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Abstract
In this paper, we study the eventual periodicity of the fuzzy max-type difference
equation xn =max{C, xn–m–k

xn–m
},n ∈ {0, 1, . . .}, wherem and k are positive integers, C and

the initial values are positive fuzzy numbers. Let the support
suppC = {t : C(t) > 0} = [C1,C2] of C. We show that: (1) if C1 > 1, then every positive
solution of this equation equals C eventually; (2) there exists a positive fuzzy number
C with C1 = 1 such that this equation has a positive solution which is not eventually
periodic; (3) if C2 ≤ 1, then this equation has a positive solution which is not
eventually periodic; (4) if C1 < 1 < C2, then every positive solution of the above
equation is not eventually periodic.

Keywords: Fuzzy max-type difference equation; Positive solution; Eventual
periodicity

1 Introduction
It is well known that difference equations and difference equation systems are often used
in the study of linear and nonlinear physical, physiological, and economical problems (for
instance, see [1, 2]). In the recent years, because the max operator has a great importance
in automatic control models (see [3, 4]), max-type difference equations and systems which
are a special type of difference equations and difference equation systems have attracted
the attention of many scholars (for instance, see [5–15]).

In [16], Mishev et al. proved that every solution of the difference equation

xn+1 = max

{
A,

xn

xn–1

}
, n ∈ N0 ≡ {0, 1, . . .},

is eventually periodic, where A ∈ R+ ≡ (0, +∞).
In [17], Fotiades and Papaschinopoulos studied the following max-type system of dif-

ference equations:

⎧⎨
⎩

xn = max{A, yn–1
xn–2

},
yn = max{B, xn–1

yn–2
},

n ∈ N0,
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with A, B ∈ R+ and showed that every positive solution of the above system is eventually
periodic.

Further, Su et al. [18] studied eventual periodicity of the following max-type system of
difference equations:

⎧⎨
⎩

xn = max{An, yn–1
xn–2

},
yn = max{Bn, xn–1

yn–2
},

n ∈ N0,

where An, Bn ∈ R+ are periodic sequences with period 2 and the initial values x–2, y–2,
x–1, y–1 ∈ R+ and showed that every solution of the above system is eventually periodic.

Recently there has been a growing interest in the study of fuzzy difference equations (for
instance, see [19–31]) because many models in biology, ecology, physiology physics, en-
gineering, economics, probability theory, genetics, psychology and resource management
are represented by these equations naturally. For example, fuzzy difference equations are
suitable in finance problems. Chrysafis et al. [32] studied the fuzzy difference equation of
finance. Their research is in finance which is about the alternative methodology to study
the time value of money. In [33], Deeba and Korvin studied the second-order linear dif-
ference equation

xn+1 = xn – ABxn–1 + C, n ∈ N0,

where A, B, C and the initial values x0, x–1 are fuzzy numbers. This fuzzy equation is a
linearized model of a nonlinear model which determines the carbon dioxide (CO2) level
in the blood.

In [34], Rahmana et al. studied the qualitative behavior of the following second-order
fuzzy rational difference equation:

xn+1 =
xn–1

A + Bxn–1xn
, n ∈ N0,

where A, B and the initial values x0, x–1 are positive fuzzy numbers.
In [35], Stefanidou and Papaschinopoulos studied the periodicity of the following fuzzy

max-difference equation:

zn+1 = max

{
A
zn

,
A

zn–1
, . . . ,

A
zn–k

}
, n ∈ N0,

and

zn+1 = max

{
A
zn

,
B

zn–1

}
, n ∈ N0,

where k ∈ N ≡ {1, 2, . . .}, A, B and the initial values zi (i ∈ Z(–k, 0)) are positive fuzzy num-
bers (where Z(a, b) ≡ {a, . . . , b} for any integers a, b with a ≤ b).

