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Abstract
Lie symmetry analysis is achieved on a new system of coupled KdV equations with
fractional order, which arise in the analysis of several problems in theoretical physics
and numerous scientific phenomena. We determine the reduced fractional ODE
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1 Introduction
Fractional partial differential equations (FPDEs) have a significant role to play in various
fields such as chemistry, physics, fluid dynamics and biology, therefore obtaining solutions
of such FPDEs is unavoidable [1, 2]. There are many numerical and theoretical methods
for solving fractional order differential equations [1–4].

The Lie symmetry technique is one of the most useful techniques to conclude to solu-
tions of nonlinear FPDEs, generally, Lie symmetries might be used to reduce the order of
the original equation (system of equations) as well as the number of independent variables
[5–11].

Lie symmetry analysis and conservation low have been applied to different type of frac-
tional PDEs such as the time-fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equa-
tion, time-fractional third-order evolution equation, the space-time-fractional nonlin-
ear evolution equations, the time-fractional modified Zakharov–Kuznetsov equation, the
time-fractional generalized Burgers–Huxley equation and the time-fractional dispersive
long-wave equation [12–17]. In [8] the new coupled KdV system

⎧
⎪⎪⎨

⎪⎪⎩

ut + uxxx + 3uux + 3wwx = 0,

vt + vxxx + 3vvx + 3wwx = 0,

wt + wxxx + 3
2 (uw)x + 3

2 (vw)x = 0,

(1)

was derived and examined by the Lie symmetry method.
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Unlike the case of ordinary partial differential equations (PDEs) symmetries of FPDEs
have not considered comprehensively. The study of FPDEs through symmetries is remark-
able and interesting [18–22].

In this paper, we consider the new coupled KdV system (1) of fractional order given by

⎧
⎪⎪⎨

⎪⎪⎩

Dα
t u + uxxx + 3uux + 3wwx = 0,

Dα
t v + vxxx + 3vvx + 3wwx = 0,

Dα
t w + wxxx + 3

2 (uw)x + 3
2 (vw)x = 0,

(2)

where α ∈ (0, 2).
The article is organized as follows. In Sect. 2, some definitions and properties of Lie

group scheme to analysis of (2) are given. In Sect. 3, we find Lie point symmetries of sys-
tem(2) and reduced system of this system. The conservation laws of (2) are obtained in
Sect. 4. Discussion and conclusions are summarized in Sect. 5.

2 The symmetry group analysis of (2)
In this section, we briefly review some key definitions and properties of the fractional Lie
group scheme to obtain infinitesimal function of the FPDE system.

Definition 1 The Riemann–Liouville fractional derivative of order α [1, 2] is defined by

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

⎧
⎨

⎩

∂nu(x,t)
∂tn ; α = n ∈N,
1

�(n–α)
dn

dtn
∫ t

0
u(x,τ )

(t–τ )α+1–n dτ ; n – 1 < α < n.

For a fractional PDE system like (2) with two independent variables we have

⎧
⎪⎪⎨

⎪⎪⎩

∂αu(x,t)
∂tα = F(x, t, u, v, w, u(1), v(1), w(1), . . .),

∂αv(x,t)
∂tα = G(x, t, u, v, w, u(1), v(1), w(1), . . .),

∂αw(x,t)
∂tα = H(x, t, u, v, w, u(1), v(1), w(1), . . .), 0 < α < 2.

(3)

Throughout the article we use (x̄, ū) instead of (x, t, u, v, w).
Assume that (3) is invariant under the one parameter Lie group of infinitesimal trans-

formations,

t� = t + ετ (x̄, ū) + O
(
ε2),

x� = x + εξ (x̄, ū) + O
(
ε2),

u� = u + εηu(x̄, ū) + O
(
ε2),

v� = v + εηv(x̄, ū) + O
(
ε2),

w� = w + εηw(x̄, ū) + O
(
ε2),

Dα
t�u� = Dα

t u + εη(α)u(x̄, ū) + O
(
ε2),

Dα
t�v� = Dα

t v + εη(α)v(x̄, ū) + O
(
ε2),

Dα
t�w� = Dα

t w + εη(α)w(x̄, ū) + O
(
ε2),
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∂ ju�

∂x�j =
∂ ju
∂xj + εη(j)u(x̄, ū) + O

(
ε2),

∂ jv�

∂x�j =
∂ jv
∂xj + εη(j)v(x̄, ū) + O

(
ε2),

∂ jw�

∂x�j =
∂ jw
∂xj + εη(j)w(x̄, ū) + O

(
ε2), j = 1, 2, . . . , (4)

where ξ , τ , ηu, ηv , ηw are infinitesimals and η(α)u, η(α)v , η(α)w , η(j)u, η(j)v , η(j)w are extended
infinitesimals. ε is the group parameter.

