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Abstract

In this research article, we turn to studying the existence and different types of
stability such as generalized Ulam—-Hyers stability and generalized
Ulam-Hyers—Rassias stability of solutions for a new modeling of a boundary value
problem equipped with the fractional differential equation which contains the
multi-order generalized Caputo type derivatives furnished with four-point mixed
generalized Riemann-Liouville type integro-derivative conditions. At the end of the
current paper, we formulate two illustrative examples to confirm the correctness of
theoretical findings from computational aspects.
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1 Introduction

New versions of generalized fractional boundary problems have drawn much interest in
recent years owing to their extensive utilization in various directions of applied sciences
such as engineering, mechanics, potential theory, biology, chemistry, etc. (for example, re-
fer to [1-15]). Many researchers play an important role in different desirable developments
on the existence criteria, and some results about the uniqueness for numerous fractional
differential equations have been obtained (see for instance [7, 16—24]). On the other hand,
the subject of stability is a very important notion in physics since most phenomena in the
real world include this concept. In fact, the stability notion of physical phenomena has
an old historical context, and for the sake of such importance and applicability, one can
observe a lot of work in the numerous publications not only in the last century but also
before it (for example, refer to the references [25-33]). Besides, a considerable attention
has been given to reviewing and investigating Hyers—Ulam stability of different functional
differential and integral equations during recent decades (for example, see [34—42]).
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In 2016, Niyom et al. [21] formulated the following boundary value problem supple-
mented with Riemann-Liouville fractional derivatives of four different orders:

VDK (u(t)) + 1 = 2D (u(t)) = Y&, u(t), (tel0,T],k* €[1,2)),

1
w©0)=0,  uiD u(T)+(1-p)D%u(T) =8, ;

where A%, u3 € (0,1). One year later, Ntouyas et al. [23] reviewed some existence results for
the following boundary value problem furnished with multiple orders of mixed Riemann—
Liouville integro-derivative operators:

DX (@) + (1= 29D (u(®) = Y&, u®), (te€l0,T],k* €[1,2)),
w(0)=0,  3TMu(T)+ (1 - u3)I%u(T) =83,

where 1, u5 € (0,1).

In this position, by utilizing and mixing interesting ideas of the above-mentioned
manuscripts, we intend to check some specific aims about the existence of unique so-
lution and different types of stability for the following proposed four-point generalized
Caputo type BVP including multi-order fractional integro-derivative conditions of gener-
alized Riemann-Liouville type:

WFCCDE Cu(t) + CCD) ule) = Tt ut), (¢ € [0, TL K" € [2,3)),
u(ty) =0,
WDy, “u(T) + Dy “uln) = 51,

W3R (T + LG u(v) = 5y,

®3)

where v,n € [£y, T1,2< 0% <k*,0 <A, uf, w3 < 1,0 <y, v5 <k*—6%, 47,95 € RY, CCDZ)*'Q
stands for the left generalized Caputo type derivative of order g* € {k*,6%,y;", y,} with
0 €(0,1] and ¢y > 0, RCIZ)*’Q illustrates the left generalized Riemann—Liouville type inte-
gral of order g* € {q},q3}. Moreover, the map T : [y, T] x R — R is supposed to be con-
tinuous. We draw the reader’s attention to the fact that our proposed problem is unique.
The novelty of this research is that we have applied fractional generalized Caputo and
Riemann-Liouville type operators in such a multi-order structure for the first time, which
can cover some existing works as special cases. As a special case, if we take o = 1 and ¢y = 0,
then our multi-order fractional operators reduce to standard fractional operators in the
Caputo and Riemann-Liouville setting. The readers can find more details on the struc-
ture of new operators CCD&)Q and RCI;;)Q in the next section. In fact, we believe that this
work gives new ideas for other researchers to challenge themselves to study newer and
more complex models. Compared to previous published articles in this field, the strength
of this work is that the proposed construction can model different natural structures in
which the boundary conditions may be designed as mixed integro-derivative conditions.
It is natural that in such a case, simple modelings can satisfy as special cases in the context
of our existence theorems. In this research article, we turn to study the existence and dif-
ferent types of stability such as generalized Ulam—Hyers stability and generalized Ulam—
Hyers—Rassias stability of solutions for a new modeling of boundary value problem (3)
furnished with four-point mixed generalized Riemann-Liouville type integro-derivative
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conditions. The contents in this research manuscript are arranged as follows. In Sect. 2,
we review some fundamental and auxiliary notions and properties of fractional general-
ized Caputo and Riemann-Liouville type operators. In Sect. 3, the existence criteria of
solutions for multi-order problem (3) are investigated with the help of some theoretical
theorems based on the analytical methods. In Sect. 4, some results on different types of
stability of solutions for the proposed multi-order problem (3) are reviewed. At the end
of the current paper, two illustrative examples are formulated in Sect. 5 to confirm the
correctness of theoretical findings from computational aspects.

2 Preliminaries
Now, we review some fundamental and auxiliary notions and properties of generalized
Caputo and Riemann-Liouville type fractional operators. As we see in many literature

works, the fractional integral operator of Riemann-Liouville type of order k* > 0 for a
(t—r)k*_1
T
that the value of the integral is finite [5, 43]. Now, let us assume that k* € (n — 1, 1) so

continuous function w : [0, +00) — R is given by RIg*w(t) = fot w(r) dr provided
that n = [k*] + 1. For a given function w € AC% )([0, +00)), the Caputo fractional derivative
operator is defined as follows:

t (t - r)n—k*—l

Ty W
s

DE w(t) =

so that the right-hand side integral is finite-valued [5, 43]. The left generalized derivative
at the initial point £, for a function w: [£y, 00) — R with o € (0,1] is given as follows:

ME = t)19) —
DG )= tim M t;) ) - (@)

so that the value of limit is finite [44]. Furthermore, it is evident that Dt%w(t) = (t -

to)'=ew'(t) if w is a differentiable function. The definition of the left generalized inte-
gral of w with ¢ € (0, 1] is given in the following form: If; w(t) = ftg w(r)(r_[doﬁ whenever
the right-hand side integral has finite values [44]. Next, Jarad et al. [45] extended afore-
mentioned generalized operators to arbitrary orders in both Riemann-Liouville and Ca-
puto settings. To see this, we assume that k* € C with Re(k*) > 0. Then the generalized
Riemann-Liouville type fractional integral for a function w of order k* with o € (0,1] is

formulated as follows:

t k*

if the value of integral exists [45]. One can easily observe that if we take £, = 0 and ¢ = 1,
then RCIZ:’Q w(t) reduces to the standard operator named the Riemann-Liouville integral
RI{;* w(t). In addition, the generalized Riemann-Liouville type fractional derivative for a
function w of order k* with ¢ € (0,1] is illustrated as follows:

RCerO ,Qw(t) _ D:;Q (RCIZ)—k ,Qw)(t)

— D:l(;g t (t — tO)Q — (7‘ _ tO)Q n-k*-1 ( ) dr
_F(n—k*)/to( 0 ) W) e
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n times

_
provided that n = [Re(k*)] + 1and Dy = Dy Dy ... Dy, where Dy stands for the left gener-
alized derivative with ¢ € (0, 1] [45]. In a similar manner, it is obvious that if we take £y = 0
and o = 1, then RCDfO*’Qw(t) reduces to the standard operator named Riemann—Liouville
derivative *Dgw(¢). In this position, to formulate a similar concept in the Caputo setting,

we construct
Ly(to) = {(p : [s0,6] — R : It%go(s) exists for any s € [to,h]}
for o € (0,1] and set
]IU([to,b]) = {w: [0, 6] > R:w(t) = It%go(t) + w(ty) for some ¢ € Eg(to)},

where Ig)w(t) = ftg o(r)du(r, to) = ftg w(r)# is a left generalized integral of ¢ [46].
For n =1,2,..., we represent C;! ,([to, b]) := {w: [to,b] — R : D"_I’Qw e I,([to, b])}. Then
the generahzed Caputo type fractional derivative for a function w € Cy ,([t0, b]) of order

k* with o € (0, 1] is demonstrated by

D w(t) = RL 8 (Dipw) (1)

1 LE—t0)° = (r—10)°\"F T, dr
‘r<n—k*>/t0( 0 ) s

so that n = [Re(k*)] + 1 [45]. Evidently, CCD “w(t) = “DK w(t) if we take £, = 0 and o = 1.
In the sequel, some fundamental properties of generalized Caputo and Riemann-Liouville

type fractional operators can be regarded in two next lemmas.

