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1 Introduction
The time scale theory has been introduced and developed rapidly since 1988; see, for in-
stance, [1–4, 7, 8]. Afterwards, many scholars were concerned with the oscillation of dy-
namic equations on time scales and they obtained abundant achievements. Besides, some
research on the existence and asymptotic behavior of nonoscillatory solutions to dynamic
equations on time scales has been also improved recently, we refer the reader to [5, 6, 9–
15].

Since 2007, numerous researchers have investigated the existence of nonoscillatory so-
lutions to several classes of nonlinear neutral dynamic equations
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successively. Zhu and Wang [15] studied (1) and presented the existence of nonoscilla-
tory solutions by using a Banach space and Krasnoselskii’s fixed point theorem. Actually,
the authors gave a general way to establish the existence of nonoscillatory solutions to
(1). Inspired by [15], Gao and Wang [6] were concerned with (2) under the condition
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∫ ∞
t0

1/r(t)�t < ∞. Similar to the results in [15], there are two types of asymptotic behavior
of eventually positive solutions to (2). Later on, Deng and Wang [5] considered (2) with
another condition

∫ ∞
t0

1/r(t)�t = ∞, and summarized four types of eventually positive so-
lutions to (2). It is clear to see that the asymptotic behavior of eventually positive solutions
in [5] are more complex than that of [6]. From [5, 6], we can see the fact that the existence
and asymptotic behavior of nonoscillatory solutions are greatly different for various kinds
of the integral convergence and divergence of the reciprocals of the coefficients ri in equa-
tions. To find a general relationship between these factors, some researches have been
performed.

For the third-order nonlinear neutral dynamic equation (3), there exist four cases for
the convergence and divergence of the integrals

∫ ∞
t0

1/r1(t)�t and
∫ ∞

t0
1/r2(t)�t:

(B1)
∫ ∞

t0
1/r1(t)�t =

∫ ∞
t0

1/r2(t)�t = ∞, see Qiu [10];
(B2)

∫ ∞
t0

1/r1(t)�t < ∞ and
∫ ∞

t0
1/r2(t)�t < ∞, see Qiu and Wang [13];

(B3)
∫ ∞

t0
1/r1(t)�t = ∞ and

∫ ∞
t0

1/r2(t)�t < ∞, see Qiu et al. [14];
(B4)

∫ ∞
t0

1/r1(t)�t < ∞ and
∫ ∞

t0
1/r2(t)�t = ∞, see Qiu et al. [12].

In particular, Qiu and Wang [13] considered a higher-order nonlinear neutral dynamic
equation

Rn
(
t, x(t)

)
+ f

(
t, x

(
h(t)

))
= 0 (4)
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Moreover, Qiu et al. [11] studied (4) with
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In this paper, we continue the study on the existence of nonoscillatory solutions to (4)
on a time scale T, where n ≥ 3, supT = ∞, and t ∈ [t0,∞)T with t0 ∈ T. In addition, the
following assumptions are supposed to hold:

(C1) ri ∈ Crd([t0,∞)T, (0,∞)), i = 1, 2, . . . , n – 1, and there exist constants Mi > 0,
i = 1, 2, . . . , n – 2 such that

∫ ∞

t0

�t
ri(t)

= Mi < ∞, i = 1, 2, . . . , n – 2, and
∫ ∞

t0

�t
rn–1(t)

= ∞;

(C2) p ∈ Crd([t0,∞)T,R) and limt→∞ p(t) = p0, where |p0| < 1;
(C3) g, h ∈ Crd([t0,∞)T,T), g(t) ≤ t, limt→∞ g(t) = limt→∞ h(t) = ∞, and

limt→∞ R(g(t))/R(t) = η ∈ (0, 1], where R(t) = 1 +
∫ t

t0
1/rn–1(s)�s; if p0 ∈ (–1, 0],

there exists a sequence {ck}k≥0 such that limk→∞ ck = ∞ and g(ck+1) = ck ;
(C4) f ∈ C([t0,∞)T ×R,R), f (t, x) is nondecreasing in x, and xf (t, x) > 0 for x �= 0.
By employing an appropriate Banach space and Krasnoselskii’s fixed point theorem, we

present the existence of different kinds of nonoscillatory solutions to (4). Finally, two ex-
amples are shown to illustrate our conclusions.
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2 Auxiliary results
We denote all continuous functions mapping [T0,∞)T into R by C([T0,∞)T,R). Then
define a Banach space