According to Lie’s algorithm, the infinitesimal generator of (2) is given by

X = ξ (x̄, ū)
∂

∂x
+ τ (x̄, ū)

∂

∂t
+ ηu(x̄, ū)

∂

∂u
+ ηv(x̄, ū)

∂

∂v

+ ηw(x̄, ū)
∂

∂w
. (5)

The coupled KdV system of fractional order has at most αth-order derivatives, therefore,
the α-prolongation of the generator should be considered in the form

X(α) = ξ (x̄, ū)
∂

∂x
+ τ (x̄, ū)

∂

∂t
+ ηu(x̄, ū)

∂

∂u
+ ηv(x̄, ū)

∂

∂v

+ ηw(x̄, ū)
∂

∂w
+ η

(1)u
i (x, t, u, v, w, u(i), v(i), w(i))

∂

∂ui

+ η
(1)v
i (x̄, ū, u(i), v(i), w(i))

∂

∂vi
+ η

(1)w
i (x̄, ū, u(i), v(i), w(i))

∂

∂wi
+ · · ·

+ η
(k)u
i1···ik (x̄, ū, u(1), v(1), w(1), . . . , u(k), v(k), w(k))

∂

∂ui1,...,ik

+ η
(k)v
i1···ik (x̄, ū, u(1), v(1), w(1), . . . , u(k), v(k), w(k))

∂

∂vi1,...,ik

+ η
(k)w
i1···ik (x̄, ū, u(1), v(1), w(1), . . . , u(k), v(k), w(k))

∂

∂wi1,...,ik

+ η
(α)u
t (x̄, t̄, . . . , u(α), . . .)

∂

∂uα
t

+ η
(α)v
t (x̄, ū, . . . , v(α), . . .)

∂

∂vα
t

+ η
(α)w
t (x̄, ū, . . . , w(α), . . .)

∂

∂wα
t

, (6)

where

η
(α)u
t = Dα

1t
(
ηu) + ξDα

1t(ux) – Dα
1t(ξux) + Dα

1t
(
D1t(τ )u

)
– Dα+1

1t (τu) + τDα+1
1t u,

η
(α)v
t = Dα

2t
(
ηv) + ξDα

2t(vx) – Dα
2t(ξvx) + Dα

2t
(
D2t(τ )v

)
– Dα+1

2t (τv) + τDα+1
2t v,

η
(α)w
t = Dα

3t
(
ηw)

+ ξDα
3t(wx) – Dα

3t(ξwx) + Dα
3t
(
D3t(τ )w

)
– Dα+1

3t (τw) + τDα+1
3t w.

D1t , D2t and D3t are the total derivative operators defined as

D1t =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ uxxt

∂

∂uxx
+ · · · ,
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D2t =
∂

∂t
+ vt

∂

∂v
+ vxt

∂

∂vx
+ vtt

∂

∂vt
+ vxxt

∂

∂vxx
+ · · · ,

D3t =
∂

∂t
+ wt

∂

∂w
+ wxt

∂

∂wx
+ wtt

∂

∂wt
+ wxxt

∂

∂wxx
+ · · · .

Definition 2 A vector X given by (5) is said to be a Lie point symmetry vector field for
system (2), if

X(α)[Dα
t u + uxxx + 3uux + 3wwx

]
= 0,

X(α)[Dα
t v + vxxx + 3vvx + 3wwx

]
= 0,

X(α)
[

Dα
t w + wxxx +

3
2

(uw)x +
3
2

(vw)x

]

= 0.

3 Lie symmetries and similarity reductions for (2)
We apply the α-prolongation of X(α) to Eq. (2). It gives the following claim.

Theorem 1 Lie symmetry group of (2) is spanned by the following vector fields:

X1 =
∂

∂x
, X2 = αx

∂

∂x
+ 3t

∂

∂t
– 2αu

∂

∂u
– 2αv

∂

∂v
– 2αw

∂

∂w
. (7)

Proof Let us consider the one parameter Lie group of infinitesimal transformation in x, t,
u, v, w given by

t −→ t + εξ t(x̄, ū),

x −→ x + εξ x(x̄, ū),

v −→ v + εηv(x̄, ū),

u −→ u + εηu(x̄, ū),

w −→ w + εηw(x̄, ū),

now we find the coefficient functions ξ , τ , ηu, ηv , ηw .
By applying the X(α) to both sides of (2),we have

