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Abstract
In this paper, we study a novel deterministic and stochastic SIR epidemic model with
vertical transmission and media coverage. For the deterministic model, we give the
basic reproduction number R0 which determines the extinction or prevalence of the
disease. In addition, for the stochastic model, we prove existence and uniqueness of
the positive solution, and extinction and persistence in mean. Furthermore, we give
numerical simulations to verify our results.
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1 Introduction
To the best of our knowledge, vaccination is one of the most effective ways to treat and
prevent diseases. It has been used to restrain diseases such as tetanus, diphtheria, rubella,
mumps, pertussis, measles, hepatitis B and influenza [1]. For instance, during the outbreak
of SARS in 2003 [2], H1N1 influenza pandemic in 2009 [3], and H7N9 influenza in 2013
[4], unprecedented mass influenza vaccination programs were launched by a large number
of countries to timely immunize as many people as possible. Those strategies greatly con-
trolled the spread of infection and then decreased the incidence rate [5]. In addition, with
the development of information technology, media reports play an important role in the
prevention and control of diseases, for example, during the outbreak of SARS and H1N1,
media reports effectively stopped the spread of the disease and provided scientific and
reasonable preventive measures for people [6–9]. However, in order to use media with
high efficiency to control diseases, it is necessary to describe the quantitative relation-
ship between the number of infections and media coverage with mathematical formula.
Recently, many scholars researchers have carried out wide studies and obtained a great
deal of achievement in this field (see [10, 11]). Most of them assumed that when there
is no infection there is no media coverage of infectious diseases, the more infected in-
dividuals, the more media coverage. Liu et al. [12] established an SEIH epidemic model
with incidence rate βe(–a1E–a2I–a3H)SI and found that media coverage is not a key factor
in determining whether or not a disease will break out, but it has a evident impact on the
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Figure 1 The compartmental diagram and model equation for a novel SIR epidemic model with vertical
transmission and media coverage

scale of the spread of disease. Cui et al. [13] presented an SEI epidemic model with in-
cidence rate βe–mISI and found the disease can be controlled when the media impact is
stronger. Tchuenche et al. [14] discuss how media coverage has impact on the disease by
constructing a new constant rate (β1 – β2I

η+I ), where β1 is the usual valid contact rate, β2 is
the maximum reduced valid contact rate through actual media coverage, and η(η > 0) is
the rate of the reflection on the disease. On the other hand, media coverage cannot com-
pletely prevent disease transmission, so we have β1 > β2. Moreover, other forms, such as
(μ1 – μ2f (I)) SI

S+I , βe–εmM , βe–αI(t–τ ), have been proposed to describe the media-induced
incidence rate (see [15–17]). In addition to media reports, vertical transmission can also
affect the spread of diseases; in vertical transmission, the offspring of infected parents may
already be infected with the disease at birth [18–20], such as rubella, herpes simplex, hep-
atitis B, Chagas’ disease and AIDS. Meng and Chen [21] proposed a new SIR epidemic
model with vertical and horizontal transmission, they compared the validity of the strat-
egy of pulse vaccination with no vaccination and constant vaccination, and concluded
that a pulse vaccination strategy is more effective than no vaccination and continuous
vaccination. In [22], they considered a non-linear mathematical model for HIV epidemic
that spreads in a variable size population through both horizontal and vertical transmis-
sion and found that by controlling vertical transmission rate, the spread of the disease can
be significantly reduced; the equilibrium values of infective and AIDS population can be
maintained at the desired levels.

Motivated by the above work, in this paper, we build a new SIR epidemic model with
both vertical transmission and media coverage and give a compartmental diagram (see
Fig. 1) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = –(β1 – β2I

η+I )SI – μS + (1 – α)pμI + (1 – α)μ(S + R),
dI
dt = (β1 – β2I

η+I )SI – μI – γ I + qμI,
dR
dt = γ I – μR + αpμI + αμ(S + R).

(1.1)

The parameters in the model (1.1) are summarized in the following list:
• β1: the usual valid contact rate.
• β2: the maximum reduced valid contact rate through actual media coverage.
• η: the rate of the reflection on the disease.
• μ: who are born and die at the same rate.
• γ : the recovery rate of the infected individuals.
• p: the proportion of the offspring of infective parents that are susceptible individuals.
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• q: the proportion of the offspring of infective parents that are infective individuals.
• α: the proportion of those vaccinated successfully to the entire susceptible including

mature species.
Here the constants 0 < p < 1, 0 < q < 1, p + q = 1, 0 < α < 1 and the other parameters are

nonnegative.
In addition, one can see that the population has a constant size, which is normalized to

unity

S(t) + I(t) + R(t) = 1.