BCλ[T0,∞)T =
{

x ∈ C
(
[T0,∞)T,R

)
: sup

t∈[T0,∞)T

∣
∣∣
∣

x(t)
R2λ(t)

∣
∣∣
∣ < ∞

}
(5)

with ‖x‖λ = supt∈[T0,∞)T |x(t)/R2λ(t)| for λ = 0, 1. In the sequel, define z(t) = x(t)+p(t)x(g(t))
for simplicity, and we just consider the eventually positive solutions to (4). Now, a lemma
is presented to show the relationship between the functions z and x. The proof is similar
to the one in [5, Lemma 2.3] and so is omitted.

Lemma 2.1 Suppose that x is an eventually positive solution to (4) and limt→∞ z(t)/Rλ(t) =
a for λ = 0, 1. Then we have

lim
t→∞

x(t)
Rλ(t)

=
a

1 + p0ηλ

if a is finite, and

lim sup
t→∞

x(t)
Rλ(t)

= ∞

if a is infinite.

Next, we divide all eventually positive solutions to (4) into four groups.

Theorem 2.2 If x is an eventually positive solution to (4), then one of the following four
cases holds:

(A1) x ∈ A(0, 0);
(A2) x ∈ A(b, 0);
(A3) x ∈ A(∞, b);
(A4) lim supt→∞ x(t) = ∞ and limt→∞ x(t)/R(t) = 0.

Here,

A(α,β) =
{

x ∈ S : lim
t→∞ x(t) = α, lim

t→∞
x(t)
R(t)

= β

}
,

S is the set of all eventually positive solutions of (4), and b is a positive constant.

Proof Assume that x is an eventually positive solution to (4). From (C2) and (C3), there
exist a t1 ∈ [t0,∞)T and a p1 satisfying |p0| < p1 < 1 such that x(t) > 0, x(g(t)) > 0, x(h(t)) > 0,
and |p(t)| ≤ p1 for t ∈ [t1,∞)T. For t ∈ [t1,∞)T, according to (4) and (C4), we have

R�
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= –f
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(
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which means that Rn–1 is strictly decreasing on [t1,∞)T. Moreover, it follows that

R�
n–2

(
t, x(t)

) ≤ r1(t1)R�
n–2(t1, x(t1))
r1(t)

, t ∈ [t1,∞)T. (6)
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If there exists a T ∈ [t1,∞)T such that R�
n–2(T , x(T)) ≤ 0, then by (6) we know that R�

n–2

is eventually negative. Otherwise, we arrive at R�
n–2(t, x(t)) > 0 for all t ∈ [t1,∞)T. Hence,

Rn–2 is always eventually monotonic. Letting t be replaced by s and integrating (6) from t1

to t, t ∈ [σ (t1),∞)T, by (C1) we obtain
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∣∣R�
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)∣∣ · M1,

which means that Rn–2 is upper bounded. When n = 3, we see that r2z� is eventually mono-
tonic and upper bounded. When n ≥ 4, since r2R�

n–3 is eventually monotonic, it follows
that r2R�

n–3 and R�
n–3 are eventually positive or eventually negative. Thus, Rn–3 is eventu-

ally monotonic.
Since Rn–2 is upper bounded, there exist a constant c1 and a t2 ∈ [t1,∞)T such that

Rn–2(t, x(t)) ≤ c1 for t ∈ [t2,∞)T, that is,

R�
n–3

(
t, x(t)