X(α)[Dα
t u + uxxx + 3uux + 3wwx

]
= 0,

X(α)[Dα
t v + vxxx + 3vvx + 3wwx

]
= 0,

X(α)
[

Dα
t w + wxxx +

3
2

(uw)x +
3
2

(vw)x

]

= 0. (8)

We obtain the Lie point symmetries by expanding (8), and solving the resulting system
using Maple as follows:

ξ (x̄, ū) = c1 + c2αx, τ (x̄, ū) = 3c2t,

ηu(x̄, ū) = –2c2αu, ηv(x̄, ū) = –2c2αv, ηw(x̄, ū) = –2c2αw,
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here c1 and c2 are arbitrary constants. Thus, the corresponding vector fields are

X1 =
∂

∂x
, X2 = αx

∂

∂x
+ 3t

∂

∂t
– 2αu

∂

∂u
– 2αv

∂

∂v
– 2αw

∂

∂w
. �

Here we want to obtain symmetry reductions of (2), then the system (2) transforms into
a system of fractional ODE.

In order to solve the following associated Lagrange equations:

dx
ξ (x̄, ū)

=
dt

τ (x̄, ū)
=

du
ηu(x̄, ū)

=
dv

ηv(x̄, ū)
=

dw
ηw(x̄, ū)

.

We consider the following cases.
• Case 1: X1 = ∂

∂x .
In this case the symmetry X1 gives rise to the group-invariant solution:

r = t, u = F(r), v = G(r), w = H(r), (9)

substituting (9) into (2) results in the fact that F(r), G(r) and H(r) fulfill the following
differential equations:

dαF(t)
dtα

= 0,
dαG(t)

dtα
= 0,

dαH(t)
dtα

= 0.

By using a Laplace transformation we get

F(t) =
k1

�(α)
tα–1, G(t) =

k2

�(α)
tα–1, H(t) =

k3

�(α)
tα–1,

where k1, k2 and k3 are constant; therefore

u(x, t) =
k

�(α)
tα–1, v(x, t) =

k
�(α)

tα–1, w(x, t) =
k

�(α)
tα–1.

• Case 2: X2 = αx ∂
∂x + 3t ∂

∂t – 2αu ∂
∂u – 2αv ∂

∂v – 2αw ∂
∂w .

In this case, the group-invariant solution is

r = tx
–3
α , u = F(r)x–2, v = G(r)x–2, w = H(r)x–2, (10)

substituting (10) into (2) leads to the following fractional ODE system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
r F + k1F(r) + k2rF ′(r) + k3r2F ′′(r) + k4r3F (3)(r) + k5F2(r) + k6rF(r)F ′(r)

+ k7H2(r) + k8rH(r)H ′(r) = 0,

Dα
r G + k′

1G(r) + k′
2rG′(r) + k′

3r2G′′(r) + k′
4r3G(3)(r) + k′

5G2(r) + k′
6rG(r)G′(r)

+ k′
7H2(r) + k′

8rH(r)H ′(r) = 0,

Dα
r H + k′′

1 H(r) + k′′
2 rH ′(r) + k′′

3 r2H ′′(r) + k′′
4 r3H (3)(r) + k′′

5 F(r)H(r) + k′′
6 rF ′(r)H(r)

+ k′′
7 rF(r)H ′′(r) + k′′

8 G(r)H(r) + k′′
9 rG′(r)H(r) + k′′

10rG(r)H ′′(r) = 0,

where ki = hi(α), k′
i = gi(α), (i = 1, 2, . . . , 8) and k′′

j = mj(α), (j = 1, 2, . . . , 10) are constants.
Note. For α = 1, the Lie point symmetries provide similar results to those obtained by

Adem and Khalique in [8].
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4 Conservation laws
Now, we construct conservation laws for system (2) by using the Lie point symmetry (7).

The vectors Ci = (Ct
i , Cx

i ), (i = 1, 2, 3) are called conserved vectors for system (2), if they
satisfy the conservation equations,

Dt
(
Ct

1
)

+ Dx
(
Cx

1
)|Dα

t u+uxxx+3uux+3wwx=0 = 0,

Dt
(
Ct

2
)

+ Dx
(
Cx

2
)|Dα

t v+vxxx+3vvx+3wwx=0 = 0,

Dt
(
Ct

3
)

+ Dx
(
Cx

3
)|Dα

t w+wxxx+ 3
2 (uw)x+ 3

2 (vw)x=0 = 0.