Furthermore, Stefanidou and Papaschinopoulos [36] studied the periodicity of the fol-
lowing fuzzy max-difference equation:

zn = max

{
A

zn–k
,

B
zn–m

}
, n ∈ N0,



Han et al. Advances in Difference Equations        (2020) 2020:673 Page 3 of 10

where A, B and the initial values zi (i ∈ Z(–d, 0)) with d = max{k, m} are positive fuzzy
numbers. In [37], the authors investigated the periodicity of the positive solutions of the
fuzzy max-difference equation

xn = max

{
1

xn–m
,

αn

xn–r

}
, n ∈ N0,

where k, m ∈ N, αn is a periodic sequence of positive fuzzy numbers and xi (i ∈ Z(–d, 0))
with d = max{r, m} are positive fuzzy numbers, and showed that, if max(suppαn) < 1, then
every positive fuzzy number solution of the above equation is eventually periodic with
period 2m.

Motivated by the above-mentioned studies for ordinary difference equations and corre-
sponding fuzzy difference equations, this paper is to study the eventual periodicity of the
following fuzzy max-difference equation:

xn = max

{
C,

xn–m–k

xn–m

}
, n ∈ N0, (1.1)

where m, k ∈ N, C and the initial values xi (i ∈ Z(–m – k, –1)) are positive fuzzy numbers.
The rest of this paper is organized as follows. We give some definitions and notations in

Sect. 2 and give the main results and their proofs of this paper in Sect. 3.

2 Preliminaries and definitions
For the convenience of the reader, we give the following definitions and notations.

(1) If A is a function from R = (–∞, +∞) into the interval [0, 1], then A is called a fuzzy
set.

(2) A fuzzy set A is said to be fuzzy convex if A(λt1 + (1 – λ)t2) ≥ min{A(t1), A(t2)} for
any λ ∈ [0, 1] and any t1, t2 ∈ R.

(3) A fuzzy set A is said to be normal if there exists some t ∈ R such that A(t) = 1.
(4) If A is a fuzzy set, then by a λ-cut of A (for any λ ∈ [0, 1]) we mean the set

Aλ = {t ∈ R : A(t) ≥ λ}.
It is well known that the λ-cuts of A determine the fuzzy set A. For a subset set B of R

we denote by B the closure of B.

Definition 2.1 (see [38]) We say that a fuzzy set A is a fuzzy number if it satisfies the
following conditions (i)–(iv):

(i) A is normal;
(ii) A is fuzzy convex;

(iii) A is upper semicontinuous;
(iv) The support of A, supp A =

⋃
λ∈(0,1] Aλ = {t : A(t) > 0} is compact.

It is clear that Aλ is a closed interval. A fuzzy number A is said to be positive if
min(supp A) > 0. Denote by F+ the set of all positive fuzzy numbers. If B ∈ R, then B is
a fuzzy number with Bλ = [B, B] for any λ ∈ [0, 1], which is said to be a trivial fuzzy num-
ber. By [38] we see that, for any λ ∈ (0, 1],

[xn]λ = max

{
[C]λ,

[xn–m–k]λ
[xn–m]λ

}
. (2.1)
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Proposition 2.1 In (2.1), let [xi]λ = [yi,λ, zi,λ] (i ∈ {n, n–m, n–m–k}) and [C]λ = [Cl,λ, Cr,λ]
for any λ ∈ (0, 1]. Then

⎧⎨
⎩

yn,λ = max{Cl,λ, yn–m–k,λ
zn–m,λ

},
zn,λ = max{Cr,λ, zn–m–k,λ

yn–m,λ
}.

(2.2)

Proof It follows from (2.1) that, for any λ ∈ (0, 1], we have

[yn,λ, zn,λ] = max

{
[Cl,λ, Cr,λ],

[yn–m–k,λ, zn–m–k,λ]
[yn–m,λ, zn–m,λ]

}
.

Let aλ, a′
λ ∈ [yn–m–k,λ, zn–m–k,λ], bλ, b′

λ ∈ [yn–m,λ, zn–m,λ], cλ, c′
λ ∈ [Cl,λ, Cr,λ] such that

yn,λ = max

{
cλ,

aλ

bλ

}
, zn,λ = max

{
c′
λ,

a′
λ

b′
λ

}
.