) ≤ c1

r2(t)
. (7)

Substituting s for t and integrating (7) from t2 to t, t ∈ [σ (t2),∞)T, we have

Rn–3
(
t, x(t)

) ≤ Rn–3
(
t2, x(t2)

)
+ c1

∫ t

t2

�s
r2(s)

< Rn–3
(
t2, x(t2)

)
+ |c1| · M2,

which implies that Rn–3 is upper bounded. When n = 4, we see that r3z� is eventually
monotonic and upper bounded. By analogy, for all n ≥ 3, it always satisfies the requirement
that rn–1z� is eventually monotonic and upper bounded. Then we need to consider two
cases.

Case 1. rn–1z� is eventually strictly decreasing. We can claim that

0 ≤ lim
t→∞ rn–1(t)z�(t) = L1 < ∞. (8)

Otherwise, there exist a constant c2 < 0 and a t3 ∈ [t2,∞)T such that

z�(t) ≤ c2

rn–1(t)
, t ∈ [t3,∞)T. (9)

Letting t be replaced by s and integrating (9) from t3 to t, t ∈ [σ (t3),∞)T, by (C1) we have

z(t) ≤ z(t3) + c2

∫ t

t3

�s
rn–1(s)

→ –∞

as t → ∞. Then we get p0 ∈ (–1, 0], and thus there exists a t4 ∈ [t3,∞)T such that x(t) <
–p(t)x(g(t)) < p1x(g(t)) for t ∈ [t4,∞)T. In view of (C3), there exists a positive integer N
satisfying ck ∈ [t4,∞)T for all k ≥ N . Moreover, for any k ≥ N + 1,

x(ck) < p1x(ck–1) < p2
1x(ck–2) < · · · < pk–N

1 x(cN ),
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which means that limk→∞ x(ck) = 0 and thus limk→∞ z(ck) = 0. It is in contradiction with
limt→∞ z(t) = –∞. Therefore, (8) holds.

If L1 > 0, then we have z�(s) > L1/rn–1(s) for s ∈ [t2,∞)T. Integrating this inequality from
t2 to t, t ∈ [σ (t2),∞)T, we obtain

z(t) > z(t2) + L1

∫ t

t2

�s
rn–1(s)

→ ∞

as t → ∞.
If L1 = 0, since rn–1z� and z� are both eventually positive, then it follows that z is even-

tually strictly increasing. From the above, we know that limt→∞ z(t) < 0 does not hold.
Therefore, we get

0 ≤ lim
t→∞ z(t) = L0 ≤ ∞.

Case 2. rn–1z� is eventually strictly increasing, which means that rn–1z� is eventually
positive or eventually negative.

If rn–1z� is eventually positive, since it is also upper bounded, then there exists a constant
c3 > 0 such that limt→∞ rn–1(t)z�(t) = c3. Hence, there exists a t3 ∈ [t2,∞)T satisfying that

z�(t) ≥ c3

2rn–1(t)
, t ∈ [t3,∞)T. (10)

Substituting s for t and integrating (10) from t3 to t, t ∈ [σ (t3),∞)T, we have

z(t) ≥ z(t3) +
c3

2

∫ t

t3

�s
rn–1(s)

→ ∞

as t → ∞.
If rn–1z� is eventually negative, then it follows that limt→∞ rn–1(t)z�(t) ≤ 0. From the

above, it means that limt→∞ rn–1(t)z�(t) = 0 and so z�(t) < 0 for t ∈ [t2,∞)T. Moreover,
we get

0 ≤ lim
t→∞ z(t) = L0 < ∞.

Employing the L’Hôpital’s rule in [3, Theorem 1.120], we obtain

lim
t→∞ rn–1(t)z�(t) = lim

t→∞
z(t)
R(t)

= L1.