Hence, we only need to consider the SI model as follows:

⎧
⎨

⎩

dS
dt = –(β1 – β2I

η+I )SI – μS – (1 – α)μqI + (1 – α)μ,
dI
dt = (β1 – β2I

η+I )SI – (pμ + γ )I.
(1.2)

Clearly, � = {(S, I)|S, I ≥ 0, S + I < 1} is an invariant set of the model (1.2).
On the other hand, one neglected the effect of the environment noise for the disease in

model (1.2), in fact, in the process of transmission, the disease inevitably was affected by
environmental noise (see e.g. [23, 24]). Therefore, deterministic epidemic models cannot
accurately predict the future dynamics of infectious diseases, while stochastic models can
make and many stochastic models for an epidemic have been built (see e.g. [25–27]). In
[28], Ji et al. discussed a stochastic SIR model and found the disease shows persistence
under some conditions. In [29], Yang et al. studied the global threshold dynamics for a
stochastic SIS epidemic model incorporating media coverage and gave the basic repro-
duction number which determines the persistence or extinction of the disease.

Next we introduce stochastic perturbations using a method similar to that in [30] of the
model (1.2) and the model equation as follows:

⎧
⎨

⎩

dS = [–(β1 – β2I
η+I )SI – μS – (1 – α)μqI + (1 – α)μ] dt – σSI dB(t),

dI = [(β1 – β2I
η+I )SI – (pμ + γ )I] dt + σSI dB(t),

(1.3)

where B(t) is a one-dimensional standard brownian motion on some probability space,
and σ is the intensity of B(t).

The rest of this paper is organized as follows. In Sect. 2, we study that the dynamic
behavior of the deterministic model (1.2). In Sect. 3, we discuss the dynamic behaviors of
the stochastic model (1.3) including the extinction and persistence in mean. In Sect. 4, we
present numerical simulations to verify our results. In Sect. 5, we give a brief summary of
our results. In the Appendix, we will give some proofs of the main results.

2 The dynamic behaviors of the deterministic model (1.2)
2.1 Equilibria and stability
Clearly, the model (1.2) has two equilibria, that is, the first one is the disease-free equilib-
rium E0 = (S0, 0), where S0 = 1 –α. The second one is the endemic equilibrium E1 = (S∗, I∗)
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which satisfies

(

β1 –
β2I∗

η + I∗

)

S∗I∗ – (pμ + γ )I∗ = 0,

–
(

β1 –
β2I∗

η + I∗

)

S∗I∗ – μS∗ – (1 – α)μqI∗ + (1 – α)μ = 0.
(2.1)

From the first equation of (2.1), we get

S∗ =
pμ + γ

β1 – β2I∗
η+I∗

. (2.2)

Substituting (2.2) into the second equation of (2.1), we get f (I) = g(I), where

f (I) = (1 – α)μ –
[
(1 – α)μq + pμ + γ

]
I,

g(I) =
μ(pμ + γ )
(β1 – β2I

η+I )
.

By calculating the derivative of the function g(I), we have

g ′(I) =
β2ημ(pμ + γ )

[β1η + (β1 – β2)I]2 > 0,

so we see that g(I) is monotone increasing with respect to I . Similarly, f ′(I) = –[(1 –α)μq +
pμ + γ ] < 0, which indicates f (I) is monotonous decreasing with respect to I . When I = 1,
we can get f (1) < 0 < g(1), when I = 0, f (0) = μ(1 – α), g(0) = μ(pμ+γ )

β1
.

If f (0) = μ(1 – α) < g(0) = μ(pμ+γ )
β1

, namely, β1(1–α)
pμ+γ

= R0 < 1, f (I) and g(I) non-intersect,
that is to say, model (1.2) has no endemic equilibrium if R0 < 1.

If f (0) = μ(1 –α) > g(0) = μ(pμ+γ )
β1

, that is, β1(1–α)
pμ+γ

= R0 > 1, there exists I∗ ∈ (0, 1) such that
f (I∗) = g(I∗), in other words, model (1.2) has a unique endemic equilibrium if R0 > 1. Here
R0 = β1(1–α)

pμ+γ
is the basic reproduction number of model (1.2).