Lemma 2.1 ([45]) Suppose that Re(k*) > 0, Re(w) > 0, and Re(B) > 0. Then, for o € (0,1]
and for any t > ty, the following four statements are valid:

(L1) RZ, (T w) (o) = <RCI"**”"9 w)(s),

(L2) RCIk Q(r 10)°P(2) = 4 w5 (2 — 10)2 D,

(L3) "Dy (t - to)° 0“()—9 i (7 — t0)2 P,

(L4) RCDk CRELTCw)(e) = (LT ™ 2w)(8), (Re(k™) < Re(w)).

Lemma 2.2 ([45]) Let n—1 < Re(k*) < nand w € C!" ([to,b]). Then, for ¢ € (0,1], we have

0,0
* * 1 DI W(t()) .
BT 2 (C“Dig P w) (&) = w(t) — T( ~ to)°.
j=0 '

In the light of the above lemma, one can verify that the general solution of the linear
homogeneous equation (CCDZ*’QW)(t) =0 is computed by
n-1
Zb} If - t() IQ = b() + bl(t t()) + bz(S - So)zg +--- 4+ bn_l(t - to)(n_l)g,
j=0

so that n — 1 < Re(k*) < m and by, by,...,b,_1 € R.
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Note that the following two theorems are utilized to derive the required existence cri-
teria of solutions for the proposed four-point generalized Caputo type fractional BVP
including multi-order fractional integro-derivative conditions of generalized Riemann—

Liouville type (3).

Theorem 2.3 ([47] Krasnoselskii’s fixed point theorem) Let M be a closed, bounded, con-
vex, and nonempty subset of a Banach space X,.. Moreover, the operators Ay and A; on M
are supposed with the following properties:

(@) Aju+ Aywe M forall u,w e M,

(b) Ay is compact and continuous,

(c) A, is a contraction.
Then there is z € M such that z = A1z + Ayz.

Theorem 2.4 ([48] Leray—Schauder’s nonlinear alternative) Let X, be a Banach space, B*
be a closed and convex subset of X, U be an open subset of C, and 0 € U. In addition, let
P :U — C be a continuous and compact map. Then either
(a) P has a fixed point in U, or
(b) there are an element u € OU (the boundary of U) and a constant t* € (0, 1) such that
u="1t"Pu).

3 Existence criteria of solutions

In this part of the manuscript, we verify some existence results by applying some analytical
techniques based on the fixed point theory. Let 0 < ¢, < T and take J = [£, T]. Then one
can easily confirm that X, = C2(J,R) is a Banach space of continuous mappings furnished
with the sup norm |[[u|| = sup,j u(¢)|. First, we formulate the structure of the solution
for the four-point multi-order generalized Caputo type fractional BVP as an equivalent

generalized Riemann-Liouville type fractional integral equation in the following lemma.

Lemma 3.1 Let Y € X,. Then a map ug is a solution for the four-point multi-order linear

generalized Caputo type fractional BVP

AFCEDE Pu(e) + CCD) Cult) = Y(8), (k€] k* € (2,3)),
u(ty) =0, /L’{CCDZ/OI Cu(T) + CCDZ? Cun) = 81, (4)
WL (D) + FCT () = 8,

if and only if i is a solution for the generalized Riemann—Liouville type integral equation

R Y ) e Gt A N dr
”(t)'xr(/ﬁ)/to( o ) YO ™

1 EO(E =) — (r—tp)e \K 01 i dr
AT (k* - 6%) -/t.o ( 0 ) Holr (r — to)1K+0°

t—1y)° *A Kk o A *A K_pk_ %
+( 0) |:N1 4RCIt]; VlygT(T)_Ml)L 4RCZ.t/; 6 Vl,QMO(T)

Ok A

Ay k*—y5.0 .4 Ay k*-0* -y 0 1294V *+k*0 4
+ ST, ) = 2T, T () - =TT ()

Page 5 of 31
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A K+ —6%, A *1k*,0 A
+N2 2RCIt0 +q7-0 QMO(T)——zRCIZ)2+ (1)
A A
(t—t)*®

@*

A Kk ok
+ TZRCI:) i v ,let()(l)) — 81A4 + A282i| +

*A Kk . *A K _pk_ o ¥
% |:_le 3RCI:; TR (T) + MI)L 3RCI:; 0 "8 (T

A *_y¥ o A k0% —y¥, *A k%0 A
__3RCI§) 0% () + 3RCItO 0*~y; ©o(n) + Mo LrC a1+ 24 (T)

A A A %
*A * %ok A * 1% o A
_ M 1RCI:; +41—0 ©uo(T) + _1RCIZ)2+’< )
A A
A ¥, k¥
- TIRCZZ:) 0 (0) + 81 Ag - 52A1} (5)
provided that
Ay = ol ————(T —t5)°3 1) 4 072 ——— (i — £)2172),
T -y) r2-y;)
Ay = MTQVI* #(T— tO)Q(Z—yl*) + QVZ* #(’7 _ tO)Q(Z—VZ*),
F@G-»" INCES2Y,
My 1 (1+q%) 1 (1+4%)
= (T —t)PW ) ¢ — (v 1)),
3 o I'(2+ q]*)( 0) 02 I'(2 +g3) (v —to)
*
4= M_Z*%(T — £)°2H 1) 4 L* #(v — £)°%H ),
0 T(3+q}) 02 I'(3+q3)
®* = A2A3 - A1A4. (6)

Proof At the beginning, let iz be a solution for the four-point multi-order linear gen-
eralized Caputo type fractional BVP (4). Then, according to the properties of fractional
generalized operators of both Riemann-Liouville and Caputo types, one can write

- 1 rerktoz 1 perki-6%0 - . ~
uy(t) = XRCL; °Y(@t) - XRCLO TG (D) + T+ Tt — t0)® + Tt — 1), (7)

where ¢f, ¢}, and ¢} are arbitrary constants. From the first condition, we get ¢} = 0. By
taking the generalized Caputo type derivative of order y € {y;, ¥;'}, we obtain

~ 1 *_y 0.0
(CCD;:;QMO)(t) — XRCl'tO yQT(t)

L perki-6*—y.0~ ~ 1 (1-y)
-5, i (8) + ;0" T2 ) (t-t)*"

2
+ 80" ———(t - 1)?*7). ®)
* TB-y)
Moreover, by taking the generalized Riemann—Liouville type integral of order g € {g7, 43},
we obtain

" 1 o0
(RCIZ;QME;)(t) — zRCIZ)+ ’QT(t)
~%

1 Ve —0% o~
_ _RCIto +q-6%0 (f) + Q_;F(2+q)

: (¢ - t0)9(1+q)
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ch 2
+2 (£~ 1), ©)
01T (3B +q)

By combining equations (8) and (9) with boundary conditions of four-point multi-order
BVP (3), we get

e 1
L7 A A3 — AA,
*A Kk o A *A
% My 4RCItk VvaT(T) 23t 4RCZ- -0*-y1'0 ~ 2 (T)
A 0 A
A
e ()
A
A *_gx_ AA
_%RCIZ; 0% =r3p i1 () — Mz 2Rch1+’< 23(T)
*A * k¥
+ :“2)L 2RCI:; +q1 -0 ,Q’T‘S(T)
A £ I 0 A A %, %ok
_ TZRCIZ)ZJFI( 'QT(U) + TZRCIZ; +q5—-0 ,Qﬁé(v) 8 Au+ A282:|
and
s 1
s
27 AgAs— ALA,
*A K_yk o A *A
XI:_:“l)L SRCIt]:) yl,QT(T) /»Ll)L SRCI/( -0* -y ~0(T)

AsRcIk -v5 25 ()
A

AB'RCIk -0"-y}0~ *( )+ IU“Z 1RCI‘11+k QT(T)
A

M*AI *+q*70*,Q~*
_ ZTRCIZ 1 MO(T)

A Sk 08 A
+ TIRCI:?”( ’Q U 1RCIk +q2 ey * V) +31A3 —82A1:|

Finally, if we substitute constants ¢ and ¢} and ¢; in (7), then we reach the generalized
Riemann-Liouville type integral equation (5). In the opposite direction, one can easily
verify that 7 is considered as a solution for the four-point multi-order linear generalized
Caputo type fractional BVP (4) whenever i satisfies the generalized Riemann—Liouville

type integral equation (5). O

Based on the implemented calculations in Lemma 3.1, we define the operator Fui X, —