By virtue of Lemma 2.1, it is clear that one of the cases (A1)–(A4) holds. This completes
the proof. �

3 Main results
In this section, the existence of eventually positive solutions to (4) is presented. Now, we
show a sufficient and necessary condition for the type A(∞, b).
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Theorem 3.1 Equation (4) has an eventually positive solution x ∈ A(∞, b) if and only if
there exists a constant K > 0 such that

∫ ∞

t0

∫ un–2

t0

∫ un–3

t0

· · ·
∫ u1

t0

f (u0, KR(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 < ∞, (11)

where b is a positive constant.

Proof Suppose that x is an eventually positive solution to (4) satisfying x ∈ A(∞, b). By
Lemma 2.1 we claim that

lim
t→∞ z(t) = ∞ and lim

t→∞ rn–1(t)z�(t) = lim
t→∞

z(t)
R(t)

= (1 + p0η)b.

If limt→∞ z(t) < ∞, then it will cause limt→∞ x(t) < ∞, which contradicts x ∈ A(∞, b).
Hence, there exists a t1 ∈ [t0,∞)T such that x(t) > 0, x(g(t)) > 0, and x(h(t)) ≥ bR(h(t))/2 for
t ∈ [t1,∞)T. Substituting u0 for t into (4) and integrating it from t1 to u1, u1 ∈ [σ (t1),∞)T,
we have

Rn–1
(
u1, x(u1)

)
– Rn–1

(
t1, x(t1)

)
= –

∫ u1

t1

f
(
u0, x

(
h(u0)

))
�u0,

that is,

R�
n–2

(
u1, x(u1)

)
=

Rn–1(t1, x(t1))
r1(u1)

–
1

r1(u1)

∫ u1

t1

f
(
u0, x

(
h(u0)

))
�u0. (12)

Integrating (12) from t1 to u2, u2 ∈ [σ (t1),∞)T, we obtain

Rn–2
(
u2, x(u2)

)
– Rn–2

(
t1, x(t1)

)
= Rn–1

(
t1, x(t1)

)∫ u2

t1

�u1

r1(u1)

–
∫ u2

t1

∫ u1

t1

f (u0, x(h(u0)))
r1(u1)

�u0�u1.

Analogously, for all n ≥ 3, it follows that

rn–1(un–1)z�(un–1) – rn–1(t1)z�(t1)

=
n–1∑

k=2

Rk
(
t1, x(t1)

)∫ un–1

t1

∫ un–2

t1

· · ·
∫ un–k+1

t1

�un–k�un–k+1 · · ·�un–2
∏n–2

i=n–k ri(ui)

–
∫ un–1

t1

∫ un–2

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2. (13)

Letting un–1 → ∞, for all 2 ≤ k ≤ n – 1, by (C1) we have

∫ ∞

t1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ un–k+1

t1

�un–k�un–k+1 · · ·�un–2
∏n–2

i=n–k ri(ui)

<
∫ ∞

t1

∫ ∞

t1

∫ ∞

t1

· · ·
∫ ∞

t1

�un–k�un–k+1 · · ·�un–2
∏n–2

i=n–k ri(ui)
≤

n–2∏

i=n–k

Mi < ∞.
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Hence, by virtue of (C4) and (13), it is not difficult to see that

∫ ∞

t1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, bR(h(u0))/2)
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2

≤
∫ ∞

t1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 < ∞,

which implies that (11) holds.
On the contrary, if there exists a constant K > 0 such that (11) holds, then there are two

cases to be considered.
Case 1. 0 ≤ p0 < 1. When p0 > 0, choose a constant p1 satisfying p0 < p1 < (1 + 4p0)/5 < 1.

In view of (C2) and (11), there exists a T0 ∈ [t0,∞)T such that for t ∈ [T0,∞)T,

p(t) > 0,
5p1 – 1

4
≤ p(t) ≤ p1 < 1, p(t)

R(g(t))
R(t)

≥ 5p1 – 1
4

η,

and

∫ ∞

T0

∫ un–2

T0

∫ un–3

T0

· · ·
∫ u1

T0

f (u0, KR(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 ≤ (1 – p1η)K

8
.