Theorem 2.1 The disease-free equilibrium E0 of model (1.2) is globally asymptotically
stable if R0 < 1, the endemic equilibrium E1 is globally asymptotically stable if R0 > 1.

3 The dynamic behavior of the stochastic model (1.3)
3.1 Preliminaries
Throughout this paper, we let (
, {F}t≥0, P) be a complete probability space with a filtra-
tion {F}t≥0 satisfying the usual conditions (that is to say, it is increasing and right contin-
uous while F0 contains all P-null sets). Denote R

d
+ = {x ∈R

d|xi > 0, 0 ≤ i ≤ d}.

3.2 Existence and uniqueness of positive solution
Theorem 3.1 There is a unique solution (S(t), I(t)) of model (1.3) on t ≥ 0 for any initial
value (S(0), I(0)) ∈ R

2
+, and the solution will remain in R

2
+ with probability one, namely,

(S(t), I(t)) ∈ R
2
+ for all t ≥ 0 almost surely.
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Table 1 Parameters of the model (1.2)

Symbol Value References

μ 0.1 [31]
β1 0.6 [31]
β2 0.1 [32]
γ 0.4 [32]
α 0.3 [33]
η 10 [32]
p(p+q=1) [0.6,0.01,0.1] Assumed
q [0.4,0.99,0.9] Assumed

3.3 Extinction
In this section, we will give the condition of the disease to die out; firstly, we show there is
a unique global and positive solution of model (1.3). For convenience, we define 〈X(t)〉 =
1
t
∫ t

0 X(s) ds.

Theorem 3.2 For any initial value (S(0), I(0)) ∈ R
2
+, if σ 2 > β2

1
2(pμ+γ ) or σ 2 ≤ β1 and β1 <

pμ + γ + σ 2

2 holds, then the disease I(t) will die out exponentially with probability one;
furthermore,

lim
t→∞

〈
S(t)

〉
= 1 – α, a.s.

3.4 Persistence in mean
In section, we will discuss the persistence of the disease I(t).

Theorem 3.3 Let (S(t), I(t)) be the solution of system (1.3) with any initial value (S(0),
I(0)) ∈ R

2
+, if σ 2 < min{(β1 – β2)(1 – α), 2(pμ+γ )(R0–1)

(1–α)2 , β1
1–α

} and R0 > 1, then the solution
(S(t), I(t)) of the proposed model (1.3) has the following property:

I2 ≤ lim inf
t→+∞

〈
I(t)

〉 ≤ lim sup
t→+∞

〈
I(t)

〉 ≤ I1 a.s.,

where

I1 =
μ[β1(1 – α) – (pμ + γ + σ 2

2 (1 – α)2)]
[μ(1 – αq) + γ ][β1 – σ 2(1 – α)]

and I2 =
μ((β1 – β2)(1 – α) – σ 2)

2(β1 – β2)[μ(1 – αq) + γ ]
.

4 Numerical analysis
In this section, we use hepatitis B as an example. We use the Runge–Kutta method to
find the numerical simulation of the ODE model (1.2) and the stochastic epidemic model
(1.3). This verifies our analytical results. To demonstrate the influence of the stochastic
process, we perform simulations for the stochastic model and its corresponding deter-
ministic model version.

Firstly, we choose p = 0.6, q = 0.4 and other parameter values given by Table 1. In this
case, the basic reproduction number of the ODE model (1.2) R0 = 0.91 < 1, then the ODE
model (1.2) have a disease-free equilibrium which is globally asymptotically stable (see
Theorem 2.1), as shown in Fig. 2(a).

Secondly, we choose p = 0.01, q = 0.99 and other parameter values given by Table 1. In
this case, the basic reproduction number of the ODE model (1.2) R0 = 1.05 > 1, then the
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Figure 2 The paths S(t) and I(t) for the model (1.2) with R0 = 0.91 < 1 and R0 = 1.05 > 1

Figure 3 The path S(t) and I(t) for the model (1.2) and (1.3) with R0 = 1.02 > 1 and 0.64 = σ 2 >
β21

2(pμ+γ ) = 0.44

ODE model (1.2) has an endemic equilibrium which is globally asymptotically stable (see
Theorem 2.1), as shown in Fig. 2(b).

