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Abstract
In this paper we first obtain various new forms of the q-analogue of the I-function
satisfying Truesdell’s ascending and descending Fq-equation. Then we use these
forms to obtain new generating functions for the q-analogue of the I-function. Some
particular cases of these results in terms of the q-analogue of the I-function,
H-function and G-function have also been obtained.
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1 Introduction
Many researchers engaged their focus on a different version of calculus which is also called
calculus without limits or q-calculus. This form of calculus was initiated in the 1920s of
the last century. Basic elements of q-calculus can be found in Kac and Cheung’s book
[1] entitled “Quantum Calculus”. The investigations of q-integrals and q-derivatives of ar-
bitrary order have gained importance due to their various applications in the areas like
ordinary and fractional differential equations, solutions of the q-difference (differential)
and q-integral equations, and q-transform analysis.

Hypergeometric functions evolved as a natural unification of many known functions
[2–5] starting from the seventeenth century to the present day. Functions of this type
may also be generalized using the concept of basic number q, resulting in their basic or
q-analogues. Over the last 30 years, great interest in q-functions has been witnessed in
view of their applications in number theory, statistics and other areas of mathematics and
physics. Recent developments in the theory of basic hypergeometric functions have in-
troduced new generalized forms of them. These functions are Mac-Roberts’s E-function,
Meijer’s G-function, Fox’s H-function, Saxena’s I-function and their q-analogues. The q-
analogue of the I-function has been introduced by Dutta et al. [6], in view of the q-gamma
function, which is a q-extension of the generalized H-function and I-function earlier de-
fined by Saxena et al. [7] and Farooq et al. [8].

In his effort towards achieving unification of special functions, Truesdell [9] has put
forward a theory which yielded a number of results for special functions satisfying the so-
called Truesdell’s F-equation. Agrawal [10], extended this theory and derived results for
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a descending F-equation. He obtained various properties like orthogonality, Rodrigue’s
and Schalafli’s formulas for the F-equation. Renu Jain et al. [11] obtained various forms of
the I-function which satisfy Truesdell’s ascending and descending F-equation. For more of
such recent studies, the interested reader is referred to [12–16] and the references therein.

In this paper, on the one hand we derive some identities for the q-analogue of gamma
function and on the other we obtain new generating functions which satisfy Truesdell’s
ascending and descending Fq-equation. To attain the purpose, we have stretched out F-
equation to its q-analogue, namely the Fq-equation. We have additionally determined dif-
ferent types of the I-function satisfying Truesdell’s ascending and descending Fq-equation.
By applying the various structures we have obtained some generating functions of the I-
function. Some special cases of these results are also obtained, which validate the out-
comes and also yield some new results. We present our main results in Sect. 3 after pre-
senting related mathematical preliminaries in Sect. 2.

2 Mathematical preliminaries
Before going further to this section, it is to be remarked that some literature can be found
for a trivial generalization of the I-function, namely the Aleph function. Therefore, Sexena
[17] has proved that the so-called “Aleph function” is nothing but another form of the Sax-
ena I-function, which is the last generalization of the hypergeometric functions. Hence,
all studies of the Aleph function are, in fact, studies of the earlier function (I-function)
unless it indicates some new properties of both I-function and Aleph function. For fur-
ther details, see [17] and the references therein. Therefore, in our present investigation we
confine ourselves to different forms of the I-function.

2.1 Basic analogue of the I-function
The basic analogue of the modified I-function was given by Dutta et al. [6] in terms of the
Mellin–Barnes type basic contour integral as

Im,n
pi ,qi ,τi ;r

[(
z; q

∣∣∣∣∣(aj, Aj)1,n . . . [τi(aji, Aji)]n+1,pi

(bj, Bj)1,m . . . [τi(bji, Bji)]m+1,qi

)]

=
1

2πω

×
∫

L

∏m
j=1 G(q(bj–Bjs))

