∥
∥F2(x, y)

∥
∥ ≤ (L1n1 + L2n2)r + n1M1 + n2M2.

Consequently, in view of (24), we get

∥
∥F (x, y)

∥
∥ ≤ �r + M1(m1 + n1) + M2(m2 + n2) ≤ r,

which shows that FBr ⊂ Br .
Now, for any (x1, y1), (x2, y2) ∈ C[1, T]2 and for each t ∈ [1, T], we obtain

∥
∥F1(x1, y1) – F1(x2, y2)

∥
∥

≤ 1
�(p)

∫ t

1

(

log
t
s

)p–1∣
∣f

(
s, x1(s), y1(s)

)
– f

(
s, x2(s), y2(s)

)∣
∣ds

s

+ |η|
[ m∑

j=1

|αj| 1
�(q)

∫ tj

1

(

log
tj

s

)q–1∣
∣g

(
s, x1(s), y1(s)

)
– g

(
s, x2(s), y2(s)

)∣
∣ds

s

+
m∑

j=1

|αj|
m∑

j=1

|βj| 1
�(p)

∫ tj

1

(

log
tj

s

)p–1∣
∣f

(
s, x1(s), y1(s)

)
– f

(
s, x2(s), y2(s)

)∣
∣ds

s

]
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≤ L1
(‖x1 – x2‖ + ‖y1 – y2‖

)

× 1
�(p)

[∫ t

1

(

log
t
s

)p–1 ds
s

+ |η|
m∑

j=1

|αj|
m∑

j=1

|βj|
∫ tj

1

(

log
tj

s

)p–1 ds
s

]

+ L2
(‖x1 – x2‖ + ‖y1 – y2‖

) 1
�(q)

[

|η|
m∑

j=1

|αj|
∫ tj

1

(

log
tj

s

)q–1 ds
s

]

≤ L1
(‖x1 – x2‖ + ‖y1 – y2‖

) 1
�(p + 1)

[

(log T)p + |η|(log T)p
m∑

j=1

|αj|
m∑

j=1

|βj|
]

+ L2
(‖x1 – x2‖ + ‖y1 – y2‖

) 1
�(q + 1)

[

|η|(log T)q
m∑

j=1

|αj|
]

≤ [L1m1 + L2m2]
(‖x1 – x2‖ + ‖y1 – y2‖

)
.

Similarly, we find that

∥
∥F2(x1, y1) – F2(x2, y2)

∥
∥ ≤ [L1n1 + L2n2]

(‖x1 – x2‖ + ‖y1 – y2‖
)
.

Consequently, we get

∥
∥F (x1, y1) – F (x2, y2)

∥
∥ ≤ �

(‖x1 – x2‖ + ‖y1 – y2‖
)
,

which, by condition (24), implies that the operator F is a contraction. Hence the con-
clusion of Banach fixed point theorem applies, and consequently there exists a unique
solution for the problem (2)–(3). The proof is complete. �

In the following result, we make use of the Leray–Schauder nonlinear alternative.

Theorem 3 Assume that
(O1) f , g : [1, T] ×R

2 →R are jointly continuous functions;
(O2) There exist functions k1, k2 ∈ L1([1, T],R+) and nondecreasing functions �1,�2,

�1,�2 : R+ → R
+ such that |f (t, x, y)| ≤ k1(t)[�1(‖x‖) + �1(‖y‖)], |g(t, x, y)| ≤

k2(t)[�2(‖x‖) + �2(‖y‖)], for all (t, x, y) ∈ [1, T] ×R
2.

(O3) There exists a constant S > 0 such that

S
(l1 + l4)[�1(S) + �1(S)] + (l2 + l3)[�2(S) + �2(S)]

> 1,

where hi, i = 1, 2, 3, 4 are defined by (11).
Then problem (2)–(3) has at least one solution on [1, T].

Proof We show the boundedness of the set of all solutions to equations (x, y) = λF (x, y)
for λ ∈ [0, 1]. For that, let (x, y) be a solution of (x, y) = λF (x, y) for λ ∈ [0, 1]. Then, for
t ∈ [1, T], we have

∣
∣x(t)

∣
∣ =

∣
∣λF1(x, y)(t)

∣
∣

= λ

∣
∣
∣
∣
∣

1
�(p)

∫ t

1

(

log
t
s

)p–1 f (s, x(s), y(s))
s

ds
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– η

[ m∑

j=1

αj
1

�(q)

∫ tj

1

(

log
tj

s

)q–1 g(s, x(s), y(s))
s

ds

–
m∑

j=1

αj

m∑

j=1

βj
1

�(p)

∫ tj

1

(

log
tj

s

)p–1 f (s, x(s), y(s))
s

ds

]∣
∣
∣
∣
∣

≤ 1
�(p)

∫ T

1

(

log
t
s

)p–1 k1(s)[�1(‖x‖) + �1(‖y‖)]
s

ds

+ |η|
[ m∑

j=1

|αj| 1
�(q)

∫ tj

1

(

log
tj

s

)q–1 k2(s)[�2(‖x‖) + �2(‖y‖)]
s

ds

+
m∑

j=1

|αj|
m∑

j=1

|βj| 1
�(p)

∫ tj

1

(

log
tj

s

)p–1 k1(s)[�1(‖x‖) + �1(‖y‖)]
s

ds

]

≤ B
[
�1

(‖x‖) + �1
(‖y‖)] 1

�(p)

∫ T

1

(

log
T
s

)p–1 k1(s)
s

ds

+ C
[
�2

(‖x‖) + �2
(‖y‖)] 1

�(q)

∫ T

1

(

log
T
s

)q–1 k2(s)
s

ds

≤ l1
[
�1

(‖x‖) + �1
(‖y‖)] + l2

[
�2

(‖x‖) + �2
(‖y‖)].