When p0 = 0, choose p1 satisfying |p(t)| ≤ p1 ≤ 1/13 for t ∈ [T0,∞)T. By (C3), there always
exists a T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T.

Define a Banach space BC1[T0,∞)T as (5),

Ω1 =
{

x ∈ BC1[T0,∞)T :
K
2

R(t) ≤ x(t) ≤ KR(t)
}

,

and two operators U1 and V1: Ω1 → BC1[T0,∞)T as follows:

(U1x)(t) =

⎧
⎨

⎩
3Kp1ηR(t)/4 – p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,

3Kp1ηR(t)/4 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V1x)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3KR(t)/4, t ∈ [T0, T1)T,

3KR(t)/4 +
∫ t

T1

∫ ∞
un–1

∫ un–2
T1

∫ un–3
T1

· · · ∫ u1
T1

f (u0,x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1,

t ∈ [T1,∞)T.

The proof that U1 and V1 satisfy the conditions in Krasnoselskii’s fixed point theorem (see
[10, Lemma 2.2]) is similar to that in [10, Theorem 3.1] and [13, Theorem 3.1], hence it is
omitted here. In terms of Krasnoselskii’s fixed point theorem, there exists an x ∈ Ω1 such
that (U1 + V1)x = x, and then, for t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1η)KR(t)

4
– p(t)x

(
g(t)

)

+
∫ t

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1.
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Since x(h(u0)) ≤ KR(h(u0)) for u0 ∈ [T1,∞)T and

lim
t→∞

1
R(t)

∫ t

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, KR(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1

= lim
t→∞

∫ ∞

t

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, KR(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 = 0,

combining (C4) and Lemma 2.1, we get

lim
t→∞

z(t)
R(t)

=
3(1 + p1η)K

4
, lim

t→∞
x(t)
R(t)

=
3(1 + p1η)K
4(1 + p0η)

> 0,

and limt→∞ x(t) = ∞.
Case 2. –1 < p0 < 0. We choose a p1 and a T0 ∈ [t0,∞)T such that –p0 < p1 < (1 – 4p0)/5 <

1 and

5p1 – 1
4

≤ –p(t) ≤ p1 < 1, t ∈ [T0,∞)T.

Moreover, define U ′
1 on Ω1 as follows:

(
U ′

1x
)
(t) =

⎧
⎨

⎩
–3Kp1ηR(t)/4 – p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,

–3Kp1ηR(t)/4 – p(t)x(g(t)), t ∈ [T1,∞)T.

Similarly to the proof of Case 1, we deduce that

lim
t→∞

z(t)
R(t)

=
3(1 – p1η)K

4
, lim

t→∞
x(t)
R(t)

=
3(1 – p1η)K
4(1 + p0η)

> 0,

and limt→∞ x(t) = ∞. The proof is complete. �

In the following, the sufficient conditions for the types A(b, 0) and A(∞, 0) are given in
Theorems 3.2 and 3.3, respectively.

Theorem 3.2 If there exists a constant K > 0 such that

∫ ∞

t0

∫ ∞

un–1

∫ un–2

t0

∫ un–3

t0

· · ·
∫ u1

t0

f (u0, K)
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 < ∞, (14)

then (4) has an eventually positive solution x ∈ A(b, 0), where b is a positive constant.

Proof Suppose that there exists a constant K > 0 such that (14) holds. Similarly as the
proof of the sufficiency in Theorem 3.1, we consider two cases.

Case 1. 0 ≤ p0 < 1. When p0 > 0, taking p1 chosen in Theorem 3.1, then there exists a
T0 ∈ [t0,∞)T such that

p(t) > 0,
5p1 – 1

4
≤ p(t) ≤ p1 < 1, t ∈ [T0,∞)T,
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and
∫ ∞

T0

∫ ∞

un–1

∫ un–2

T0

∫ un–3

T0

· · ·
∫ u1

T0

f (u0, K)
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 ≤ (1 – p1)K

8
.