X, in the following framework:

S 1 [t - (r 1)\ s dr
7o) = 5 f( ) ) 1o

t— 1) — (r—t5)2 \ 01 dr
e (U)o

t—t5)° [ A A s
+( ®>|<0) I:l/h)L 4RCIk -vie (T M(T)) _ :"Ll)L 4RCIt,:) 0 Jfvau(T)

Page 7 of 31
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Ay Rapc k*~0*~y.0

A k*
# LT (g, u) - ST, ()

w3 Ay k0 4
_ZTRCZ;Q* “Y(T,u(T))

*A %, %% A 1% oA
+ /J‘zk 2RCIt/; e oy - TZRCIZ)fk ’QT(v,u(v))

A2 k*+q*—9*,g
+ ke T u(v)
A 0

t—to)* A
—51A4 + A252:| + 7( @2) |: /’le SRCIk 1/1 (T M(T))

*A % _px_o %
+H1A BRCIt]; 60 yl,gu(T)

A K _pk ok
- DIRCLII (g, ) ¢ S2RCT

*A %% o A
» B22breglikieg o (1)

A
*A %, ko A k1K oA
_ —'U“Z)L 1RCI§) 0 ’Qu(T) + TIRCIZ)ZM 'QT(v,u(v))
A
IRCIk +q2 +51A3—52A1]

It is notable that the four-point multi-order generalized Caputo type fractional BVP (3)
has a solution i if and only if i is a fixed point for the self-map F,. For the sake of

convenience in writing, we utilize the following simplified notations:

Wi =

1 (T =)0\
AL (k* = 0% +1) o)

(T - t)° Wi A, —t)@ kot
|©%| | AC(k* —0* —y; +1)

+
AD(k* — 0% —yy + 1)

158 (T - t)@ ik
kF(q1+k* 0* +1)

Ay =12\ B (T - )
+ +— (11)
Al(gs + k¥ = 0% +1) o |©*

1A (T -t0)e\* "
X
AL(k* —0* —yf + 1) o

As (n—to)2\* "2
+
AL(k* —6* —y5 + 1) o

w3y (T = to)? \ 1"
)»I‘(q1 +k* 0* +1) o

Ay (v —to)2 \ 2"
+
Al(gs + k¥ = 0* +1) o
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and

Wy <CT—mW)“

AT (k* + 1) 0
(T - to)° [ ((T to) )k*-yf‘
+
@ [ Al(k* - J/1 +1)
Ag n—to)e\< "
)J'(k* —ys+1)

U3z (T —to)2 \ 1
)J‘(q1 +k*+1)

Ay (v —10)? \ 2
+
Al(gs + k*+ 1) 0

+(T—t0)29|: 10} As ((T—m)@)k”f‘
|©*| AD(k* —yf +1) 0

Az (- t0)2\X 2
+
AL(k* —y5 +1) o)
w3 A (T —to)2 \ 1™
}Ll"(q1 +k*+1) 0

Ay (v —1)? \ 2™
+AF(61§+/<*+1)< 0 ) } (12

Theorem 3.2 Let the real-valued mapping Y :J x X, — R be continuous and there be
a constant L, > 0 such that |?(t, u) — 'f(t, W) < Lylu—u| forallt e Jand u,u' € X,. If
LWy + Wi < 1, then the four-point multi-order linear generalized Caputo type fractional
BVP (3) has a unique solution, where Wy and W, are illustrated by (11) and (12).

Proof Put sup,; |’Ar(t, 0)| = N'* < 0o. We choose R* > 0 such that

|O*IN*W, + (T — t0)* (181 A3 + 182 A1) + (T = 19)° (181 Agl + [82A2])
|©%|(1 = LW, = W,)

<R%

where A;(j = 1,2,3,4) are illustrated by (6). Next, construct the set B, = {u € X, : [u| <
R*}. In this case, we verify that ]:"*B* + C Bx.. To observe this, for each u € B., we may

write
Foult)| < — /t<(t—t0)9_(r_t0)g)k*—1
=50 J, 5
(| ( (V)) | |T(F,O)D d(})’)l _
=5, t<(t_ (- to)g)k h
' Ar(k* _9*) to Q
|u(r)| dr (T - ty)°

+
—to)'e |©%|

Page 9 of 31
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y |:M1)\A4RCILIL*_)/1*:Q(|?(T’M(T)) _ Y(T,0)| + |Y(T,O)|)

* K _pk ok
sy e

A4 KXy
RC Yo 0
+—"" Ty (

- Y (n,u(m) = T(1,0)] + [T (n,0)])

Ay k¥ 0%y,
+ ==, ut)|

* * L% ~ A 2
+ LEB2RC I (15 (7, 4(7)) - (T, 0)] + | (T, 0)])

A
M*AZ *+q*—0*,g
+2TRCI§) 1 M(T)‘

. &RCI:?*"*’QUY(U, u(v)) = T(,0)] +|T(v,0)|)

A
Ay *+q5-6%, (T - tO)ZQ
+ TRCZ-Z:) R Q‘M(V” + 181 A4 + |A282|:| + 0]

5 [M1AA3RcIt/;*_yf,@(W(T’u(T)) - Y(T,0)| + | T(T,0)))

* K _pk ok
e B )

AS KXy
RC Y20
+ —""1, (

- T (n,u(n)) - T(n,0)| + | T(n,0)|)

Aj k* 0%y,
+ =T, 7 ut)|

. MZAIRCIZ)T”‘*’QHY(T,M(T)) _ Y(T,0)| + |f(T,0)|)

A
/JL*AI *rgt—0% 0
+2TRCI§) 1 M(T)‘

. %RCIZ?*"*’QUY(U, u(v)) = T(,0)] +|T(v,0)|)

Al K +qi—0%,
+ TRCLO TR ()| + 181451 + |52A1|i|

. (T - t)*®

< (Lollall + N*YWy + [[u] Wh + a (18183] + [82A11)

T —ty)°

AT
T - ty)%

S(E*W2+W1)R+N*W2+( |®*0|) (|81A3|+|52A1|)

T —ty)°

( |®*‘|’) (18184] + 18:42]) < R*.

Thus, we reach the inequality | Feuell < R*, which means that .7:"*83"{* C B In the next

stage, let us assume that u,u’ € X,. Forany t € J, one can write

| Fou(t) - Fotd (1)
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< 1 t((t — 1) — (r —t0)° )k*l
T AL(K*) Sy, o

d
< (T () =T ) ) o= s

s [ (e <r—to>e>k"-9*-l
ATk —6%) ), 0

dr + (T - t())g
(r—t)'-e O

* [%f (T (T, u(D) = T(1,4(T)))

X |u(r) - u’(r)|

N MT}LA4RCIZ*_9*_yva|u(T) _ MI(T)|
+ ST (5 (1, ) ~ F () )
¢ ST ) )|
N %RCIZ}‘H(*,QOT(T w(T)) - Y(T, 4/ (T))])

*A % k%
+ —sz 2RETS ) Ty — 4/ (T)|

e T

A %, Kok
+ TZRCIZ; i “u(v) - u’(v)|]

+ (T - tO)ZQ |:PL>1KA3RC

| Ty (P () - T (1))

*A H_pk ok
+—Mlx SRS (T — 1 (T)|

AsRCZJ‘ -5 (1T (1, u(m) =Y (0,4 ())])

A
A *_gk_yk ,
+ 2L ) -l )|

BRI | (1, (1) - F (1,7 )

* ® % *
+ —"ZAAIRCI; R (T — (T
AchIq§+k*vQ
# SRETER (1 (0, u0) T (v 09) )
+ %Rcli?q;_g*’g |u(v) - u’(v)|]

< (£*||u—u’H)W2+ ||u—u'||W1 :(,C*W2+W1)||u—u’n.

This represents || Fyu — Fod'|| < (L5 + Wh)||lu — i ||, which implies that F, is a contrac-

tion since £, V, + W) < 1. Hence, with due attention to the Banach principle, the operator
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F. hasa unique fixed point, which means that the four-point multi-order nonlinear gen-

eralized Caputo type fractional BVP (3) has a unique solution. d

Here, by applying another method based on Krasnoselskii’s fixed point theorem, we de-

rive another kind of existence criterion of solutions for the proposed problem (3).