Thirdly, we choose p = 0.1, q = 0.9, σ = 0.8 and the other parameter values given by
Table 1. In this case, we have 0.64 = σ 2 > β2

1
2(pμ+γ ) = 0.44, then the disease will die out (see

Theorem 3.2 and Fig. 3(b)). In addition, let σ = 0.7 and take unchanged other parameters,
we have 0.49 = σ 2 < 0.6 = β1 and 0.6 = β1 < pμ+γ +0.5σ 2 = 0.66, similarly, then the disease
will die out (see Theorem 3.2 and Fig. 4(b)). On the other hand, the basic reproduction
number of the ODE model R0 = 1.02 > 1, this means that the ODE model (1.2) also has an
endemic equilibrium which is globally asymptotically stable, as shown in Fig. 3 and Fig. 4.
Our results reveal that random perturbations in the environment can restrain the spread
of the disease.

Finally, we choose β1 = 0.9, β2 = 0.5, p = 0.1, q = 0.9, σ = 0.4 and other parameter values
given by Table 1. In this case, we have

R0 = 1.54 > 1,

0.16 = σ 2 < min

{

(β1 – β2)(1 – α),
2(pμ + γ )(R0 – 1)

(1 – α)2 ,
β1

1 – α

}

= min{0.28, 0.90, 1.29} = 0.28,
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Figure 4 The paths S(t) and I(t) for the model (1.2) and (1.3) with R0 = 1.02 > 1 and 0.49 = σ 2 < 0.6 = β1 and
0.6 = β1 < pμ + γ + 0.5σ 2 = 0.66

Figure 5 The paths S(t) and I(t) for the model (1.2) and (1.3) with R0 = 1.54 > 1 and
0.16 = σ 2 < min{(β1 – β2)(1 – α), 2(pμ+γ )(R0–1)

(1–α)2
, β1
1–α } =min{0.28, 0.90, 1.29} = 0.28

I1 =
μ[β1(1 – α) – (pμ + γ + σ 2

2 (1 – α)2)]
[μ(1 – αq) + γ ][β1 – σ 2(1 – α)]

= 0.0485,

I2 =
μ((β1 – β2)(1 – α) – σ 2)

2(β1 – β2)[μ(1 – αq) + γ ]
= 0.0317.

Then the disease I(t) will show persistence in mean, namely, the disease will prevail (see
Theorem 3.3 and Fig. 5(b)).

5 Conclusion
In this paper, we study a novel deterministic and stochastic SIR epidemic model with verti-
cal transmission and media coverage. For the deterministic model (1.2), we define a thresh-
old parameter R0 = β1(1–α)

pμ+γ
which completely determines extinction and prevalence of the

disease. Our results show that the disease-free equilibrium E0 for model (1.2) is globally
asymptotically stable if R0 < 1, the endemic equilibrium E1 is globally asymptotically stable
if R0 > 1 (see Theorem 2.1 and Fig. 2(a)–(b)). In addition, for the corresponding stochastic
model (1.3), we obtain the sufficient condition of the extinction of the disease, namely,
if σ 2 > β2

1
2(pμ+γ ) or σ 2 ≤ β1 and β1 < pμ + γ + σ 2

2 hold, then the disease I(t) will exponen-
tially die out with probability one (see Theorem 3.2 and Fig. 3 and Fig. 4). Furthermore,
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limt→∞〈S(t)〉 = 1 – α, a.s. (see Theorem 3.2). By Theorem 3.2 we can find that when The-
orem 3.2 holds, the disease will die out, but for the corresponding deterministic model
(1.2), R0 > 1, there exists an endemic equilibrium E1, which means that a stochastic per-
turbation can restrain the outbreak of the disease (see Fig. 3 and Fig. 4). Furthermore, from
Theorem 3.3, if σ 2 < min{(β1 – β2)(1 – α), 2(pμ+γ )(R0–1)

(1–α)2 , β1
1–α

} and R0 > 1, then the disease is
persistent in mean (see Fig. 5).

Some topics deserve further study. For example, one may construct some more realis-
tic but complex models, such as considering the effects of delay, complex network, pulse
vaccination and Lévy noise. Some scholars have already done a great deal of work (see
[34–40]). We leave these investigations for future work.

Appendix
In this appendix, we will give some proofs of the main results.