Then we obtain

yn,λ = max

{
cλ,

aλ

bλ

}
≥ max

{
Cl,λ,

yn–m–k,λ

zn–m,λ

}
≥ yn,λ,

zn,λ = max

{
c′
λ,

a′
λ

b′
λ

}
≤ max

{
Cr,λ,

zn–m–k,λ

yn–m,λ

}
≤ zn,λ,

from which it follows that

⎧⎨
⎩

yn,λ = max{Cl,λ, yn–m–k,λ
zn–m,λ

},
zn,λ = max{Cr,λ, zn–m–k,λ

yn–m,λ
}.

Proposition 2.1 is proven. �

Definition 2.2 A sequence of positive fuzzy numbers {xn}∞n=–m–k is said to be a positive
solution of Eq. (1.1) if it satisfies (1.1). {xn}∞n=–m–k is said to be eventually periodic with
period T if there exists M ∈ N such that xn+T = xn for all n ≥ M.

Proposition 2.2 Let xi ∈F+ (i ∈ Z(–m – k, –1)). Then there exists a unique positive solu-
tion {xn}∞n=–m–k of (1.1) with initial values xi (i ∈ Z(–m – k, –1)).

Proof The proof is similar to that of Proposition 3.1 of [39]. For any λ ∈ (0, 1], write

Cλ = [Cl,λ, Cr,λ] and [xi]λ = [yi,λ, zi,λ]
(
i ∈ Z(–m – k, –1),λ ∈ (0, 1]

)
, (2.3)

and {(yn,λ, zn,λ)}∞n=–m–k(λ ∈ (0, 1]) is the unique positive solution of the following system of
difference equations:

yn,λ = max

{
Cl,λ,

yn–m–k,λ

zn–m,λ

}
, zn,λ = max

{
Cr,λ,

zn–m–k,λ

yn–m,λ

}
(2.4)
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with initial values (yi,λ, zi,λ) (i ∈ Z(–m – k, –1)). Since C, xi ∈ F+ (i ∈ Z(–m – k, –1)), there
exist 0 ≤ P0 ≤ Q0 such that, for any λ1,λ2 ∈ (0, 1] with λ1 ≤ λ2, we have

P0 ≤ Cl,λ1 ≤ Cl,λ2 ≤ Cr,λ2 ≤ Cr,λ1 ≤ Q0,

P0 ≤ yi,λ1 ≤ yi,λ2 ≤ zi,λ2 ≤ zi,λ1 ≤ Q0
(
i ∈ Z(–m – k, –1)

)
.

It follows from (2.4) that, for any λ1,λ2 ∈ (0, 1] with λ1 ≤ λ2, we have

0 < P1 = max

{
P0,

P0

Q0

}

≤ y0,λ1 = max

{
Cl,λ1 ,

y–m–k,λ1

z–m,λ1

}

≤ y0,λ2 = max

{
Cl,λ2 ,

y–m–k,λ2

n–m,λ2

}

≤ z0,λ2 = max

{
Cr,λ2 ,

z–m–k,λ2

y–m,λ2

}

≤ z0,λ1 = max

{
Cr,λ1 ,

z–m–k,λ1

y–m,λ1

}

≤ max

{
Q0,

Q0

P0

}
= Q1.

It is easy to see that y0,λ, z0,λ are left continuous on λ ∈ (0, 1] (see [40]) and⋃
λ∈(0,1][y0,λ, z0,λ] ⊂ [P1, Q1] (i.e.,

⋃
λ∈(0,1][y0,λ, z0,λ] is compact). Hence [y0,λ, z0,λ] deter-

mines a unique x0 ∈F+ such that [x0]λ = [y0,λ, z0,λ] for all λ ∈ (0, 1] (see [40]).
Moreover, by mathematical induction on n, it is easy to show that: (1) 0 < yn,λ1 ≤ yn,λ2 ≤

zn,λ2 ≤ zn,λ1 (n ∈ N0); (2) yn,λ, zn,λ are left continuous for all n ∈ N0 and λ ∈ (0, 1]; (3) For
any n ∈ N0, there exist 0 < Pn+1 ≤ Qn+1 < +∞ such that