For system (2), a formal Lagrangian can be introduced as

L = 
1(x, t)
[
Dα

t u + uxxx + 3uux + 3wwx
]

+ 
2(x, t)
[
Dα

t v + vxxx + 3vvx + 3wwx
]

+ 
3(x, t)
[

Dα
t w + wxxx +

3
2

(uw)x +
3
2

(vw)x

]

= 0, (11)

where 
i(x, t), i = 1, 2, 3, are new dependent variables.
The Euler–Lagrange operators are defined by

δ

δu
=

∂

∂u
+

(
Dα

t
)� ∂

∂Dα
t u

– Dx
∂

∂ux
+ D2

x
∂

∂uxx
– D3

x
∂

∂uxxx
,

δ

δv
=

∂

∂v
+

(
Dα

t
)� ∂

∂Dα
t v

– Dx
∂

∂vx
+ D2

x
∂

∂vxx
– D3

x
∂

∂vxxx
,

δ

δw
=

∂

∂w
+

(
Dα

t
)� ∂

∂Dα
t w

– Dx
∂

∂wx
+ D2

x
∂

∂wxx
– D3

x
∂

∂wxxx
,

here (Dα
t )� is the adjoint operator of Dα

t .
For the RL-fractional operators

(
Dα

t
)� = (–1)nIn–α

T
(
Dn

t
)

=C
t Dα

T ,

where

In–α
T f (t, x) =

1
�(n – α)

∫ τ

t

f (τ , x)
(τ – t)1+α–n dτ , n = [α] + 1.

The adjoint equations to the system (2) are written as

F�
1 =

δL
δu

= 0, F�
2 =

δL
δv

= 0, F�
3 =

δL
δw

= 0. (12)

Replacing the formal Lagrangian (11) into (12), we have

F�
1 =

(
Dα

t
)�


1 – 3u
1
x – 
1

xxx +
3
2

wx

3 –

3
2

w
3
x = 0,

F�
2 =

(
Dα

t
)�


2 – 3v
2
x – 
2

xxx +
3
2

wx

3 –

3
2

w
3
x = 0,

F�
3 =

(
Dα

t
)�


3 – 3w
1
x – 3w
2

x +
3
2

(ux + vx)
3 –
3
2

(u + v)
3
x – 
3

xxx = 0. (13)
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Since in the system(2), there are no fractional derivatives involved w.r.t. x, we have

X(α) + D1t(τ )L + D1x(ξ )L = wi
∂

∂u
+ D1tNt

1 + D1xNx
1 ,

X(α) + D2t(τ )L + D2x(ξ )L = wi
∂

∂v
+ D2tNt

2 + D2xNx
2 ,

X(α) + D3t(τ )L + D3x(ξ )L = wi
∂

∂w
+ D3tNt

3 + D3xNx
3 ,

where

Wi =
(
ηu + ηv + ηw)

– ξi(ux + vx + wx) – τi(ut + vt + wt), i = 1, 2,

are the Lie characteristic functions corresponding to the Lie symmetries X1 and X2.
If we have the RL-time-fractional derivative in the system (2) then the operators Nt are

given by

Nt
1 =

n–1∑

k=0

(–1)kDα–1–k
1t (wi)Dk

1t
∂

(∂Dα
t u)

– (–1)nJ
(

Wi, Dn
1t

∂

(∂Dα
t u)

)

,

Nt
2 =

n–1∑

k=0

(–1)kDα–1–k
2t (Wi)Dk

2t
∂

(∂Dα
t v)

– (–1)nJ
(

Wi, Dn
2t

∂

(∂Dα
t v)

)

,

Nt
3 =

n–1∑

k=0

(–1)kDα–1–k
1t (Wi)Dk

3t
∂

(∂Dα
t w)

– (–1)nJ
(

Wi, Dn
3t

∂

(∂Dα
t w)

)

,

where J is the integral

J(f , g) =
1

�(n – α)

∫ t

0

∫ τ

t

f (τ , x)g(μ, x)
(μ – τ )α+1–n dμdτ ;

the operators Nx are defined by

Nx
1 = Wi

∂L
∂ux

+ D1x(Wi)
∂L

∂uxx
+ D2

1x(Wi)
∂L

∂uxxx
,

Nx
2 = Wi

∂L
∂vx

+ D2x(Wi)
∂L

∂vxx
+ D2

2x(Wi)
∂L

∂vxxx
,

Nx
3 = Wi

∂L
∂wx

+ D3x(Wi)
∂L

∂wxx
+ D2

3x(Wi)
∂L

∂wxxx
.