Theorem 3.3 Consider a continuous map Y : ] x X, — R. Let there be a positive constant
L, so that an inequality 1Y (6 u) =Tt )| < Lolu—1] holds for any t € ] and u,u’ € X,. If
there exists V(t) € Cr+(J) provided that Y(t,u) < V(¢) for all (¢, u) €] x X, and LIV, <1,
then the four-point multi-order nonlinear generalized Caputo type fractional BVP (3) has
at least one solution. Note that W, is defined in (12).

Proof By setting ||V|| = sup,;|V(¢)| and choosing an appropriate constant r* > 0, con-

struct the nonempty set B, = {u € X, : ||lul| < r*}, where

|O*[IVIW, + (T — £6)* (181 As] + 182 A1]) + (T — £6)° (181 Aul +182A,]) <
[©*[(1 - W) -

and A1, Ay, Az, Ay, W1 and W, are given by (6), (11), and (12), respectively. For every ¢ € 7,

we consider two operators Fiand F, on B by the following defined rules:

A -1 t (£—10)° — (r—to)° K—g*_1 &
Fru(t) = AT (k* — 6%) -/to ( 0 ) u(r)m

(t _ to)é? M* A4 Kk A4 kg ¥,
n o _ lk RCIZ; " Qu(T) _ TRCZ{; V2 Qu(’?)

M*AZ *+q*79*,g AZ *+q*70*,9
+ 2)L RCItk0 1 u(T)"'TRCIZ:) 2 u(v)

(t —t0)® [ W As pe k6% —yio A3 oo K5 —0%—yF 0

+ —®* 1)\’ RCItO Y1 M(T) - RCItO Vo M(n)
*A K %ok A % k%

_ MZX IRCIZ; +q7-0 ’QM(T)— AIRCZI.{; +q,=0 ,Qu(\))i|

and

N S A i ) A dr
fzu(t%k[‘(k*)ﬁ( ’ ) T(r,u(r))—(r_to)l_g

— Q * * * "~ k% A
N (¢ @io) |:M1}LA4RCZ§) -y :QT(T, u(T)) N %RCL’; s '97(77,14(77))

/’L*AZ k%0 A AZ £ 1k*,0 A
- ZTRCIfg“ “Y(T,u(T)) - TRCZ;?* “T (v, u(v)) = 8144 + A232]

P 20 5 A *_y¥ o A A *—yi0 .4
+ %[_M}» PO, T (T, (D) = ST T (o)

A ETE PN A ETT L PN
¥ %Rczfo”k (T, (1)) + T““Ij{f” % (v, u(v)) + 8, A5 - szAl].
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In this position, we intend to prove that f"lu + .7:"214’ € Bl.. Let u,u’ € B}.. Then one can

write

| Fru(e) + Foud (2))|

- (T -0\ (T—to)°
_”u”[AFM*—9*+1)< 0 ) e

Wi A (T - )2\
X
AD(k* —60* —y + 1) o
k**e**y;
+
AT (k* - 9* -y + 1)( )
14589 (T - tw ik
M’(q1 +k*—0%+1)

Ay (v - )2\ 2
+
Al(qs + k* = 0* +1) o

(T - to)*@ 1Az (T -1\
|©®*| AF(k*—H*—yf+1) 0

As (n—to) "7
+
AL (k* — 60—y + 1) o
159N (T —t9)° )qT+k*_0*
)J‘(q1 +k* 0* +1) o
Ay (v —to)2 \ 2"
+
Al(gs + k¥ = 0* +1) 0
1 (T - t0)°
()

s (T - t)° Uiy (T -t0)°\*
|©*| AD(k* =y +1)

. Ay ((77 - to)g>
AT (k* = yy +1)
105 A (a>tW)%“

M‘(q1 +k*+1)

Az \)—t q2+k*
+
AF(q§+k*+1)( ) }

(T - to)* |: niAs ((T —t)? )k*_yl*
+
|0%| AL (k* =y +1) 0
As (n—to)e\K 72 H3 Ay (T —10)0\ 5"
N +
T ek D\
A — 1)@ q;”(* T -t 20
s i 1 (v—to) + J(|81A3| + |32A1|)
Al +k+ 1\ o 1©7]
(T - tp)°
|©%|

k*—yy

(18124] + [82A5])
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(T - to)*®

< (FWi+ IVIW) + o]

(181A3] + [82A1])

(T -t)®

o] (18141 + 182A,]) < 7%,

and so it follows that .7:'1u + ﬁgu/ € B’.. Now, we claim that .7:'2 is a contraction. To confirm
this claim, for each two elements u, &’ € B}, we have

| Foult) - Ford (2)|

_‘ 1 ft<(t—t0)g—(r—to)g>k*_l
T AT (k") 0 0

d
X T(r, u(r)) (r, u (r)) m
G R 3 (1) - (7))

# SERCLT (R (g, ) = T ()

BT (1, () - T (1,0 (1)

- BReg B (4 (o, ) - T, u(v)))]

. %%)M[_@R%fﬁ ©((Tu(T)) - F(Tu(T)))

- AU 5 (g - (1 )

A

o BT (7, T) - (1,0 (D)

+ %RCIZ);”(*'Q( (U u(v)) (v 17 (v))):H

< E*W2||u - u/H
Since L, W, < 1, thus JF; is a contraction. In the subsequent step, we check the continuity

of F; on B;.. To reach this aim, let {u,} be a sequence in B, approaching a point u € B.
Then, due to the continuity of the generalized Riemann—Liouville type operator, one can

write
R (t—t0)° — (r— )2\ "~
lim i, () = / of —r— to)
H—>+00 AF(k* 0*) 0
. dr
X nErPoo u,,(r) (r_ to)l—Q
t—1)° *A % _pk ok
+( ®*0) [_Ml}\ 4RCI§) 0 Y1.@ lim Lt,,(T)
n—>+00
A *_p¥ ok
__4RCItk R i u,(n)
A n—+00

*A Kk A —
AT i (1) ST i 1,0

A n—>+00 n—+00
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t—t 20 *A % _pk ok
+( 0) |:M1 SRCItk 0*~y10 lim 1,(T)
e* A 0 N—> +00

A *_gE_y ¥ .
+ —SRCI:) 2% Yim u,(n)
A N—>+00

*

H3Aq “rgt-0%g . Al gk +qi-0%0 .

—Z—RCItk G770 lim o, (T) - — K¢z, ™" lim u,(v)
A 0 n—>+00 A 0 n—+00

= Fiu(t)

for any t € [£y, T]. This indicates that F7 is a continuous operator on .. Next, we are
going to investigate that .7:"1(8;“*) is uniformly bounded on B},. For any u € B, we have

) 1 L(E—1t0)° — (r—to)e \F dr
Frul)] < [ (" 0 )| —
AL (k* = 0%) Jy Y (r—to)'e
T —ty)° *A *_p¥ ok A *_p¥ ok
+ ( ®*0) |:,u1)L 4RCIt/; 0% —y{ 'Q|M(T)| + Télleczt/; 0 VZvQ|u(n)|

* K k% sk pk
i BERRRCH u)  S206 )|

(T_to)ZQ M*A3 gk _yk A3 k0% —y¥,
Fge | Ty T )]+ ST )|

* *, K k K,k nk
i SRR ) SECT )

<Willull = Wir*.

Thus || £y < Wir* for all u € B with W, given in (11). The latter inequality confirms
the fact that 77 is uniformly bounded on B.. Eventually, we review another property of
the operator F7, i.e., its equicontinuity. For each ¢, £, € 7 with t1 <ty and each u € B, we

have

| Fru(tz) — Fru(n)|

- r(21((f2 = 10)? — (2 = 0)O)X =" | + | (ta — £0)2 K0 — (11 — £)eK™=0"))
= T =07 11)

HUiAy (T — o)\ "1
AD(k* —60* —y + 1) 0

| (B2 —10)¢ = (81— t0)°
+7
@*
+ Ay (n—to)e \ "2
AD(k* —60* —y5 + 1) o

130, (T — 1o\ T
+
AD(q; + k* = 0% +1) o

Ay (v - 1)2 \ 2
+
Al(gs + k¥ = 0* +1) o

(tr — to)* — (01 — tp)®@
@*

WiAs (T —to)e \F "1
X
AD(k* —0* —yf + 1) o

+r*
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As (-t \ 0"
+
AD(k* —0* —y5 + 1) o

1A (T — )2\ 1"
+
AD(q) + k* = 0% +1) o

Ay (v — 1)\ B
+ .
Al(qs + k¥ = 0% +1) o

Asyou observe, the RHS of the latter inequality approaches zero independently of # when-

ever t; — ty. Hence, the operator F; is equicontinuous, and so /; is relatively compact
on B.. Consequently, by invoking the Arzela—Ascoli theorem, F; is compact on 5. In
conclusion, by taking into account Theorem 2.3, the four-point multi-order nonlinear gen-
eralized Caputo type fractional BVP (3) has at least one solution. d

Here, with due attention to the Leray—Schauder theorem, we provide another criterion
for the existence of solutions for the proposed problem (3).