⋃
λ∈(0,1][yn,λ, zn,λ] ⊂ [Pn+1, Qn+1]

(i.e.,
⋃

λ∈(0,1][yn,λ, zn,λ] is compact). Hence by [40], Theorem 2.1, we see that [yn,λ, zn,λ] de-
termines a sequence {xn}∞n=–m–k of positive fuzzy numbers such that [xn]λ = [yn,λ, zn,λ] for
every n ∈ N0 and λ ∈ (0, 1], and by Proposition 2.1 we see that {xn}∞n=–m–k is the unique
positive solution of (1.1) with initial values xi (i ∈ Z(–m – k, –1)). The proof is complete. �

3 Main results
In the sequel, let {xn}∞n=–m–k be a positive solution of (1.1) with initial values xi ∈ F+ (i ∈
Z(–m – k, –1)). Let supp C = [C1, C2]. For any λ ∈ (0, 1], write

Cλ = [Cl,λ, Cr,λ], [xn]λ = [yn,λ, zn,λ].

Then it follows from Proposition 2.2 that {(yn,λ, zn,λ)}∞n=–m–k(λ ∈ (0, 1]) satisfies the follow-
ing system:

yn,λ = max

{
Cl,λ,

yn–m–k,λ

zn–m,λ

}
, zn,λ = max

{
Cr,λ,

zn–m–k,λ

yn–m,λ

}
, (3.1)

with initial values (yi,λ, zi,λ) (i ∈ Z(–m – k, –1)). From (3.1) one has, for any n ∈ N0,

yn,λ ≥ Cl,λ, zn,λ ≥ Cr,λ. (3.2)
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Theorem 3.1 If C1 > 1, then xn = C eventually.

Proof Write M = max{sup(supp xj) : j ∈ Z(0, m + k – 1)}. From (3.1), (3.2) and a simple in-
ductive argument we obtain the result that, for any i ∈ Z(0, m + k – 1) and n ∈ N,

Cl,λ ≤ yn(m+k)+i,λ = max

{
Cl,λ,

y(n–1)(m+k)+i,λ

zn(m+k)+i–m,λ

}
≤ max

{
Cl,λ,

y(n–1)(m+k)+i,λ

Cr,λ

}

≤ max

{
Cl,λ,

y(n–1)(m+k)+i,λ

C1

}
≤ · · · ≤ max

{
Cl,λ,

yi,λ

Cn
1

}

≤ max

{
Cl,λ,

M
Cn

1

}

and

Cr,λ ≤ zn(m+k)+i,λ = max

{
Cr,λ,

z(n–1)(m+k)+i,λ

yn(m+k)+i–m,λ

}
≤ max

{
Cr,λ,

z(n–1)(m+k)+i,λ

Cl,λ

}

≤ max

{
Cr,λ,

z(n–1)(m+k)+i,λ

C1

}
≤ · · · ≤ max

{
Cr,λ,

zi,λ

Cn
1

}

≤ max

{
Cr,λ,

M
Cn

1

}
.

Then there exists an N ∈ N such that M/Cn
1 < 1 for any n ≥ N , which implies yn(m+k)+i,λ =

Cl,λ and zn(m+k)+i,λ = Cr,λ for any n ≥ N and λ ∈ (0, 1] and i ∈ Z(0, m + k – 1). Then xn = C
eventually. The proof is complete. �

Theorem 3.2 There exists an C ∈ F+ with C1 = 1 such that (1.1) has a positive solution
which is not eventually periodic.

Proof Define C ∈F+ by

C(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t < 1,

2t – 2, 1 ≤ t ≤ 3
2 ,

4 – 2t, 3
2 ≤ t ≤ 2,

0, t > 2.

(3.3)

Define xi ∈F+ (i ∈ Z(–m – k, –1)) by

xi(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t < 1,

2t – 2, 1 ≤ t ≤ 3
2 ,

1, 3
2 ≤ t ≤ 2e,

0, t > 2e.