Proof of Theorem 2.1

Proof Let J(E0), J(E1) denote the Jacobian matrix of system (1.2) at the equilibria E0 and
E1, respectively, then we have

J(X) =

(
–(β1 – β2I

η+I )I – μ –(β1 – β2I
η+I )S + β2ηSI

(η+I)2 – μ(1 – α)q
(β1 – β2I

η+I )I –(pμ + γ ) + (β1 – β2I
η+I )S – β2ηIS

(η+I)2

)

,

thus

J(E0) =

(
–μ –β1S0 – μ(1 – α)q
0 –(pμ + γ ) + β1S0

)

=

(
–μ –β1(1 – α) – μ(1 – α)q
0 (pμ + γ )(R0 – 1)

)

(A.1)

and

J(E1) =

(
–(β1 – β2I∗

η+I∗ )I∗ – μ –(β1 – β2I∗
η+I∗ )S∗ + β2ηS∗I∗

(η+I∗)2 – μ(1 – α)q
(β1 – β2I∗

η+I∗ )I∗ –(pμ + γ ) + (β1 – β2I∗
η+I∗ )S∗ – β2ηI∗S∗

(η+I∗)2

)

=

(
–(β1 – β2I∗

η+I∗ )I∗ – μ –(pμ + γ ) + β2ηS∗I∗
(η+I∗)2 – μ(1 – α)q

(β1 – β2I∗
η+I∗ )I∗ – β2ηI∗S∗

(η+I∗)2

)

. (A.2)

From (A.1), we can know that all characteristic values have negative real parts if and only
if R0 < 1, according to Routh–Hurwitz criteria, E0 is locally stable if R0 < 1.

For (A.2), we have

tr
(
J(E1)

)
= –

(

β1 –
β2I∗

η + I∗

)

I∗ – μ – (pμ + γ ) +
(

β1 –
β2I∗

η + I∗

)

S∗ –
β2ηI∗S∗

(η + I∗)2

= –
(

β1 –
β2I∗

η + I∗

)

I∗ – μ –
β2ηI∗S∗

(η + I∗)2 < 0,

det
(
J(E1)

)
=

(

β1 –
β2I∗

η + I∗

)

I∗ β2ηI∗S∗

(η + I∗)2 +
μβ2ηI∗S∗

(η + I∗)2 + (pμ + γ )
(

β1 –
β2I∗

η + I∗

)

I∗
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–
(

β1 –
β2I∗

η + I∗

)

I∗ β2ηS∗I∗

(η + I∗)2 + μ(1 – α)q
(

β1 –
β2I∗

η + I∗

)

I∗

=
μβ2ηI∗S∗

(η + I∗)2 +
[
pμ + γ + μ(1 – α)q

]
(

β1 –
β2I∗

η + I∗

)

I∗ > 0.

Thus, E1 is locally asymptotically stable if R0 > 1.
Choose a Dulac function B = 1

SI . Denote

F = –
(

β1 –
β2I
η + I

)

SI – μS – (1 – α)μqI + (1 – α)μ,

G =
(

β1 –
β2I
η + I

)

SI – (pμ + γ )I.

Note that

∂(BF)
∂S

= –
(1 – α)μ

S2I
+

(1 – α)μq
S2 = –

μ(1 – α)(1 – qI)
S2I

,

∂(BG)
∂I

= –
μβ2

(η + I)2 ,

∂(BF)
∂S

+
∂(BG)

∂I
= –

μ(1 – α)(1 – qI)
S2I

–
μβ2

(η + I)2 < 0,

in the interior of the positive invariant set �. The Dulac criterion holds and there are no
close orbits in �. Incorporating local stability of E0 and E1, this proves that E0 is globally
asymptotically stable if R0 < 1 and E1 is globally asymptotically stable if R0 > 1. The proof
is complete. �

Proof of Theorem 3.1

Proof Owing to system (1.3), we get

d
(
S(s) + I(s)

)
=

{
–μS(s) –

[
μ(1 – αq) + γ

]
I(s) + μ(1 – α)

}
ds

<
{

–μS(s) – μ(1 – αq)I(s) + μ(1 – α)
}

ds

<
{

–μ(1 – αq)
(
S(s) + I(s)

)
+ μ(1 – α)

}
ds,

so, by integration we check

S(s) + I(s) <
1 – α

1 – αq
+

[

S(0) + I(0) –
1 – α

1 – αq

]

e–μ(1–αq)s for all s ∈ [0, t] a.s.

Then S(s) + I(s) < 1–α
1–αq < 1. In addition

d
(
S(s) + I(s)

)
=

{
–μS(s) –

[
μ(1 – αq) + γ

]
I(s) + μ(1 – α)

}
ds

>
{

–μS(s) – [μ + γ ]I(s) + μ(1 – α)
}

ds

>
{

–[μ + γ ]
(
S(s) + I(s)

)
+ μ(1 – α)

}
ds,
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so, by integration we check

S(s) + I(s) >
μ(1 – α)
μ + γ

+
[

S(0) + I(0) –
μ(1 – α)
μ + γ

]

e–(μ+γ )s for all s ∈ [0, t] a.s.