∏n
j=1 G(q(1–aj–Ajs))∑r

i=1 τi[
∏qi

j=m+1 G(q(1–bji+Bjis))
∏pi

j=n+1 G(q(aji–Ajis))G(qs)G(q1–s) sinπs]
πzs ds,

(1)

where z �= 0, 0 < q < 1 and ω =
√

–1. The parameters pi, qi are non-negative whole numbers
fulfilling the disparity 0 ≤ n ≤ pi, 0 ≤ m ≤ qi and τi > 0; i = 1, 2, 3, . . . , r is finite and Aj, Bj,
Aji, Bji are +ve real numbers and aj, bj, aji, bji ∈ C. The C = Cωγ∞ is an appropriate shape
of the Mellin–Barnes type in the complex s-plane, which keeps running from γ – ω∞ to
γ + ω∞ with γ ∈ C, in such a way, that all poles of G(q(bj–Bjs)); 1 ≤ j ≤ m, isolating from
those of G(q(1–aj+Ajs)); 1 ≤ j ≤ n. Every pole of the integrand (1) is simple and void products
are translated as unity. The integral converges if Re[s log(z) – log sinπs] < 0, for substantial
estimations of |s| on the contour L, that is, if |(arg(z) – w2w–1

1 log |z|)| < π , where 0 < |q| < 1,
log q = –w = –(w1 + iw2), w, w1, w2 are definite quantities, w1, w2 are real.
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If we take r = 1; τi = 1 in (1), then it reduces to the q-analogue of H-function defined by
Saxena et al. [18]. If we set Ai = Bj = 1 for all i and j, then it reduces to the q-analogue of
the G-function defined by Saxena et al. [18].

Ahmad et al. [19] defined the basic analogue of the modified I-function in terms of the
q-gamma function as follows:

Im,n
pi ,qi ,τi ;r

[(
z; q

∣∣∣∣∣(aj, Aj)1,n . . . [τi(aji, Aji)]n+1,pi

(bj, Bj)1,m . . . [τi(bji, Bji)]m+1,qi

)]

=
1

2πω

×
∫

L

∏m
j=1 Γq(bj – Bjs)

∏n
j=1 Γq(1 – aj – Ajs)πzs∑r

i=1 τi[
∏qi

j=m+1 Γq(1 – bji + Bjis)
∏pi

j=n+1 Γq(aji – Ajis)Γq(s)Γq(1 – s) sinπs]
ds.

(2)

By setting τi = 1 in (2), we get the results defined in [7, 8].

2.2 Truesdell F-equation
If for the function F(z,α),

Dr
zF(z,α) = F(z,α + r), (3)

then it is said to be satisfying the ascending Fq-condition. However, for F(z,α) satisfying
the ascending F-equation, Truesdell [9] has obtained the following generating functions
using Taylor’s series:

F(z + y,α) =
∞∑

n=0

yn F(z,α + n)
n!

. (4)

The function G(z,α) is said to satisfy the descending Fq-equation if

Dr
zG(z,α) = G(z,α – r). (5)

For G(z,α) satisfying the descending F-condition, Agrawal [20] has obtained the following
generating functions:

G(z + y,α) =
∞∑

n=0

yn G(z,α – n)
n!

. (6)

The q-derivative of Eqs. (3) and (5) can be written, respectively, in the following manner:

Dr
q,zF(z,α) = F(z,α + r), (7)

Dr
q,zG(z,α) = G(z,α – r). (8)

3 Main results
In this section we derive our main results by dividing them into three subsections
(Sects. 3.1–3.3). We first obtain the identities involving the gamma function and then
we will obtain generating functions satisfying Truesdell’s ascending and descending Fq-
equations.
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3.1 Identities involving gamma function
In this section, we first derive some identities for the q-analogue of the gamma function
in order to obtain further results of this paper.

Lemma 3.1 The following identity for the q-analogue of gamma function holds true:

m–1∏
k=0

Γq

(
α + r + k

m

)
=

(qα ; q)r

(1 – q)r

m–1∏
k=0

Γq

(
α + k

m

)
. (9)

Proof Considering the involved ratio and simplifying in the following manner, we get the
required result:

∏m–1
k=0 Γq( α+r+k

m )∏m–1
k=0 Γq( α+k

m

=
Γq( α+r

m )
Γq( α

m )
Γq( α+r+1

m )
Γq( α+1

m )
Γq( α+r+2

m )
Γq( α+2

m )
· · · Γq( α+r+m–1

m )
Γq( α+m–1

m )

=
[

α

m

]
q,r/m

[
α + 1

m

]
q,r/m

· · ·
[

α + m – 1
m

]
q,r/m

=
[(qα ; qm) r

m
(qα+1; qm) r

m
(qα+2; qm) r

m
· · · (qα+m–1; qm) r

m
]