(3.4)

Then, for any n ∈ N,

C 1
n

=
[

1 +
1

2n
, 2 –

1
2n

]
, [xi] 1

n
= [yi, 1

n
, zi, 1

n
] =

[
1 +

1
2n

, 2e
] (

i ∈ Z(–m – k, –1)
)
.
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Write r = s(m + k) + i, s ∈ N0 (i ∈ Z(0, m + k – 1)). Note zj(m+k)+i–m, 1
n

≥ 1 for any 0 ≤ j ≤ s.
Then from (3.1) and a simple inductive argument we have

⎧⎪⎨
⎪⎩

1 + 1
2n ≤ yr, 1

n
= max{1 + 1

2n ,
yi–m–k, 1

n∏s
j=0 zj(m+k)+i–m, 1

n
} = 1 + 1

2n ,

2 – 1
2n ≤ zr, 1

n
= max{2 – 1

2n ,
zi–m–k, 1

n∏s
j=0 yj(m+k)+i–m, 1

n
} = max{2 – 1

2n , 2e
(1+ 1

2n )s+1 }.
(3.5)

Thus zn, 1
n

= 2e/(1 + 1
2n )s1+1 since (2 – 1/2n)(1 + 1

2n )s1+1 < (2 – 1/2n)(1 + 1
2n )2n < 2e, where

n = s1(m + k) + i. On the other hand, for any n ∈ N, there exists an N1(n) ∈ N such that
zr, 1

n
= 2 – 1

2n for every r ≥ N1(n) since lims−→∞ 2e/(1 + 1
2n )s = 0. Thus [xr] 1

n

= [xn] 1

n
for any

r > N1(n), which implies {xn}∞n=–m–k is not eventually periodic. The proof is complete. �

Theorem 3.3 If C2 ≤ 1, then there exists a positive solution {xn}∞n=–m–k of (1.1) such that
every xn > 1 is a trivial fuzzy number (n ≥ –m – k) and limn−→∞ xn = 1.

Proof We show that the following equation:

wn =
wn–m–k

wn–m
, n ∈ N0 (3.6)

has a decreasing solution which tends to 1. Indeed, we write

M1 =
{

(u1, . . . , um+k) : um+kuk+1 ≥ u1 ≥ · · · ≥ um+k ≥ 1
}

and

M2 =
{

(u1, . . . , um+k) : um+kuk ≥ u1 ≥ · · · ≥ um+k ≥ 1
}

.

Then M1 ⊂ M2 since for any (u1, . . . , um+k) ∈ M1, we have um+kuk+1 ≥ u1 ≥ · · · ≥ um+k ≥ 1
and um+kuk ≥ um+kuk+1 ≥ x1. Now we define T : M1 → M2, for any (u1, . . . , um+k) ∈ M1, by

T(u1, . . . , um+k) = (v1, . . . , vm+k) ≡
(

u2, . . . , um+k ,
u1

uk+1

)
. (3.7)

We show that T is well defined. Indeed, it follows from (3.7) and the definition of M1

that
⎧⎨
⎩

vi = ui+1, for i ∈ Z (1, . . . , m + k – 1),

vm+k = u1
uk+1

,
(3.8)

and

vm+kvk =
u1

uk+1
uk+1 = u1 ≥ u2 = v1 ≥ · · · ≥ vm+k–1 = um+k ≥ u1

uk+1
= vm+k ≥ 1.

Thus (v1, . . . , vm+k) ∈ M2.
Now we show that T is a bijection from M1 to M2. Indeed, let u = (u1, . . . , um+k), v =

(v1, . . . , vm+k) ∈ M1 with u 
= v. Then T(u) 
= T(v). On the other hand, for any v =
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(v1, . . . , vm+k) ∈ M2, we have

vm+kvk ≥ v1 ≥ · · · ≥ vm+k ≥ 1. (3.9)

Write

u = (u1, . . . , um+k) ≡ (vm+kvk , v1, . . . , vm+k–1). (3.10)