When p0 = 0, choose p1 such that |p(t)| ≤ p1 ≤ 1/13 for t ∈ [T0,∞)T. There also exists a
T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T.

Define a Banach space BC0[T0,∞)T as (5),

Ω2 =
{

x ∈ BC0[T0,∞)T :
K
2

≤ x(t) ≤ K
}

,

and the operators U2 and V2: Ω2 → BC0[T0,∞)T as follows:

(U2x)(t) =

⎧
⎨

⎩
(U2x)(T1), t ∈ [T0, T1)T,

3Kp1/4 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V2x)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3K/4, t ∈ [T0, T1)T,

3K/4 +
∫ t

T1

∫ ∞
un–1

∫ un–2
T1

∫ un–3
T1

· · · ∫ u1
T1

f (u0,x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1,

t ∈ [T1,∞)T.

Similarly, there exists an x ∈ Ω2 such that (U2 + V2)x = x. For t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1)K

4
– p(t)x

(
g(t)

)

+
∫ t

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1. (15)

Since

0 <
∫ ∞

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1

≤
∫ ∞

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, K)
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 < ∞,

letting t → ∞ in (15), we obtain 0 < limt→∞ z(t) < ∞. By Lemma 2.1, it follows that

0 < lim
t→∞ x(t) < ∞ and lim

t→∞
x(t)
R(t)

= 0,

which means that x ∈ A(b, 0), where b is a positive constant.
Case 2. –1 < p0 < 0. Define U ′

2 on Ω2 as

(
U ′

2x
)
(t) =

⎧
⎨

⎩
(U ′

2x)(T1), t ∈ [T0, T1)T,

–3Kp1/4 – p(t)x(g(t)), t ∈ [T1,∞)T.

Similarly, we get a conclusion as in Case 1. The proof is complete. �



Qiu et al. Advances in Difference Equations        (2020) 2020:475 Page 10 of 16

Theorem 3.3 If there exists a constant M > 0 such that |p(t)R(t)| ≤ M for t ∈ [t0,∞)T,

∫ ∞

t0

∫ un–2

t0

∫ un–3

t0

· · ·
∫ u1

t0

f (u0, R(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 < ∞, (16)

∫ ∞

t0

∫ ∞

un–1

∫ un–2

t0

∫ un–3

t0

· · ·
∫ u1

t0

f (u0, M + 3/4)
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 = ∞, (17)

then (4) has an eventually positive solution x ∈ A(∞, 0).

Proof Suppose that there exists a constant M > 0 such that |p(t)R(t)| ≤ M for t ∈ [t0,∞)T.
Then we know limt→∞ p(t) = p0 = 0. Choose a T0 ∈ [t0,∞)T and a p1 with 0 < p1 < 1 satis-
fying

∣∣p(t)
∣∣ ≤ p1 < 1, 2M +

3
2

≤ 1
4

R(t), t ∈ [T0,∞)T,

and
∫ ∞

T0

∫ un–2

T0

∫ un–3

T0

· · ·
∫ u1

T0

f (u0, R(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 ≤ 1 – p1

8
.

There exists a T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T.
Define a Banach space BC1[T0,∞)T as (5),

Ω3 =
{

x ∈ BC1[T0,∞)T : M +
3
4

≤ x(t) ≤ R(t)
}

,

and the operators U3 and V3: Ω3 → BC1[T0,∞)T as follows:

(U3x)(t) =

⎧
⎨

⎩
M + 3/4 – p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,

M + 3/4 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V3x)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M + 3/4, t ∈ [T0, T1)T,

M + 3/4 +
∫ t

T1

∫ ∞
un–1

∫ un–2
T1

∫ un–3
T1

· · · ∫ u1
T1

f (u0,x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1,

t ∈ [T1,∞)T.