Theorem 3.4 Let Y ] x X, — R be continuous and there exist a nondecreasing continu-
ous function W : [0, 00) — (0,00) and & € Cg+ () such that |Y(t, u)| < OV (||u||) for each
(t,u) €] x X.. Moreover, suppose that there is a constant Q* > 0 such that

Q*|O|
QO Wy + W(QH) P10 Wy + (T — £6)22 (|81 Az + |82 A1]) + (T — £6)2(181 Agl + 182A3])
>1, (13)

where Wy and W, are represented by (11) and (12), respectively. Then the four-point multi-
order nonlinear generalized Caputo type fractional BVP (3) has at least one solution.

Proof Consider the operator F, formulated by (10). We intend to verify that F, maps
bounded sets into bounded subsets of X,. Select an appropriate constant p* > 0 and build
a bounded ball B;* ={u e X, :|lu|| < p*}in X,. Then, for each ¢ € J, we have

<sup

1 LUt =) — (r—t)° \* L. dr
" Ar(k*)/to( 0 ) T ) G

1 LOE— ) — (r=tp) \¥ 0! dr
T ATk —07) / ( 0 ) ) G e

t—1ty)° *A K _ K A *A *_pk ok
+( 0) |:ﬂ1 4RcIt/:) yl,QT(T,u(T))—Mlk 4RCIt/; 0 VJ,QM(T)

e A

Ay *_y¥ o on Ay k=% —y,
+7RCI§) O () = ST, )

JTRYAN ikt 0 n
__%EMQQ*QTauan)

,u_*Az * gt gk, AZ *1k*0 A
+ —ZA RCI;; T (T) - TRCIZ)2+ QT(v, u(v))

Ay pe K +qi-6%0
+T I:; 2 u(v)
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£ —19)* TA S PN
—81A4 + A282] + —( @5) I:——Ml)\ SRCI;; " ’QT(T,M(T))

*A K_gE_yk
+ Ml)L SRCIt]:) 71 QM(T)

A *_y* 0 A A *_gk_yk
= ST () + ST, )

*A * ok oA
it Tl = LRETIHOR (T, (7))

*A * gt 0*, A *ik*,0 A
_ —MZA IRCIZ; T + TIRCIZJ2+ “T (v, u(v))
_Bigc

K= +qt—6%,
3 z, ™ Q”(V)+51A3—52A1}

<@ (llul)Ws + ul W

(T - tp)*
|©*]

(T —to)°

S1A3| +|62A1]) +
(181A3] +18,A1]) o]

(|51A4| + |52A2|)»

and consequently,

(T —t)*®

| Z@®] < 101 (llull)Wa + | Wh + o

(181A3] +182A1])

(T - t)°

o (181 84] +185A]).

Now, we continue to prove that the operator , maps bounded sets (balls) into equicon-

tinuous sets of X,. Assuming t;,£, € Jwith#; <tyand u € B;‘*, we have

|f*u(t2) —-7}*”(1«‘1)|
_ 2OW D@82 = t0)° = (t2 = t)) | + [(82 = £6)*" — (11 — 1))
= AT (k" + 1)
s 2]l 21((82 = ) = (£2 — 1)) | + (£ — £0)°%™ =) — (11 — £)° "))
A (k* =60 +1)

£y — 1) — (t1 — £0)°] [| 1 A g Ko—vio o
s [(t2 — t0)® — (t1 — £0)°| [ | 0} 4 rC 7k V]vQT(T,u(T))
O] A 0

*A K _pk ok
l/h)L 4Rcz-t/; 0 yl]Qu(T)

A S A
e 70

+ —MEA”CI'IT”(*’Q?(T,M(T))‘

+

A4 K*—0*_y¥.0
TRCItO ? u(n)

2 fo

*A * gt g%, A *rk*,0 A
+ MQ)L ZRCI:) e Qu(T)’ + ’TzRCIZ)f QT(v,u(v))’

AZ *gt—0*,
F |, )

(£2 = t0)*@ — (1 — )|
|©*]

+ |81 Ag + |A252|] +
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* * * A
% H//H)LABRCZ—;; -7 'QT(T,M(T))‘

*A Kk _o % A *_ % o A
it e ot s i

AS *_9*_y¥0
TRCIL{; 2 u(n)

*A ok o A *A *, k%
N MZ)L 1RCIZ)1+1< ,QT(T’M(T))HIM)L 1RCI§) +q, -0 ,QM(T)‘

A] *+k*,0 2
+ TRCIZJﬂ QT(v,u(v))‘

Al RCIk*+q’2‘—9*,Q

Y to u(v)

+[81A3] + |52A1|]-

If £y — 15, then the RHS of the above inequality approaches 0 independently of u € 5.
This implies the equicontinuity of 7, and so the relative compactness of 7 on B},. Hence
from the Arzela—Ascoli theorem it follows that F, is completely continuous, and so F is
compact on B;.. The desired result is completed from the Leray-Schauder theorem 2.4
once we can verify the boundedness of the set of solutions for an equation u = w* F,u for
some w* € (0, 1). To reach this goal, let us assume that u is a solution for the latter equation.

Forany ¢ e 7, we obtain

(T - t9)*®

|u(@)| < [N (lul)WVa + Wi + o

(181A3] + [82A1])

(T - 1)°
+ ﬁ(wlw +18244]),

and so

| |©7|
lull|©*Wh + W (llul)| PNO*WVy + (T - 10)* (161 As] + [82A11) + (T = £0)2 (181 As| + [82A2])

<1

Select the constant Q* with |u|| # Q*. Put U = {x € X, : ||u] < @*}. Then one can realize
that the operator F, : U/ — X, is continuous and completely continuous. By considering
the choice of I, there is no u € 8l satisfying u = w* F,u for some w* € (0,1). Therefore
by utilizing the Leray—Schauder theorem, it is deduced that F, is an operator having a
fixed point u € U which is a solution for the four-point multi-order nonlinear generalized
Caputo type fractional BVP (3). d

4 Stability analysis

In the current section, we are going to investigate some well-known stability results such
as Ulam—Hyers, generalized Ulam—Hyers, Ulam—Hyers—Rassias, and generalized Ulam—
Hyers—Rassias stability of solutions for the four-point multi-order nonlinear generalized
Caputo type fractional BVP (3). First, we state the relevant concepts in this regard, which
are adapted from paper [49].

Definition 4.1 ([49]) We say that the four-point multi-order nonlinear generalized Ca-
puto type fractional BVP (3) is Ulam—Hyers stable whenever there is a positive constant
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k € R such that, for ¢ > 0 and for each solution function v € X, of the following inequality
VDL u(8) + D) u(e) - T (6, v(0)| <&, (¢ € [to, TD), (14)

there is another solution function u € X, for the four-point multi-order nonlinear gener-
alized Caputo type fractional BVP (3) with the following property:

’V(t) — u(t)’ <ke, (t € [to, T]).

Definition 4.2 ([49]) We say that the four-point multi-order nonlinear generalized Ca-
puto type fractional BVP (3) is generalized Ulam—Hyers stable if there exists 14 € Cr+(R")
with 14(0) = 0 provided that, for each solution function v € X of inequality (14), there
is another solution function u € X, for the four-point multi-order nonlinear generalized
Caputo type fractional BVP (3) satisfying the following inequality:

v(8) - u(®)| < ¥g(e), (¢ €lto, T)).

Definition 4.3 ([49]) The four-point multi-order nonlinear generalized Caputo type frac-
tional BVP (3) is defined to be Ulam—Hyers—Rassias stable depending on ¢ : [ty, T] — R*
if there is a positive constant «, € R such that, for each ¢ > 0 and for every solution func-
tion v € & of inequality

[VCCDE 2 u(e) + €D Cule) - T (6, (8))| < e0(e), (¢ € [t, T1), (15)

there exists another solution function u € X of the four-point multi-order nonlinear gen-

eralized Caputo type fractional BVP (3) satisfying the following inequality:
V() - u®)] < kpe@(®), (¢ € ko, T1).