(1 – q)r

=
(qα ; q)r

(1 – q)r . (10)
�

Remark 1 Similarly, by following the same type of calculations, we can also derive the
following identities:

m–1∏
k=0

Γq

(
1 –

α + r + k
m

)
=

q
2rα+r2–r

2m (1 – q)r

(–1)r(qα ; q)r

m–1∏
k=0

Γq

(
1 –

α + k
m

)
; (11)

m–1∏
k=0

Γq

(
α – r + k

m

)
=

q r
m (r–2α+1)(1 – q)r

(–1)r(q1–α ; q)r

m–1∏
k=0

Γq

(
α + k

m

)
; (12)

m–1∏
k=0

Γq

(
1 –

α – r + k
m

)
=

(q1–α ; q)r

(1 – q)r

m–1∏
k=0

Γq

(
1 –

α + k
m

)
. (13)

Here and in the following, �(μ,α), denotes the array of μ parameters:

α

μ
,
α + 1

μ
, . . . ,

α + μ – 1
μ

(μ = 1, 2, 3, . . .)

and

(�(μ,α),β
)

stands for
(

α

μ
,β

)
,
(

α + 1
μ

,β
)

, . . . ,
(

α + μ – 1
μ

,β
)

. (14)

3.2 Generating functions satisfying Truesdell’s ascending Fq-equation
In this section we will derive various forms of the q-analogue of the modified I-function,
which satisfy Truesdell’s ascending Fq-equation.
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Theorem 3.2 The following form of the I-function satisfies Truesdell’s ascending Fq-
equation:

(
q

α–1
2 [ ρ–1

ρ ]z
)–α

× Im,n
pi ,qi ;τi ;l

[(
qαh(λ–1)zhλ; q

∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi–ρ , (�(ρ,α), h)
(�(λ,α), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi–ρ , (�(ρ,α), h)

)]
.

(15)

Proof Expecting that the structure (15) is F(z,α), supplanting the basic analogue of the
I-function according to its definition (2) and then interchanging the order of integration
and differentiation, which is legitimized under the conditions of convergence [19], we see
that

Dr
q,zF(z,α)

=
1

2πω

∫
L

∏λ–1
k=0 Γq( α+k

λ
– hs)∑l

i=1 τi[
∏qi–ρ

j=m+1 Γq(1 – bji + Bjis)

×
( m∏

j=λ+1

Γq(bj – βjs)
n∏

j=1

Γq(1 – aj – αjs)q
α(α–1)

2ρ – α(α–1)
2 qαh(λ–1)sDr

q,zzhλs–απ

)

/(
ρ–1∏
k=0

Γq

(
1 –

α + k
ρ

+ hs
) pi–ρ∏

j=n+1

Γq(aji – αjis)

×
ρ–1∏
k=0

Γq

(
α + k

ρ
– hs

)
Γq(s)Γq(1 – s) sinπs

)
ds. (16)

Using the results (9) and (11), we have

λ–1∏
k=0

Γq

(
α + k

λ
– hs

)
=

(1 – q)r

(qα–hλs; q)r

λ–1∏
k=0

Γq

(
α + r + k

λ
– hs

)
, (17)

λ–1∏
k=0

Γq

(
1 –

α + k
λ

+ hs
)

=
(–1)r(qα–hλs; q)r

(1 – q)rq
2r(α–hλs)+r2–r

2λ

λ–1∏
k=0

Γq

(
1 –

α + r + k
λ

+ hs
)

. (18)

Using the identities (17)–(18) in (16) we get the required Truesdell’s ascending Fq-
Eq. (7). �

Remark 2 Similarly the following structures (19) to (23) can be shown to fulfill Truesdell’s
ascending Fq-condition:

(
q

1
2 [ α

λ
+α–1]z

(1 – q)
h
)–α

× Im,n
pi ,qi ;τi ;l

[(
qαh(λ+1)zhλ; q

∣∣∣∣∣(�(λ,α + 1/2), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi

(�(2λ, 2α), h), (bj,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]
, (19)
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(
q

1
2 [ 3α+1

3λ
+α–1]z

(1 – q)

)–α

× Im,n
pi ,qi ;τi ;l

[(
qαh(λ+1)zhλ; q

∣∣∣∣(�(λ,α + 2
3 ), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi–λ, (�(λ,α + 1/3), h)
(�(3λ, 3α), h), (bj,βj)3λ+1,m, [τi(bji,βji)]m+1,qi

)]
,

(20)