For any generator X of system (2), we have

(
X(α)L + D1t(τ )L + D1x(ξ )L

)|Dα
t u+uxxx+3uux+3wwx=0 = 0,

(
X(α)L + D2t(τ )L + D2x(ξ )L

)|Dα
t v+vxxx+3vvx+3wwx=0 = 0,

(
X(α)L + D3t(τ )L + D3x(ξ )L

)|Dα
t w+wxxx+ 3

2 (uw)x+ 3
2 (vw)x=0 = 0.

These equalities yield the conservation laws

D1t
(
Nt

1L
)

+ D1x
(
Nx

1 L
)

= 0,
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D2t
(
Nt

2L
)

+ D2x
(
Nx

2 L
)

= 0,

D3t
(
Nt

3L
)

+ D3x
(
Nx

3 L
)

= 0.

For the case, when α ∈ (0, 1), using Nt
i and Nx

i (i = 1, 2, 3), one can get the components of
the conserved vectors

Ct
1 = (–1)0Dα–1

1t (Wi)D0
1t

∂L
∂Dα

t u
– (–1)1J

(

Wi, D1
1t

∂L
∂Dα

t u

)

= 
1Dα–1
1t (Wi) + J

(
Wi,
1

t
)
,

Ct
2 = (–1)0Dα–1

2t (Wi)D0
2t

∂L
∂Dα

t v
– (–1)1J

(

Wi, D1
2t

∂L
∂Dα

t v

)

= 
2Dα–1
2t (Wi) + J

(
Wi,
2

t
)
,

Ct
3 = (–1)0Dα–1

3t (Wi)D0
3t

∂L
∂Dα

t w
– (–1)1J

(

Wi, D1
3t

∂L
∂Dα

t w

)

= 
3Dα–1
1t (Wi) + J

(
Wi,
3

t
)
,

and

Cx
1 = Wi

(
∂L
∂ux

– D1x
∂L

∂uxx
+ D2

1x
∂L

∂uxxx

)

+ D1x(Wi)
(

∂L
∂uxx

– D1x
∂L

∂uxxx

)

+ D2
1x(Wi)

∂

∂uxxx

= Wi

(

3u
1 +
3
2

w
3 + 
1
xx

)

– D1x(Wi)
1
x + D2

1x(Wi)
1, (14)

Cx
2 = Wi

(
∂L
∂vx

– D2x
∂L

∂vxx
+ D2

2x
∂L

∂vxxx

)

+ D2x(Wi)
(

∂L
∂vxx

– D2x
∂L

∂vxxx

)

+ D2
2x(Wi)

∂

∂vxxx

= wi

(

3v
2 +
3
2

w
3 + 
2
xx

)

– D2x(Wi)
2
x + D2

2x(Wi)
2, (15)

Cx
3 = Wi

(
∂L
∂wx

– D3x
∂L

∂wxx
+ D2

3x
∂L

∂wxxx

)

+ D3x(Wi)
(

∂L
∂wxx

– D3x
∂L

∂wxxx

)

+ D2
3x(Wi)

∂

∂wxxx

= Wi

(

3w
1 + 3w
2 +
3
2

u
3 +
3
2

v
3 + 
3
xx

)

– D3x(Wi)
3
x + D2

3x(Wi)
3, (16)

where i = 1, 2 and the functions Wi are

W1 = –(ux + vx + wx),

W2 = –2αu – 2αv – 2αw – αx(ux + vx + wx) – 3t(ut + vt + wt). (17)

Also, when α ∈ (1, 2), we get the components of the conserved vectors

Ct
1 = 
1Dα–1

1t (wi) + J
(
Wi,
1

t
)

– 
1
t Dα–2

1t (Wi) – J
(
Wi,
1

tt
)
,

Ct
2 = 
2Dα–1

2t (Wi) + J
(
Wi,
2

t
)

– 
2
t Dα–2

2t (Wi) – J
(
Wi,
2

tt
)
,

Ct
3 = 
3Dα–1

3t (Wi) + J
(
Wi,
3

t
)

– 
3
t Dα–2

3t (Wi) – J
(
Wi,
3

tt
)
,
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where i = 1, 2 and the functions Wi in the form (17); also the conserved vectors Cx
1 , Cx

2 , Cx
3

coincide with (14), (15) and (16).

5 Conclusions
In this paper, Lie symmetries and conservation laws have been studied for fractional order
coupled KdV system (2). First, we obtained the fractional Lie point symmetries to the
KdV system (2) with Riemann–Liouville derivative and we have shown that system (2)
can be reduced to a nonlinear system of FDEs. Finally, conservation laws are constructed
for system (2), the calculated conserved vectors, might be used for creating the particular
solutions for the KdV system by the given method in [23, 24].
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