Hence S(s) + I(s) > μ(1–α)
μ+γ

. So

S(s), I(s) ∈
(

μ(1 – α)
μ + γ

, 1
)

for all s ∈ [0, t] a.s. (A.3)

We can easily see that the coefficients of system (1.3) are locally Lipschitz continuous for
any given initial value (S(0), I(0)) ∈ R

2
+. Hence, there is a unique local solution (S(t), I(t))

on t ∈ [0, τe), where τe is the explosion time (see [41]). To show that this solution is global,
we only need to prove that τe = ∞ a.s. Let k0 ≥ 0 be sufficiently large so that (S(0), I(0)) all
lie within the interval [ 1

k0
, k0]. For each integer k ≥ k0, define the following stopping time:

τk = inf

{

t ∈ [0, τe) : min
{(

S(t), I(t)
)} ≤ 1

k
or max

{(
S(t), I(t)

)} ≥ k
}

,

where throughout this paper, we set inf Ø=∞ (and as usual Ø denotes the empty set).
According to the definition, τk is increasing as k → ∞. Set τ∞= limk→∞ τk , whence τ∞ ≤
τe a.s. Namely, we need to show that τ∞=∞ a.s. We assumed that there exist a pair of
constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

As a result, there is an integer k1 ≥ k0 such that

P{τk ≤ T} > ε for all k ≥ k1. (A.4)

Now define a C2-function V : R2
+ →R+, where R+ = {x ∈R : x ≥ 0}, by

V (t) = S – 1 – log S + I – 1 – log I.

The nonnegativity of this function can be seen from u – 1 – log u ≥ 0, ∀u ≥ 0. Let k ≥ k0

and T > 0 be arbitrary. Applying to Itô,s formula, we obtain

dV (t) = LV (t) dt –
[
σ (S – 1)I – σ (I – 1)S

]
dB(t),

where

LV (t) =
(

1 –
1
S

)(

–
(

β1 –
β2I
η + I

)

SI – μS – (1 – α)μqI + (1 – α)μ
)

+
(

1 –
1
I

)((

β1 –
β2I
η + I

)

SI – (pμ + γ )I
)

+
σ 2S2I2

2S2 +
σ 2S2I2

2I2

= (1 – α)μ +
(

β1 –
β2I
η + I

)

I + μ + pμ + γ +
(1 – α)μqI

S
+

σ 2(S2 + I2)
2
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– μS –
[
(1 – α)μq + pμ + γ

]
I –

(

β1 –
β2I
η + I

)

S

≤ (1 – α)μ + β1I + μ + pμ + γ +
(1 – α)μqI

S
+

σ 2(S2 + I2)
2

+ β2S,

owing to (A.3), we have thus

LV (t) ≤ (1 – α)μ + β1 + μ + pμ + γ + (μ + γ )q + σ 2 + β2
.= B.

Then

dV (t) = B dt –
[
σ (S – 1)I – σ (I – 1)S

]
dB(t). (A.5)

Integrating both sides (A.5) from 0 to T ∧ τk and taking expectations, then we can obtain

EV
(
S(T ∧ τk), I(T ∧ τk)

) ≤ V
(
S(0), I(0)

)
+ BT < ∞. (A.6)

Set 
k = {τk ≤ t} for k ≥ k1 by (A.4), P(
k) ≥ ε. Notice that, for every ω ∈ 
k , there is at
least one of S(τk ,ω), I(τk ,ω) that equals either k or 1

k . Hence V (S(τk ,ω), I(τk ,ω) is no less
than

k – 1 – log k or
1
k

– 1 – log
1
k

=
1
k

– 1 + log k.

Consequently,

V
(
S(τk ,ω), I(τk ,ω)

) ≥ (k – 1 – log k) ∧
(

1
k

– 1 + log k
)

, (A.7)

where a ∧ b denotes the minimum of a and b. In view of (A.6) and (A.7), we have

V
(
S(0), I(0)

)
+ BT ≥ E

[
I
k V

(
S(τk ,ω), I(τk ,ω)

)]

≥ ε

[

(k – 1 – log k) ∧
(

1
k

– 1 + log k
)]

,

where I
k is the indicator function of 
k . Let k → ∞ leads to the contradiction

∞ > V
(
S(0), I(0)

)
+ BT = ∞.