(
q

α–1
2 z

)–αeπ iαIm,n
pi ,qi ;τi ;l

[((
qαz

)hλ; q

∣∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi

(�(λ,α), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi

)]
, (21)

(
q

α–1
2

λ–1
λ z

)–αIm,n
pi ,qi ;τi ;l

[(
qhα(λ–1)zhλ; q

∣∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi

(�(λ,α), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi

)]
,

(22)(
q

α–1
2

λ–1
λ

+ 1
ρ z

)–αeπ iα

× Im,n
pi ,qi ;τi ;l

[((
qαz

)hλ; q

∣∣∣∣∣ (�(ρ,α), h), (aj,αj)ρ+1,n, [τi(aji,αji)]n+1,pi

(�(ρ,α), h), (bj,βj)ρ+1,m, [τi(bji,βji)]m+1,qi–λ(�(λ,α), h)

)]
.

(23)

Next we use the above forms (15) and (19)–(23) to establish the following new generating
functions for the q-analogue of the modified I-functions using Truesdell’s ascending Fq-
equation technique.

For example, we establish the following generating function (24) by substituting the
structures (15) in Truesdell’s ascending Fq-condition (7) and supplant z by y

qα and q–αhyhλ

by x, respectively:

(
1 + qα

)–α

×Im,n
pi ,qi ;τi ;l

[((
1 + qα

)hλx; q
∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi–ρ , (�(ρ,α), h)
(�(λ,α), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi–ρ , (�(ρ,α), h)

)]

=
∞∑

r=0

(q
(–2α–r+1)((ρ–1)/ρ)

2 +2α)r

r!

×Im,n
pi ,qi ;τi ;l

[(
(qrh(λ–1)x; q

∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi–ρ , (�(ρ,α + r), h)
(�(λ,α + r), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi–ρ , (�(ρ,α + r), h)

)]
.

(24)

Similarly, we establish the following generating function (25) by putting the structures
(19) in Truesdell’s ascending Fq-condition (7) and supplant z by y

qα and qαhyhλ by x, re-
spectively:

(
1 + qα

)–αIm,n
pi ,qi ;τi ;l

[((
1 + qα

)hλx; q

∣∣∣∣∣(�(λ,α + 1/2), h)(aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi

(�(2λ, 2α), h), (bj,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]

=
∞∑

r=0

(q
–1
2 ( 2α

λ
+ r

λ
–1)(1–q))r

r!

× Im,n
pi ,qi ;τi ;l

[(
(qrh(λ+1)x; q

∣∣∣∣∣ (�(λ,α + r + 1/2), h)(aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi

(�(2λ, 2(α + r)), h), (bj,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]
.

(25)
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Following the generating function (26) can be established by substituting the structures
(20) in Truesdell’s ascending Fq-condition (7) and replacing z by y

qα and qαhyhλ by x, re-
spectively:

(
1 + qα

)–α

×Im,n
pi ,qi ;τi ;l

[((
1 + qα

)hλx; q
∣∣∣∣(�(λ,α + 2/3), h)(aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi–λ(�(λ,α + 1/3), h)

(�(3λ, 3α), h), (bj ,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]

=
∞∑

r=0

(q
–1
2 ( α

λ
+ r

2λ
+ r

2 + 1
6λ

– 1
2 )(1–q))r

r!

×Im,n
pi ,qi ;τi ;l

[(
(qrh(λ+1)x; q

∣∣∣∣(�(λ,α + r + 2/3), h)(aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi–λ(�(λ,α + r + 1/3), h)
(�(3λ, 3(α + r)), h), (bj,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]
.

(26)

Similarly, we establish the following generating function (27) by substituting the struc-
tures (21) in Truesdell’s ascending Fq-condition (7) and supplant z by y

qα and yhλ by x,
respectively:

(
1 + qα

)–αIm,n
pi ,qi ;τi ;l

[((
1 + qα

)hλx; q

∣∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi

(�(λ,α), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi

)]

=
∞∑

r=0

(–1)r(q 1–r
2 )r

r!

× Im,n
pi ,qi ;τi ;l

[(
(qrhλx; q

∣∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi

(�(λ,α + r), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi

)]
. (27)

To establish (28) we substitute the structures (22) in Truesdell’s ascending Fq-condition
(7) and supplant z by y

qα and q–αhyhλ by x, respectively.