Similarly, we have

∣
∣y(t)

∣
∣ ≤ l3

[
�2

(‖x‖) + �2
(‖y‖)] + l4

[
�1

(‖x‖) + �1
(‖y‖)].

For each t ∈ [1, T], we obtain

‖x‖ ≤ l1
[
�1

(‖x‖) + �1
(‖y‖)] + l2

[
�2

(‖x‖) + �2
(‖y‖)]

and

‖y‖ ≤ l3
[
�2

(‖x‖) + �2
(‖y‖)] + l4

[
�1

(‖x‖) + �1
(‖y‖)].

Hence we obtain

∥
∥(x, y)

∥
∥ = ‖x‖ + ‖y‖

≤ (l1 + l4)
[
�1

(‖x‖) + �1
(‖y‖)] + (l2 + l3)

[
�2

(‖x‖) + �2
(‖y‖)],

which implies that

‖(x, y)‖
(l1 + l4)[�1(‖x‖) + �1(‖y‖)] + (l2 + l3)[�2(‖x‖) + �2(‖y‖)]

≤ 1.

In view of (O3), there exists S such that (x, y) �= S. Let us set

U =
{

(x, y) ∈ X × Y :
∥
∥(x, y)

∥
∥ < S

}
.

As in the proof (last step) of Theorem 1, it can be shown that the operator F : U → X
is continuous and completely continuous. From the choice of U , there is no (x, y) ∈ ∂U
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such that (x, y) = λF (x, y) for some λ ∈ (0, 1). Consequently, by the nonlinear alternative of
Leray–Schauder, we deduce that F has a fixed point (x, y) ∈ U , which is a solution of the
problem (2)–(3). This completes the proof. �

Example 1 Consider the following Hadamard-type nonlocal problem:

⎧
⎨

⎩

HD3/14x(t) = f (t, x(t), y(t)), 1 < t < e,
HD3/17y(t) = g(t, x(t), y(t)),

(25)

subject to the initial conditions:

⎧
⎨

⎩

x(1) +
∑4

j=1 αjy(tj) = 0,

y(1) +
∑4

j=1 βjx(tj) = 0.
(26)

Here, p = 3/14, q = 3/17, T = e, α1 = 1/3, α2 = 1/9, α3 = 1/27, α4 = 1/81, β1 = 2/3, β2 = 4/9,
β3 = 8/27, β4 = 16/81, t1 = 5/4, t2 = 3/2, t3 = 7/4, and t4 = 2. With the given data, the values
of B, C, D, m1, m2, n1, and n2 defined by (11) are found to be η = 6561/4691, B = 6561/4691,
C = 3240/4691, D = 10530/4691, m1 ≈ 1.529394, m2 ≈ 0.746878, n1 ≈ 1.512428, and n2 ≈
2.454584. In order to illustrate Theorem 2, we take

f
(
t, x(t), y(t)

)
=

1
19

√
168 + t4

( |x(t)|
1 + |x(t)| + tan–1 y(t)

)

+ cos 2t,

g
(
t, x(t), y(t)

)
=

1
7
√

323 + t2

(
x(t) + tan–1 x(t)

)
+

1√
676 + 99 + t2

( |y(t)|
1 + |y(t)| + sin 2t

)

.

Clearly, L1 = 1/247 as |f (t, x1, y1) – f (t, x2, y2)| ≤ 1
247 (|x1 – y1| + |y1 – y2|) and L2 = 1/126

as |g(t, x1, y1) – g(t, x2, y2)| ≤ 1
126 (|x1 – y1| + |y1 – y2|). Using the given data, we have � ≈

0.037723 < 1. Obviously, the hypotheses of Theorem 2 are satisfied. Hence, by the conclu-
sion of Theorem 2, there is a unique solution for the problem (25)–(26) on [1, e].

5 Conclusions
We have investigated the existence of solutions for a coupled system of Hadamard frac-
tional differential equations with nonlocal coupled initial-multipoint conditions. The ex-
istence result is based on the idea of splitting the growth conditions into two subintervals,
respectively containing the points involved in the nonlocal condition, and the rest of the
interval. We apply Leray–Schauder alternative to prove this result. On the other hand,
the uniqueness of solutions for the given problem is established by means of the contrac-
tion mapping principle. Our results are new and contribute to the existing literature on
nonlocal nonlinear Hadamard-type boundary value problems.
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