Definition 4.4 ([49]) The four-point multi-order nonlinear generalized Caputo type frac-
tional BVP (3) is said to be generalized Ulam—Hyers—Rassias stable depending on the func-
tion ¢ : [£y, T] — R* if there is a positive constant k,R provided that, for any ¢ > 0 and for

every solution function v € &, of the inequality
[R5 CCD () + D () - T (6 v(0) | < 00), (¢ € Tt T)), (16)

there is another solution function u € & for the four-point multi-order nonlinear gener-

alized Caputo type fractional BVP (3) which satisfies the following inequality:

W(e) - u()| < kpp(0), (t€ [k, T]).

Remark 4.5 Notice that the function v € & is called a solution for inequality (14) if and
only if there is a function g € X, depending on v such that

(i) lg@)| <e,(t € [to, T);

(ii) SCDE 2u(t) + Dy, Ow(t) = T (6, v(e) + g(8), (¢ € [to, T)).
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Now, in the light of Remark 4.5, the solution function of equation

CCDEu(t) + D) Cu(e) = T(t,(8)) + g(0), (¢ € [t0, T)) (17)

can be represented by the following generalized Riemann-Liouville type fractional inte-

gral equation:

1 Er(E—t0)? = (r—to)2\X ' . d
v(t) = AT /;0< 0 ; r—1lo ) T(r,V(r))m
1 EO(E—1t)? — (r—to)e \F ! dr
D) / ( 0 > ) e

1 fﬁ((t—m@—(r—tow)k*'e*_l O
AT (k* = 0%) Jy, 0 i (r—ty)l-e

t—19)° *A ok A

*A K% *A X _pk_o %
+ M1}L 4RCZ§) yl'Qg(T)— lh)\ 4RCL/; 0 ()

A *_yX o A A kK
+ fRCIfO 2% (n,v(n)) + T“CZJ; e ()

A4 *_gE_yk
_ TRCI:) Y2 QV("))

1y An k5,0 4 H3A Lk,
- 22RO (1,0(T)) - PR (1)

*A * gt g%,
+ Mz)L 2RCZ-£; =007

Ay k0.5 Ay k¥,
— TRCZZ)ZJF QT(U,V(V)) _ TR(:'.'Z'tq02+ Qg(v)

A ¥, % _p¥
+ T2RCI:; a5 ‘QV(U) - 81 A4, + A232:|

(t—t0)[ WEA3pe K —yFos P13 re K-y
T _1TRCI§) 14 QT(T,V(T))_ITRCI:) (T

*A *_gE_yk
+ l/h)L SRCIt]:) 71 QV(T)

A3 *_y* o A A3 *_yk A3 *_gk ok
- ST, T (nvin) = ST ) + ST,

*A * Lk oA *A % 1%
+M2 chIZ)1+k 'QT(T,V(T))+ Mo 1RCIq1+k ,gg(T)

) ) ‘0
M*Al K= +q* 6%,
_—Zx Reg, ()
A *ek*,0 A A Lk,
+ SHCZET (v, vt0) 4 SHOTE gt0)

Al Lg% g%,
_ TRCIZ) +q5 QV(U) + 51A3 _SZAI]'
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In the sequel, by considering the above findings and by implementing some routine com-
putations, we obtain the following estimate:

(t—t5)° — (r =)0 \¥ ' & d
o) - brwﬂ/< ) Q’ °> T“““GTéFE
1 LAt —1) — (r—t0)° \© ! dr
D) / ( 0 ) A

1 Lt —10)e = (r—tp)? ¥ ! dr
AF(k*—G*)/t ( o ) ) G e

t—1tp)° A *A Lk
+ ( ®*0) |:,u1)L 4RCI/< -rie (T V(T)) + M1A 4RCI§) J/lng(T)

M1A4RCI 9*_VF’QV(T)
A
A4 K_y* o A A4 *_yk A4 *_gk_yk
+ LT () + ST, ) = ST, )

A *A % 1%
Mz}\ 2RCIql+k 05 (T (T)) Mz}L 2RCIZ)1+’< 'Qg(T)

,U«*AZ K*+q* =%,
+ —2x Req,, T t(T)

A2 £ k%0 A AZ K,
g o) - S g

A %, Kok
+ TZRCIZ; +43-0 ]QV(U) - 81A4 + A282]

(t—t0)?[ wids 0% T A3 pe K-yt
+ o> 1k RCI - QT(T,V(T))— 1}L RCZ—Z; " Qg(T)

/’L*AS X —g*— *Y
+ L2Rer, T y(T)

A
- ST (g, vt) - ST ()
¢ SIRCL )
MzkAchIqﬁk 4 (T,1T)) + M;}LAIRCIZ)”{H(*,Qg(T)
- MaBeseg iy )

A ek, K
+71RCIZ)2+ 9 (‘) V(\)))+—RCIq2+ Q

A % ko
_ SIRCTEBR ) 1 8y Ag — 52A1]H

A
1 LAt =)0 — (r—t5) \ <! dr
: ‘mk*)/t ( 2 ) e
+(t t0)9|: M1A4RCI/< -vio ‘ ‘AALRCIk —v5e 77)‘
|©*| A

A *
+ ’Mz}L ZRCZ_thl+k ,0 (T)‘ ‘ 2RCIq2+k 0 (U)

)
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-t e[| uiA pE,
2 1)\ 3RCL’; " Qg(T)

A .
‘—mlk e ’QTg(n)‘

Al 21rephtkie

" SA1 k*
’ 2)L RCIq1+ 10 <> . g(u)

:| < €W2.

Now, we are ready to check the establishment of Ulam—Hyers stability for the proposed
problem (3).

Theorem 4.6 Assume that the map T ] x X, — R is continuous and there is a positive
constant L, € R provided that |?(t, u) — Y(t, u)| < Lilu—u| foreachte J and u,u' €
X, with LW, + Wy < 1. Then the four-point multi-order nonlinear generalized Caputo
type fractional BVP (3) is Ulam—Hyers stable and consequently is generalized Ulam—Hyers
stable on ] = [t,, T].

Proof Assume that v € X, is a solution of inequality (14). Also, let u € X, be a unique

solution for the four-point multi-order nonlinear generalized Caputo type fractional BVP

(3). Then one can write

|v(E) — u(?)]

1 EO(E—t0)? = (r—to)2\X ' 4 d
= V(t)_{,\r(k*)/t0< : Qr : ) T(r’v(r))(r—t:)l‘@
1 LAt —1) — (r—t0)° \© ! dr
Ur(k*)/ﬁ)( 0 ) ) e

1 Lt —10)° = (r— )2\ 0! dr
xr(k*—e*)/to< . ) G e

(t—120)° [ ] Asge it —vio LS4V *yi,

M1A4RCI 9*—VfF:QV(T)
A
A4 *_yx, 4 A4 *_gE_yk,
+ TRCI:; 20 4 (77» ) RCIk -¥ 9 TRCZZ 75 QV(U)

M2A2Rcqu+k fregEs AzRC 1+k*0
T,W(T I T
n Y(T,v(T)) - . g(T)

M*AZ k*Jrq*_g*,Q
+ ==, )

A $+k* 0. K*
_TzRCIZ)f QT(u,v(v)) ZRCqu+ @

A k%
+ Tmzﬁ) ML) — 81 Ay + A282]

(T w(T))

+ (t_’fo)2 I’LIA:”RCI -y
O* A

*A %% *A %_pk_o %k
_ /~/L1A 3RCI§) Vl»Qg(T)_l_ Mlk BRCIZ; 0 )/I,QV(T)
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AB *_y* 0 A AB K —y, AB *_gk X,
- TRCZJ; T (n,v(m) = =T, ) + TRCZJ; 2y (n)

*A * 1k oA *A %, %
N %) 1RCZZ)1+]‘ 'QT(T,V(T)) + Mo 1RCIZ)1+" 'Qg(T)

A A
*A % % _ ¥
) 1RCI§) +q7—0 vQV(T)
A
A k%0 A A Lk,
+ ST (0,v(w) + —HTET ()