Therefore, we must have τ∞ = ∞ a.s. �

Proof of Theorem 3.2

Proof Making use of Itô,s formula for ln I , we have

d ln I =
[(

β1 –
β2I
η + I

)

S – (pμ + γ ) –
σ 2S2

2
)
]

dt + σS dB(t)

≤
[

β1S – (pμ + γ ) –
σ 2S2

2

]

dt + σS dB(t)
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=
{

–
[

σS√
2

–
√

2β1

2σ

]2

+
β2

1
2σ 2 – (pμ + γ )

}

dt + σS dB(t)

≤
{

β2
1

2σ 2 – (pμ + γ )
}

dt + σS dB(t). (A.8)

Integrating Eq. (A.8) from 0 to t and dividing by t on both sides, we have

ln I(t) – ln I(0)
t

≤ β2
1

2σ 2 – (pμ + γ ) +
M(t)

t
, (A.9)

where M(t) =
∫ t

0 σS dB(t) is a real-value continuous local martingale, since we have the
quadratic variations, we can have

lim sup
t→∞

〈M, M〉t ≤ σ 2 < ∞.

By the large number theorem for the martingale (see [41]), we can get

lim
t→∞

M(t)
t

= 0, a.s. (A.10)

According to (A.9) and (A.10), we have

lim sup
t→∞

ln I(t)
t

≤ β2
1

2σ 2 – (pμ + γ ), a.s. (A.11)

That is to say, if σ 2 > β2
1

2(pμ+γ ) , we obtain

lim
t→∞ I(t) = 0, a.s.

On the other hand, let x = S, x ∈ (0, 1], f (x) = β1x – σ 2x2

2 = –( σx√
2 – β1

√
2

2σ
)2, if σ√

2 ≤ β1
√

2
2σ

, that

is, σ 2 ≤ β1, f (x) has the max value f (1) = β1 – σ 2

2 , namely, S = 1 by Eq. (A.8), we have

d ln I =
[(

β1 –
β2I
η + I

)

S – (pμ + γ ) –
σ 2S2

2
)
]

dt + σS dB(t)

≤
[

β1S – (pμ + γ ) –
σ 2S2

2

]

dt + σS dB(t)

=
{

–
[

σS√
2

–
√

2β1

2σ

]2

+
β2

1
2σ 2 – (pμ + γ )

}

dt + σS dB(t)

≤
{

β1 –
σ 2

2
– (pμ + γ )

}

dt + σS dB(t). (A.12)

Integrating Eq. (A.12) from 0 to t and dividing by t on both sides, we have

ln I(t) – ln I(0)
t

≤ β1 –
σ 2

2
– (pμ + γ ) +

M(t)
t

, (A.13)

then

lim sup
t→∞

ln I(t)
t

≤ β1 –
σ 2

2
– (pμ + γ ), a.s. (A.14)
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That is to say, if σ 2 ≤ β1 and β1 < σ 2

2 + (pμ + γ ), we have

lim sup
t→∞

ln I(t)
t

≤ β1 –
σ 2

2
– (pμ + γ ) < 0, a.s.

Hence, we can get

lim
t→∞ I(t) = 0, a.s.

Furthermore, we have

lim
t→∞

〈
I(t)

〉
= 0, a.s. (A.15)

For the system (1.3), we have

d(S + I) =
{

(1 – α)μ – μS –
[
μ(1 – αq) + γ

]
I
}

dt. (A.16)

Integrating Eq. (A.16) from 0 to t and dividing by t on both sides, we have

S(t) – S(0) + I(t) – I(0)
t

= (1 – α)μ – μ
〈
S(t)

〉
–

[
μ(1 – αq) + γ

]〈
I(t)

〉
. (A.17)

Then

〈
S(t)

〉
= (1 – α) –

[μ(1 – αq) + γ ]
μ

〈
I(t)

〉
+ 
(t), (A.18)

where


(t) =
1
μt

[
S(0) + I(0) – S(t) – I(t)

]
,

we obtain

lim
t→∞
(t) = 0. (A.19)

Combining (A.15) and (A.19), we have

lim
t→∞

〈
S(t)

〉
= 1 – α, a.s.