(
1 + qα

)–αIm,n
pi ,qi ;τi ;l

[((
1 + qα

)hλx; q

∣∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi

(bj,βj)1,m, [τi(bji,βji)]m+1,qi–λ(�(λ,α), h)

)]

=
∞∑

r=0

(q
(λ–1)

λ
(–α– r

2 + 1
2 )+α)r

r!

× Im,n
pi ,qi ;τi ;l

[(
(qrh(λ–1)x; q

∣∣∣∣∣ (aj,αj)1,n, [τi(aji,αji)]n+1,pi

(bj,βj)1,m, [τi(bji,βji)]m+1,qi–λ(�(λ,α + r), h)

)]
. (28)

Similarly we obtain (29) by putting the structures (23) in Truesdell’s ascending Fq-
condition (7) and supplant z by y

qα and yhλ by x, respectively:

(
1 + qα

)–α

× Im,n
pi ,qi ;τi ;l

[((
1 + qα

)hλx; q
∣∣∣∣ (�(ρ,α), h), (aj,αj)ρ+1,n, [τi(aji,αji)]n+1,pi
(�(ρ,α), h), (bj,βj)ρ+1,m, [τi(bji,βji)]m+1,qi–λ(�(λ,α), h)

)]
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=
∞∑

r=0

(–1)r(q
(
1 λ– 1

ρ –1)(α+ r
2 – 1

2 )+α)r

r!

×Im,n
pi ,qi ;τi ;l

[(
(qrhλx; q

∣∣∣∣ (�(ρ,α + r), h), (aj,αj)ρ+1,n, [τi(aji,αji)]n+1,pi
(�(ρ,α + r), h), (bj,βj)ρ+1,m, [τi(bji,βji)]m+1,qi–λ(�(λ,α + r), h)

)]
.

(29)

Remark 3 The above results yield certain special cases of the generating function for the
q-analogue of the I-function, H-function and G-function [7, 8, 18, 21].

3.3 Generating functions satisfying Truesdell’s descending Fq-equation
In this section we will derive the different forms of the q-analogue of the modified I-
function, which satisfy Truesdell’s descending Fq-equation.

Theorem 3.3 The following form of the q-analogue of the modified I-function satisfies
Truesdell’s descending Fq-equation:

(
q

α
2 [ 1–ρ

ρ ]z
)α–1

× Im,n
pi ,qi ;τi ;l

[(
qαh(λ+1)

zhλ
; q

∣∣∣∣∣(�(λ,α), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi–ρ , (�(ρ,α), h)
(bj,βj)1,m, [τi(bji,βji)]m+1,qi–ρ , (�(ρ,α), h)

)]
.

(30)

Proof Assuming that the form (30) is G(z,α), replacing a basic analogue of the modified
I-function by its statement (2), then exchanging order of differentiation and integration,
which is legitimized under the states of combination [19], we observe that

Dr
q,zG(z,α)

=
1

2πω

∫
L

∏m
j=1 Γq(bj – βjs)∑l

i=1 τi[
∏qi–ρ

j=m+1 Γq(1 – bji + Bjis)

×
(

λ–1∏
k=0

Γq(1 –
α + k

λ
– hs)

n∏
j=λ+1

Γq(1 – aj + αjs)q
α(α–1)(1–ρ)

2ρ qαh(λ+1)sDr
q,zzα–1–hλsπ

)

/(
ρ–1∏
k=0

Γq

(
1 –

α + k
ρ

+ hs
) pi–ρ∏

j=n+1

Γq(aji – αjis)

×
ρ–1∏
k=0

Γq

(
α + k

ρ
– hs

)
Γq(s)Γq(1 – s) sinπs]

)
ds. (31)

Using results (12) and (13), we have

λ–1∏
k=0

Γq

(
α + k

λ
– hs

)
=

(–1)r(q1–(α–hλs); q)r

(1 – q)rq r
2m (r–2(α–hλs)+1)

λ–1∏
k=0

Γq

(
α – r + k

λ
– hs

)
, (32)

λ–1∏
k=0

Γq

(
1 –

α + k
λ

+ hs
)

=
(1 – q)r

(q1–(α–hλs); q)r

λ–1∏
k=0

Γq

(
1 –

α – r + k
λ

+ hs
)

. (33)
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Using the identities (32) and (33) in (31), we obtain the required Truesdell form of the
descending Fq-Eq. (8). �

Remark 4 Similarly, in the same manner, the following forms (34) to (38) can be shown to
satisfy the descending Fq-condition:

(
q

–α
2 [ 1+λ

λ
]z

(1 – q)α

)α–1

× Im,n
pi ,qi ;τi ;l

[(
qαh(λ–1)

zhλ
; q

∣∣∣∣∣ (�(2λ, 2α), h), (aj,αj)2λ+1,n, [τi(aji,αji)]n+1,pi

(�(λ,α + 1/2), h), (bj,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]
, (34)

(q
–α

2(α–1) [ 3α+1
3λ

+α–1]z)α–1

(1 – q)α

× Im,n
pi ,qi ;τi ;l

[(
qαh(λ+1)

zhλ
; q

∣∣∣∣ (�(3λ, 3α), h), (aj,αj)3λ+1,n, [τi(aji,αji)]n+1,pi
(�(λ,α + 2/3), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi–λ, (�(λ,α + 1/3), h)

)]
,

(35)

(
q

–α
2 z

)α–1eπ iαIm,n
pi ,qi ;τi ;l

[(
(qαhλ)

zhλ
; q

∣∣∣∣∣(�(λ,α), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi

(bj,βj)1,m, [τi(bji,βji)]m+1,qi

)]
, (36)

(
q

α
2 [ 1–λ

λ
]z

)α–1Im,n
pi ,qi ;τi ;l

[(
qhα(λ–1)

zhλ
; q

∣∣∣∣∣(aj,αj)1,n, [τi(aji,αji)]n+1,pi–λ, (�(λ,α), h)
(bj,βj)1,m, [τi(bji,βji)]m+1,qi

)]
, (37)

(
q

α
2 [ 1–λ

λ
– 1

ρ ]z
)α–1eπ iα

× Im,n
pi ,qi ;τi ;l

[(
qαhλ

zhλ
; q

∣∣∣∣∣(�(ρ,α), h), (aj,αj)ρ+1,n, [τi(aji,αji)]n+1,pi–λ, (�(λ,α), h),
(�(ρ,α), h), (bj,βj)ρ+1,m, [τi(bji,βji)]m+1,qi

)]
.

(38)

Next we use the above forms (30) and (34)–(38) and establish the following generating
functions for basic analogue of the I-functions by applying the descending Fq-equation
technique.

To establish (39) we substitute the structure (30) in Truesdell’s descending Fq-Eq. (8)
and replace z by y

qα and qαh+2αhλ

yhλ by x in progression to get the required outcomes:

(
1 + qα

)α–1

× Im,n
pi ,qi ;τi ;l

[((
1 + qα

)–hλx; q
∣∣∣∣(�(λ,α), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi–ρ , (�(ρ,α), h)

(bj,βj)1,m, [τi(bji,βji)]m+1,qi–ρ , (�(ρ,α), h)

)]

=
∞∑

r=0

(q(–α+r/2+1/2)((1–ρ)/ρ) + α)r

r!

× Im,n
pi ,qi ;τi ;l

[(
(q–rh(λ+1)x; q

∣∣∣∣(�(λ,α – r), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi–ρ , (�(ρ,α – r), h)
(bj,βj)1,m, [τi(bji,βji)]m+1,qi–ρ , (�(ρ,α – r), h)

)]
.

(39)

To establish (40), we substitute the structures (34) in Truesdell’s descending Fq-Eq. (8)
and replace z by y

qα and 2αhλ–αh
yhλ by x, respectively:

(
1 + qα

)α–1

× Im,n
pi ,qi ;τi ;l

[((
1 + qα

)–hλx; q

∣∣∣∣∣ (�(2λ, 2α), h)(aj,αj)2λ+1,n, [τi(aji,αji)]n+1,pi

(�(λ,α + 1/2), h), (bj,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]



Bhat et al. Advances in Difference Equations        (2020) 2020:464 Page 10 of 12

=
∞∑

r=0

(q(α– 1
2 – r

2 )( 1+λ
λ

)+α(1–q))r

r!

× Im,n
pi ,qi ;τi ;l

[(
(qrh(1–λ)x; q

∣∣∣∣∣ (�(2λ, 2α – 2r), h)(aj,αj)2λ+1,n, [τi(aji,αji)]n+1,pi

(�(λ,α – r + 1/2), h), (bj,βj)2λ+1,m, [τi(bji,βji)]m+1,qi

)]
.