A

1 EO(E—t)° — (r—t)2 \¥ 1. dr
' { AT () / ( 2 > ) =
1 LAt —t0)° = (r =) \¥ ! dr
D) / ( 0 > ) e

1 LAt =) — (r =)0\ T dr
T ATk —0%) f ( 0 ) ) e

t—1ty)° *A H_ ok A
+( ®*0) |:,Uv1)L 41ecl-t/; yl’QT(T,V(T))

A % ko
- —IRCIfO ML) + 8, A — 82A1:|}

*A %% *A K _pk ok
+ Mlk 4RcIt’; "0 g(T) - Ml}L 4RCIt,; 0 ey

A *_yk o A A *_yk
+ SERCL T (o, v() + ST, )

A
_ %RCIZ:{*/(*@T&(T, W(T))
- HaBareqiinteyr)  Latzeg i ey )

A X 1k* 0 A A Lk,
_ TZRCIZ)f gT(v,v(v)) _ TZRCIZ)f Qg(v)

A s, kg%
+ TZRCI:; 457 ,QV(U) — 31A4 + A282]

+ (t- tO)ZQ |:_ MTAS RC

K —y¥0 .
o —*,, Y (T, W(T))

_ IGIAY RCIZ(*—Vl*:Qg(T) + niAs RcItk*—(?*—yl*,QV(T)
0 0

A A
A3 K —y¥.0 A A3 *_y ¥ A3 k0% —y¥,
=T, P v) = ==L, T )+ =T, )
*A £k oA *A s, %
+ Mzk 1RCIZ)1+k 'Q'Y“(T,V(T)) + :“2)L 1RCIZ)1+" 2o(T)
A %, K%
_ MZA IRCIZ; +q7 -0 'QV(T)

Al X k¥ 0 A Al Lk,
+ TRCIZ)2+ “T (v, v(v)) + TRCIZ)2+ g(v)
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A K*+q%—6%,
= T, T ) 818 - sm]} - u(t)’

< W, + (LWa + Wh)|u(e) — ult)

’

which yields that

8W2

[v(®) - u(®)| < TERTAISRTIAL

(18)

For the sake of simplicity in writing, we take « = W, and so
(LW + W) <1

Then (18) becomes
(v(e) —u(t)| <ex  (te] =t T)).

Thus it is deduced that the four-point multi-order nonlinear generalized Caputo type frac-
tional BVP (3) is Ulam—Hyers stable. Furthermore, assuming /4 (€) = ¢« it is clear that
¥4(0) = 0. Consequently, it follows that the solution function of the four-point multi-order
nonlinear generalized Caputo type fractional BVP (3) is generalized Ulam—Hyers stable
and the proof is completed. d

Remark 4.7 Notice that a function v € & is a solution of inequality (4.3) if and only if
there is another function #* € X, depending on v provided that

(i) 17" < ep(®), (¢ € [t0, T1)

(i) CDy u(e) + Dy, 2u(e) = Tt v(e)) + h*(0), (¢ € [to, T)).

In the light of Remark (4.7), the solution function of the equation

CCDELy(t) + CD) ule) = T (6, () + *(2), (¢ € [£, T])

can be represented by

1 LAt —10)° — (r—t0)° \* 1 dr
0= T /< 2 ) T )y

1 LO(E—1o)° — (r—t0)°\¥ ', dr
+AF(k*)/to< e > h(r)(r—to)l‘g

1 f((t— t0)° — (r— to)">k*6*1 4
T Ar (k= 6%) /to 0 N g)ie

t— @Q *A *_¥ 5 A *A %
+( 0) |:M1 4RCI§) yl’QT(T,V(T))+ /vL1)\ 4RCIt]; J/l,Qh*(T)

Gk A

M*A‘l *_QF_yk,
_ l}L RCIZ; " QV(T)

A %k A A Kk
+ ST T () + ST, T )
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A4 *—0*—]/*,@
_ TRCIZ:) 2 V('})

YY) T+, 5
_ZTRCIZ)1+ QT(T,V(T))

UiAy *1k*,0 s Ao k*+qt-0%,0
_ 2)\' RCIZ)I h*(T)+ 2)L RCIt0 1 V(T)

A 5 k%0 A A k%,
_ TZRCZZ)2+ QT(U,V(U)) _ TzRCIth2+ Qh*(‘))

A %, % _p%
+ TzRCIt/; e 0 ,QV(U) — 61A4 + A2521|

t—t)°[ wiAs *—yihe s WiAs kK*~yi'0
+T _1TRCI§) 1 T(T,V(T))— 1)L Rczio ()

*A % _pk ok
: l‘l‘l BRCI:) 0 VlrQV(T)

A
A3 *_yF o A AB K*—yX,
- SERCLTEO (g, vln) - ST ()
A *_p¥ ok
. _SRCIt’; 0 yz,ev(n)
A
*A * LK oA *A s, %
+ MZ)\, lRCIZ)ﬁk 'QT(T, WT)) + MZ)\, lRCIZ)1+k (T

N/*AI k*+q%-0%,0
_ 2)L RCIt0 1 V(T)

A kLK oA A s, Lk
+ TIRCIZ)z*rk ’QT(v,v(v)) + leczz)z*rk 21t (v)

Al gk g%,
- TRCIfO MR 0) 181 Ag — 82A1:|.

Then the following estimate holds:

1 LAt =) — (r—t0)2 \ ! dr
M0- {mk*)/t ( 2 ) () Gy

0

1 [f(t—t0)°—(r—t)?\" " | dr
* AT (k*) /zo ( 0 ) ) (r—to)-e

1 LrE— ) = (r—tp) \< 0! dr
D / ( 0 ) e

t—1to)° *A *_y¥ 0 A
+( @:) |::U«1)L 4RCI§) yl’QT(T,V(T))

*A Kk *A *_pk ok
+ My 4RcIt’; i :Qh*(T)_ l’v1)\ 4RCIZ; o yl,QV(T)

A s %k . A e
+ TMCZZ 24 (n,v(n)) + 74“22 ()

A4 *_0*_}/*@
_ TRCZ-Z; 2 V('I)

*A %1% o A *A s, Lk
_ “2A 2RCIZ)‘+k ’QT(T, v(T)) _ P‘z}L 2RCIZ)1+’< 21(T)

A %, ko
+ luvz)L 2RCIt’; +q1 -0 ’QV(T)
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A £ 1% o A A * %
_ TzRCZZ)2+k 'QT(v,v(v)) _ TZRCIZ)Z*']( ’Qh*(v)

A k%
+ TZRCZQ e “y(v) = 8184 + A232]

t=10)2[ piA ko 5 A .
+ %[_%RCIZ WO (T, u(T)) - %RCIZ; e )

M*AB k*—0*—p X,
+ —L=Re, T Tey(T)

A
As A3 pe -y,
- SHRCL T () - 52RO, T ()
A A
A K _gk ok
+73RCI:; 0 VZ:QV(U)
MZAlRC * k¥ Q M;AlRC *+k*,0
- I Y (T, W(T)) + - Y n(T)
WA Rkt +qi-6% 0
-2t 7, ey

A L I A % 1%
+71RCIZ)2+I( ’QT(‘)’V(U))+71RCIZ)2+I‘ 'Qh*(v)

A K +q%—0%,
- TIRCLO MR (0) + 81 A5 - 52A1] } ‘

1 [ (-t)°-(r—-t)e\ | dr
f‘xrw)/t () o

(t @io)g [‘ /“l’l)\A‘LRCIk _Vl Qh*(T ‘ ‘ﬂRCIk _Vz Qh*( )‘

*A k *
+ ‘//LQ)L ZRCIZ)1+]( ,gh*(T)‘ ‘_ZRCI%H( Qh* )H

(t tO)ZQ [‘ MIASRCIk Vl Qh* ‘ ‘&RCZI( Vz Qh*( )‘
Ok A

AA * Ik A
+ ’MQ)L lRCIZ)1+k ,Qh*(T)‘ ‘ lRCZq2+k Qh*( )H

< ep(t)Ws.

Now, we are ready to check the establishment of Ulam—Hyers—Rassias stability for the

proposed problem (3).

Theorem 4.8 Let Y : [£y, T] x X, — R be a continuous function and there exist a nonde-
creasing continuous function W : [0, 00) — (0,00) and & € Cp+ ) provided that 1Tt u)| <
D)W (||ul) for each (t,u) € J x X. If condition (13) is valid and there is a function h* which
satisfies Remark 4.7 with 2Q* < h*(t) forany t € J = [to, T}, then the four-point multi-order
nonlinear generalized Caputo type fractional BVP (3) is Ulam—Hyers—Rassias stable, and

so it is generalized Ulam—Hyers—Rassias stable.

