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Abstract
In this article, we present a necessary and sufficient condition under which sequences
are minimal completely monotonic.
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1 Introduction and the main results
We first recall some definitions and basic results on completely monotonic sequences and
minimal completely monotonic sequences.

Definition 1 ([20]) A sequence {μn}∞n=0 is called completely monotonic if

(–1)k�kμn ≥ 0, n, k ∈N0 := {0} ∪N, (1)

where

�0μn = μn (2)

and

�k+1μn = �kμn+1 – �kμn. (3)

Here in Definition 1, and throughout the paper, N is the set of all positive integers and
N0 is the set of all nonnegative integers.

Widder [25] defined a sub-class of the class of completely monotonic sequences.
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Definition 2 A sequence {μn}∞n=0 is called minimal completely monotonic if it is com-
pletely monotonic and if it will not be completely monotonic when μ0 is replaced by a
number less than μ0.

Regarding the relationships between completely monotonic sequences and minimal
completely monotonic sequences, in [6] the author proved that if the sequence {μn}∞n=0

is completely monotonic, then:
(1) for any m ∈N, the sequence {μn}∞n=m is minimal completely monotonic, and
(2) there exists one (then only one) number μ∗

0 such that the sequence

{
μ∗

0,μ1,μ2, . . .
}

is minimal completely monotonic.
Please note that the complete monotonicity of the sequence {μn}∞n=1 cannot guarantee

that there exists a number μ∗
0 such that the sequence

{
μ∗

0,μ1,μ2, . . .
}

(4)

is completely monotonic. In fact, if the sequence (4) is completely monotonic, then the
sequence {μn}∞n=1 should be minimal completely monotonic.

In [18] the authors showed that if the sequence {μn}∞n=0 is completely monotonic, then,
for any m ∈N0, the series

∞∑

j=0

(–1)j�jμm+1

converges and

μm ≥
∞∑

j=0

(–1)j�jμm+1. (5)

We also recall the following definition.

Definition 3 ([4]) A function f is said to be completely monotonic on an interval I , if
f ∈ C(I), has derivatives of all orders on Io (the interior of I) and for all n ∈ N0

(–1)nf (n)(x) ≥ 0, x ∈ Io. (6)

Here in Definition 3 C(I) is the space of all continuous functions on the interval I . The
class of all completely monotonic functions on the interval I is denoted by CM(I).

There is rich literature on completely monotonic functions and sequences, and their
applications. For more recent works, see, for example, [1–3, 5–19, 21–24].

For sequences to be interpolated by completely monotonic functions, Widder [25]
proved that there exists a function

f ∈ CM[0,∞)
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such that

f (n) = μn, n ∈N0

if and only if the sequence {μn}∞n=0 is minimal completely monotonic. From this we see
that the condition of minimal complete monotonicity is critical for a sequence {μn}∞n=0 to
be interpolated by a completely monotonic function on the interval [0,∞).

In this article, we shall further investigate on minimal completely monotonic sequences.
The main results of this article are as follows.

Theorem 4 Suppose that the sequence {μn}∞n=1 is completely monotonic and that the series

∞∑

j=0

(–1)j�jμ1 (7)

converges. Let

μ∗
0 :=

∞∑

j=0

(–1)j�jμ1. (8)

Then the sequence

{
μ∗

0,μ1,μ2,μ3, . . .
}

(9)

is minimal completely monotonic.

Remark 5 It should be noted that the condition: “the series

∞∑

j=0

(–1)j�jμ1 (10)

converges” in Theorem 4 cannot be dropped since the complete monotonicity of the se-
quence {μn}∞n=1 cannot guarantee the convergence of the series

∞∑

j=0

(–1)j�jμ1.

For example, let

μn =
1
n

, n ∈N.

We can verify that the sequence {μn}∞n=1 is completely monotonic and that

�jμ1 =
(–1)j

j + 1
.
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Hence

∞∑

j=0

(–1)j�jμ1 =
∞∑

j=0

1
j + 1

,

which is divergent.

Theorem 6 Suppose that the sequence {μn}∞n=0 is minimal completely monotonic. Then the
series

∞∑

j=0

(–1)j�jμ1 (11)

converges and

μ0 =
∞∑

j=0

(–1)j�jμ1. (12)

Theorem 7 A necessary and sufficient condition for the sequence {μn}∞n=0 to be minimal
completely monotonic is that the sequence {μn}∞n=1 is completely monotonic, the series

∞∑

j=0

(–1)j�jμ1 (13)

converges, and

μ0 =
∞∑

j=0

(–1)j�jμ1. (14)

2 Proof of the main results
Now we are in a position to prove the main results.

Proof of Theorem 4 By Theorem 11 in [18], we see that the sequence

{
μ∗

0,μ1,μ2,μ3, . . .
}

(15)

is completely monotonic. By Theorem 9 in [18], if a sequence

{μ0,μ1,μ2,μ3, . . .} (16)

is completely monotonic, then

μ0 ≥
∞∑

j=0

(–1)j�jμ1 = μ∗
0. (17)

Hence by the definition of minimal completely monotonic sequence, we know that the
sequence

{
μ∗

0,μ1,μ2,μ3, . . .
}

(18)
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is minimal completely monotonic. The proof of Theorem 4 is completed. �

Proof of Theorem 6 Since the sequence

{μ0,μ1,μ2,μ3, . . .} (19)

is completely monotonic, by Theorem 9 in [18], the series

∞∑

j=0

(–1)j�jμ1 (20)

converges and

μ0 ≥
∞∑

j=0

(–1)j�jμ1. (21)

By Theorem 11 in [18], we see that the sequence

{ ∞∑

j=0

(–1)j�jμ1,μ1,μ2,μ3, . . .

}

(22)

is completely monotonic. Since the completely monotonic sequence

{μ0,μ1,μ2,μ3, . . .} (23)

is minimal, we have

μ0 ≤
∞∑

j=0

(–1)j�jμ1. (24)

From (21) and (24), we get our conclusion. The proof of Theorem 6 is completed. �

Proof of Theorem 7 By the definition of completely monotonic sequence, Theorem 9 in
[18] and Theorem 6, we know that the condition is necessary. By Theorem 4, we see that
the condition is sufficient. The proof of Theorem 7 is thus completed. �

3 Conclusion
In this paper, we investigated properties of completely monotonic sequences. We have
proved a necessary condition for a sequence to be a minimal completely monotonic se-
quence. We also have presented a necessary and sufficient condition under which se-
quences are minimal completely monotonic.
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