(40)

To establish (41), we substitute the structures (35) in Truesdell’s descending Fq-Eq. (8)
and replace z by y

qα and qαh+2αhλ

yhλ by x, respectively:

(
1 + qα

)α

× Im,n
pi ,qi ;τi ;l

[((
1 + qα

)–hλx; q
∣∣∣∣ (�(3λ, 3α), h)(aj,αj)3λ+1,n, [τi(aji,αji)]n+1,pi
(�(λ,α + 2/3), h), (bj,βj)λ+1,m, [τi(bji,βji)]m+1,qi–λ, (�(λ,α + 1/3), h)

)]

=
∞∑

r=0

(q2α+ α
λ

– r
2λ

– r
2 + 1

6λ
+ 1

2 (1–q))r

r!

× Im,n
pi ,qi ;τi ;l

[(
(q–rh(λ+1)x; q

∣∣∣∣ (�(3λ, 3α – 3r), h)(aj ,αj)3λ+1,n, [τi(aji,αji)]n+1,pi
(�(λ,α – r + 2/3), h), (bj ,βj)λ+1,m, [τi(bji,βji)]m+1,qi–λ, (�(λ,α – r + 1/3), h)

)]
.

(41)

To establish (42) we substitute the structures (36) in Truesdell’s descending Fq-Eq. (8)
and replace z by y

qα and q2αhλ

yhλ by x, respectively:

(
1 + qα

)α–1Im,n
pi ,qi ;τi ;l

[((
1 + qα

)–hλx; q

∣∣∣∣∣(�(λ,α), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi

(bj,βj)1,m, [τi(bji,βji)]m+1,qi

)]

=
∞∑

r=0

(–1)r(q2α+ r
2 –1/2)r

r!

× Im,n
pi ,qi ;τi ;l

[(
(q–rhλx; q

∣∣∣∣∣(�(λ,α – r), h), (aj,αj)λ+1,n, [τi(aji,αji)]n+1,pi

(bj,βj)1,m, [τi(bji,βji)]m+1,qi

)]
. (42)

To establish (43) we substitute the structures (37) in Truesdell’s descending Fq-Eq. (8)
and replace z by y

qα and q2αhλ–αh

yhλ by x, respectively:

(
1 + qα

)α–1Im,n
pi ,qi ;τi ;l

[((
1 + qα

)–hλx; q

∣∣∣∣∣(aj,αj)1,n, [τi(aji,αji)]n+1,pi–λ, (�(λ,α), h)
(bj,βj)1,m, [τi(bji,βji)]m+1,qi

)]

=
∞∑

r=0

(q
(1–λ)

λ
(–α+ r

2 + 1
2 )+α)r

r!

× Im,n
pi ,qi ;τi ;l

[(
(qrh(1–λ)x; q

∣∣∣∣∣(aj,αj)1,n, [τi(aji,αji)]n+1,pi–λ, (�(λ,α – r), h)
(bj,βj)1,m, [τi(bji,βji)]m+1,qi

)]
. (43)

To establish (44) we substitute the structures (38) in Truesdell’s descending Fq-Eq. (8)
and replace z by y

qα and 2αhλ

yhλ by x, respectively:

(
1 + qα

)α–1

× Im,n
pi ,qi ;τi ;l

[((
1 + qα

)–hλx; q
∣∣∣∣(�(ρ,α), h), (aj,αj)ρ+1,n, [τi(aji,αji)]n+1,pi–λ, (�(λ,α), h)

(�(ρ,α), h), (bj,βj)ρ+1,m, [τi(bji,βji)]m+1,qi

)]
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=
∞∑

r=0

(–1)r(q( 1
λ

– 1
ρ –1)(–α+ r

2 + 1
2 ))r

r!

× Im,n
pi ,qi ;τi ;l

[(
(q–rhλx; q

∣∣∣∣(�(ρ,α – r), h), (aj,αj)ρ+1,n, [τi(aji,αji)]n+1,pi–λ, (�(λ,α – r), h)
(�(ρ,α – r), h), (bj,βj)ρ+1,m, [τi(bji,βji)]m+1,qi

)]
.

(44)

Remark 5 These results yield certain special cases of generating functions for the q-
analogue of the I-function, H-function and G-function [7, 8, 18, 22].

4 Conclusion
This study led to different types of the I-function satisfying Truesdell’s ascending and de-
scending Fq-equation. These forms have been applied to obtain various generating func-
tions for basic analogue of the modified I-function.

The results proved in this paper along with their particular cases are believed to be new.
As these functions have well been established as applicable functions these results are
likely to contribute significantly in certain applications of the theory of q-calculus.
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