Proof Suppose that v € X is a solution of inequality (4.3), and also let # € X, be a solution

for the four-point multi-order nonlinear generalized Caputo type fractional BVP (3). Then
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we get

’V(If) - u(t)|

1 EO(E—t0)? = (r—to)2\¥ ' 4 dr
== [mk*) / ( 2 ) T ) =

1 LAt =) — (r =)0\ T dr
AT (k* - 6%) /to ( 0 ) v (r—to)t-e

t—1ty)° *A Kk A *A K _pk ok
+( ®*0) |::u1)L 4RcIt/; yl’QT(T,V(T))— Ml)L 4RCI§) 0 VI,QV(T)

A K_yX o A A K_gE_yk
+ T“CZZ Y (n,v() - T“CZJ:) T )

W3R e ik W3 A3 ek sqi -0,
- P2SRRCT T (T,u(T)) + EEROL (T

A koK oA A *rq5-0*
_ TZRCIZ)fk Y (v, v(w)) + TZRCIZ BTRY0) 81 A+ AZ‘SZ]

t—ty)%@ *A Kk A A o
+ %[—%ch"g) Vl»QT(T,V(T)) + %RCZ—}; 0 ey

A3 K —yX,0 A AB Kk,
= ST, (vl + ST, v

A sk A *A *, k%
+ :U«z)\ 1RCIZ)1+" 'QT(T, WT)) - /J‘zk 1RCI§) -0 Cy(T)

A

1 Er(E—t0)? = (r—to)2\X ' 4 dr
' HAF(k*) / ( P ) () Gy

1 LAt =) — (r =)0\ T dr
AL (k" - 6%) / ( 0 ) ) e

0

t—t e *A *_k 5 A *A sk ok
+( 0) |:M1 4Rcl-t/; yl,QT(T,V(T))—Ml)\’ 4RCItl; 0 VlrQV(T)

A KoLK oA A *rq5-0*
# SECTE (0, 0) - SEROTTE ) 4818 - Bzm] H

O* A
A *_ *Y A A *_ *_ *,
+ T”CZﬁ) 2% (n, v(n)) - T4RCI:, T )

W32 pe ik 0.z W3 Ag pe kg -6%,
— 2}L RCIZ)ﬁ QT(T,V(T))+ ZX RCIg*ql QV(T)

A * Lk oA A *rq5-0*
_ TZRCZZ){“" Y (v, v(w)) + TZRCZZ T (0) — 81 Ag + AZ‘SZ}

t— 2 *A *_k 5 A *A k_ ko %
+ ( 0) _M1 3RCI/< " ’QT(T, V(T)) + 431 SRCIk 0* -y ’QV(T)
R A ‘0 A 0

A3 K —y¥.0.2 AB *_0%_y¥ 0
_TRCItO 2 T(U;V(ﬂ))JrTRCI:) 220 (0)

XA L I *A x, k%
+ #2)L 1RCIZ)1+I‘ ’QT(T, WT)) - ﬂzk 1RCIZ; +4, 0 Cy(T)

Al * 1 k* 0 A Al K= +qt—6%,
+ TRCIZ)ZJr QT(\),V(\))) _ TRCI[O a3 QV(\))
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+81A3 - 32A1]} + |u(®)]

<epOWa + [ RN (IVI)Wa + VIV + +1 DI (1) Vo + [l Wa

%(mm +18:2A1]) + %(I&AM +18,A0])
<ep(t)WVa +2Q% <ep(t)Va + e9(2),
which yields that
|v(t) - u(®)| < eV + 1o (). (19)

For the sake of simplicity in writing, we take «, = W, + 1. Then (19) becomes
|V(t) - u(t)| < kpep(t).

This means that the four-point multi-order nonlinear generalized Caputo type fractional
BVP (3) is Ulam—Hyers—Rassias stable. Moreover, in the same manner, one can show that
the mentioned problem (3) is generalized Ulam—Hyers—Rassias stable. O

5 Examples

In this part of the current paper, we formulate two illustrative examples to confirm the cor-
rectness of theoretical findings from the computational aspects. Indeed, in the following
examples, we consider two cases with different functions in the proposed BVPs.

Example 5.1 With due attention to the proposed problem (3), we design the following
four-point multi-order nonlinear generalized Caputo type fractional BVP:

I
)

gccpif’”u(t) ¥ CCDE'O'gu(t) =Yuw), (el ),

u(%) =0,

lCCD%’Og 1y . CCy$09 1 1 (20)
5 DY u(3)+ DY u(3) = g

3RCI%1’%‘9 1y , RC %01% 1y _ 1

v M(§)+ I% M(g)—%,

=i

where 1\* = 47/54, 0 = 0.9, k* = 57/20, 6* = 33/16, y;" = 7/15, y5 =77/99, q} =4/3, q; =
5/3, 8, = 1/100, &, = 1/50, to = 1/10, v = 1/7, n = 1/6, uj = 1/33, u3 = 3/44, and T = 1/5.

Moreover, notice that 0 < y", 5 < 0.7875 = k* — 6*.
1

1 .
150 5] X R— R as follows:

If we define a continuous function Y : [

o @I\ .
(6 u(®)) = 22 (ﬁ) sin(1(2)),

then we get 1Y@ u(®) - Y4 @) < % |u(t) — u/(£)| with L, = 1/25. In addition, we have
1T (¢, u(t))] < 2 = V(¢). Besides, we obtain the following values:

A1~ 0.5485, Ay ~0.8939, A3~ 6.7130 x 1074, A4~ 3.7840 x 1074,

O* ~ 3.9255 x 1074, W = 0.8593, W, ~ 0.0014.
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Hence, it is clear that £V, + W, & 0.8594 < 1. Therefore, by considering the assumptions
of Theorem 3.2, the four-point multi-order nonlinear generalized Caputo type fractional
BVP (20) has a unique solution. Furthermore, by some simple computations, we find that
K = m =0.0096 > 0. Hence, the conditions of Theorem 4.6 imply that the afore-
mentioned problem (20) is Ulam—Hyers stable and it is also generalized Ulam—-Hyers sta-

ble.

Example 5.2 We take the same values and parameters mentioned in the above example,
and we just change the function T given by the following form:

N 1 2(2)
() = (IMZ‘)T + 4). 1)

Then we have

T 6| -

1 u>(t) 1
L (D) < (w9,
2+5\ |u®)]+1 2+5
Put ®(¢) = ﬁ and W(|u|) = |x| + 4, and select Q* > 44.0032 so that
Q*|O|

Q¥|O* Wy + W ()| D[||©*Wa + (T — £0)22(|81 Azl + [82A1]) + (T — £0)2 (181 Ayl + |82 A2])
> 1.

Now, in view of the assumptions of Theorem 3.4, we deduce that the four-point multi-
order nonlinear generalized Caputo type fractional BVP (20) with T defined as in (21) has
at least one solution.

Moreover, by defining /*(£) = 2exp(¢ + 2)? and Q* = 45, we reach the inequality 2Q* <
h*(¢) foranyt € [1—10, %]. Now, we set ¢ = exp(t +2)%, and we obtain k, = W5 +1 = 1.0014 > 0.
Hence, Theorem 4.8 indicates that the mentioned problem (20) with Y illustrated by (21)

is Ulam—-Hyers—Rassias stable and also it is generalized Ulam—Hyers—Rassias stable on
o0 5

6 Conclusion

New versions of generalized fractional boundary problems have drawn much interest in
recent years owing to their extensive utilization in various directions of applied sciences
such as engineering, mechanics, potential theory, biology, chemistry, etc. The subject of
stability is a very important notion in physics since most phenomena in the real world
include this concept. In fact, the stability notion of physical phenomena has an old histor-
ical context, and for the sake of such importance and applicability, one can observe a lot of
works in the numerous publications not only in the last century but also before it. In this
research article, we turn to study the existence and different types of stability such as gen-
eralized Ulam—Hyers stability and generalized Ulam-Hyers—Rassias stability of solutions
for a new modeling of a boundary value problem equipped with the fractional differential
equation which contains multi-order generalized Caputo type derivatives furnished with
four-point mixed generalized Riemann-Liouville type integro-derivative conditions. At
the end of the current paper, we formulate two illustrative examples to confirm the cor-
rectness of theoretical findings from computational aspects.
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