By (3.9) and (3.10) we have

um+kuk+1 = vm+k–1vk ≥ vm+kvk = u1 ≥ v1 = u2 ≥ · · · ≥ um+k = vm+k–1 ≥ 1,

which implies u ∈ M1 and by (3.7) we have T(u) = v.
Furthermore, since T–1(v1, . . . , vm+k) = (vm+kvk , v1, . . . , vm+k–1) is continuous, T is a home-

omorphism.
Noting that M1 ⊂ M2 and T is a homeomorphism from M1 onto M2, we see T–1(M1) ⊂

T–1(M2) = M1. By induction, it follows that, for every n ∈ N,

p = (1, 1, . . . , 1) ∈ T–n(M1) ⊂ T–n+1(M1).

Because M1 is a unbounded connected closed set, we see that T–n(M1) is a unbounded
connected closed set for every n ∈ N. Write

Q =
∞⋂

n=0

T–n(M1).

Then Q is also a unbounded connected set.
Let {wn}∞n=–k–m be a solution of (3.6) with the initial values (w–m–k , . . . , w–1) ∈ Q – {p}.

Then, for every n ∈ N,

Tn(w–k–m, . . . , w–1) = (wn–k–m, . . . , wn–1) ∈ M1 – {p},

which implies wn ≥ wn+1 > 1 for any n ≥ –k – m. Let limn−→∞ wn = a. Then by (3.6) we
have a = 1. It is easy to show that {(wn, wn)}∞n=–k–m is also a solution of (3.1) which is not
eventually periodic. Thus xn = wn is a solution of (1.1) such that every xn > 1 (n ≥ –m – k)
is a trivial fuzzy number and limn−→∞ xn = 1. The proof is complete. �

Theorem 3.4 If C1 < 1 < C2, then every positive solution {xn}∞n=–m–k of (1.1) is not eventu-
ally periodic.

Proof Since C1 < 1 < C2, we see Cl,λ1 < 1 < Cr,λ1 for some λ1 ∈ (0, 1]. For any λ ∈ (0,λ1], we
have

0 < Cl,λ ≤ Cl,λ1 < 1 < Cr,λ1 ≤ Cr,λ.
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Write M = max{sup(supp xj) : j ∈ Z(0, m + k – 1)}. From (3.1), (3.2) and a simple inductive
argument we obtain, for any i ∈ Z(0, m + k – 1) and s ∈ N0 and λ ∈ (0,λ1],

Cl,λ ≤ ys(m+k)+i,λ = max

{
Cl,λ,

y(s–1)(m+k)+i,λ

zs(m+k)+i–m,λ

}
≤ max

{
Cl,λ,

y(s–1)(m+k)+i,λ

Cr,λ

}

≤ max

{
Cl,λ,

y(s–1)(m+k)+i,λ

Cr,λ1

}
≤ · · · ≤ max

{
Cl,λ,

yi,λ

Cs
r,λ1

}

≤ max

{
Cl,λ,

M
Cs

r,λ1

}
.

Thus there exists an N ∈ N such that yn,λ = Cl,λ for any n ≥ N and λ ∈ (0,λ1] since
lims−→∞ M/Cs

r,λ1
= 0.

By (3.1) and (3.2) we see that, for any n ≥ m + N and λ ∈ (0,λ1],

zn,λ = max

{
Cr,λ,

zn–m–k,λ

Cl,λ

}
. (3.11)

If zn,λ = Cr,λ > zn–m–k,λ/Cl,λ for some n ∈ Z(m + N , m + N + m + k – 1), then by (3.11) we
obtain zn+s(m+k),λ = Cr,λ/Cs

l,λ for any s ∈ N0. If zn,λ = zn–m–k,λ/Cl,λ ≥ Cr,λ for some n ∈ Z (m +
N , m + N + m + k – 1), then by (3.11) we obtain zn+s(m+k),λ = zn–m–k,λ/Cs+1

l,λ for any s ∈ N0.
Thus limn−→∞ zn,λ = +∞. Furthermore, we see that {xn}∞n=–m–k is not eventually periodic.
The proof is complete. �
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