This completes the proof. �

Proof of Theorem 3.3

Proof Making use of Itô’s formula, we obtain

d ln I =
[(

β1 –
β2I
η + I

)

S – (pμ + γ ) –
σ 2S2

2

]

dt + σS dB(t)

≤
[

β1S – (pμ + γ ) –
σ 2S2

2

]

dt + σS dB(t). (A.20)
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Integrating Eq. (A.20) from 0 to t and dividing by t on both sides, we have

ln I(t) – ln I(0)
t

≤ β1
〈
S(t)

〉
– (pμ + γ ) –

σ 2

2
〈
S2(t)

〉
+

M(t)
t

≤ β1
〈
S(t)

〉
– (pμ + γ ) –

σ 2

2
〈
S(t)

〉2 +
M(t)

t
. (A.21)

In view of (A.18), we have

–
σ 2

2
〈
S(t)

〉2 = –
σ 2

2

[

(1 – α) + 
(t) –
μ(1 – αq) + γ

μ

〈
I(t)

〉
]2

.

So

ln I(t) – ln I(0)
t

≤ β1
〈
S(t)

〉
– (pμ + γ ) –

σ 2

2
〈
S(t)

〉2 +
M(t)

t

= β1

{

(1 – α) –
μ(1 – αq) + γ

μ

〈
I(t)

〉
+ 
(t)

}

– (pμ + γ )

–
σ 2

2

[

(1 – α) + 
(t) –
μ(1 – αq) + γ

μ

〈
I(t)

〉
]2

+
M(t)

t

= β1(1 – α) –
β1μ(1 – αq) + γ

μ

〈
I(t)

〉
+ β1
(t) – (pμ + γ )

–
σ 2

2
(1 – α)2 –

σ 2

2

2(t) – σ 2(1 – α)
(t) +

M(t)
t

+
σ 2[(1 – α) + 
(t)][μ(1 – αq) + γ ]

μ

〈
I(t)

〉
–

σ 2[μ(1 – αq) + γ ]2

2μ2

〈
I(t)

〉2

≤ β1(1 – α) – (pμ + γ ) –
σ 2

2
(1 – α)2 + β1
(t) +

M(t)
t

+
σ 2[(1 – α) + 
(t)][μ(1 – αq) + γ ]

μ

〈
I(t)

〉
–

β1μ(1 – αq) + γ

μ

〈
I(t)

〉
. (A.22)

Hence

〈
I(t)

〉 ≤ μ[β1(1 – α) – (pμ + γ + σ 2

2 (1 – α)2)]
[μ(1 – αq) + γ ](β1 – σ 2[(1 – α) + 
(t)])

+
μ

[μ(1 – αq) + γ ](β1 – σ 2[(1 – α) + 
(t)])

[

β1
(t) +
M(t)

t

]

. (A.23)

In view of (A.10) and (A.19), we have

lim sup
t→∞

〈
I(t)

〉 ≤ μ[β1(1 – α) – (pμ + γ + σ 2

2 (1 – α)2)]
[μ(1 – αq) + γ ][β1 – σ 2(1 – α)]

= I1, a.s. (A.24)

On the other hand,

d ln I =
[(

β1 –
β2I
η + I

)

S – (pμ + γ ) –
σ 2S2

2

]

dt + σS dB(t)
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≥
[

(β1 – β2)S – (pμ + γ ) –
σ 2S2

2

]

dt + σS dB(t). (A.25)

So,

ln I(t) – ln I(0)
t

≥ (β1 – β2)
〈
S(t)

〉
–

σ 2

2
〈
S2(t)

〉
+

M(t)
t

≥ (β1 – β2)
[

(1 – α) –
μ(1 – αq) + γ

μ

〈
I(t)

〉
+ 
(t)

]

–
σ 2

2
+

M(t)
t

. (A.26)

Hence,

〈
I(t)

〉 ≥ μ

(β1 – β2)[μ(1 – αq) + γ ]

[

(β1 – β2)
[
(1 – α) + 
(t)

]
–

σ 2

2
+

M(t)
t

]

. (A.27)

In the light of (A.10) and (A.19), we have

lim inf
t→∞

〈
I(t)

〉 ≥ μ((β1 – β2)(1 – α) – σ 2)
2(β1 – β2)[μ(1 – αq) + γ ]

= I2 a.s. (A.28)

Thus from (A.24) and (A.28), we have

I2 ≤ lim inf
t→∞

〈
I(t)

〉 ≤ lim sup
t→∞

〈
I(t)

〉 ≤ I1 a.s. �
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