Similarly, there exists an x ∈ Ω3 such that (U3 + V3)x = x. For t ∈ [T1,∞)T, we have

x(t) = 2M +
3
2

– p(t)x
(
g(t)

)

+
∫ t

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1.

Since M + 3/4 ≤ x(h(u0)) ≤ R(h(u0)) for u0 ∈ [T1,∞)T, in view of (C3), (C4), (16), and (17),
we obtain

lim
t→∞

∫ t

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 = ∞
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and

lim
t→∞

1
R(t)

∫ t

T1

∫ ∞

un–1

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, R(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1

= lim
t→∞

∫ ∞

t

∫ un–2

T1

∫ un–3

T1

· · ·
∫ u1

T1

f (u0, R(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 = 0.

It is not difficult to see that limt→∞ z(t) = ∞ and limt→∞ z(t)/R(t) = 0. Since |p(t)x(g(t))| ≤
|p(t)R(t)| ≤ M for t ∈ [T1,∞)T, we arrive at

lim
t→∞ x(t) = ∞ and lim

t→∞
x(t)
R(t)

= 0

due to Lemma 2.1. The proof is complete. �

Next, we present the necessary conditions for the types A(b, 0) and A(∞, 0). An addi-
tional assumption

∫ ∞

t0

∫ ∞

un–1

∫ un–2

t0

∫ un–3

t0

· · ·
∫ un–k+1

t0

�un–k�un–k+1 · · ·�un–1
∏n–1

i=n–k ri(ui)
< ∞ (18)

is required, where 2 ≤ k ≤ n – 1. Then we deduce Theorems 3.4 and 3.5.

Theorem 3.4 Suppose that (18) holds for all 2 ≤ k ≤ n – 1. If (4) has an eventually positive
solution x ∈ A(b, 0), where b is a positive constant, then there exists a constant K > 0 such
that (14) holds.

Proof Suppose that x ∈ A(b, 0) is an eventually positive solution to (4), where b is a positive
constant. Then we have

lim
t→∞ z(t) = (1 + p0)b, lim

t→∞ rn–1(t)z�(t) = lim
t→∞

z(t)
R(t)

= 0,

and there exists a t1 ∈ [t0,∞)T such that x(t) ≥ b/2, x(g(t)) ≥ b/2, and x(h(t)) ≥ b/2, t ∈
[t1,∞)T. As by the proof in Theorem 3.1, for all n ≥ 3, there exists a t2 ∈ [t1,∞)T such that

rn–1(un–1)z�(un–1) – rn–1(t2)z�(t2)

=
n–1∑

k=2

Rk
(
t1, x(t1)

)∫ un–1

t2

∫ un–2

t1

∫ un–3

t1

· · ·
∫ un–k+1

t1

�un–k�un–k+1 · · ·�un–2
∏n–2

i=n–k ri(ui)

–
∫ un–1

t2

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2.

Letting un–1 → ∞, we obtain

–rn–1(t2)z�(t2)

=
n–1∑

k=2

Rk
(
t1, x(t1)

)∫ ∞

t2

∫ un–2

t1

∫ un–3

t1

· · ·
∫ un–k+1

t1

�un–k�un–k+1 · · ·�un–2
∏n–2

i=n–k ri(ui)

–
∫ ∞

t2

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2. (19)
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From (18), it follows that

∫ ∞

t2

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 < ∞. (20)

Since x(h(u0)) ≥ b/2, u0 ∈ [t1,∞)T, by (C4) we get

∫ ∞

t2

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, b/2)
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 < ∞. (21)

Substituting un–1 for t2 into (19), we have

z�(un–1)

= –
n–1∑

k=2

Rk
(
t1, x(t1)

)∫ ∞

un–1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ un–k+1

t1

�un–k�un–k+1 · · ·�un–2
∏n–1

i=n–k ri(ui)

+
∫ ∞

un–1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–2. (22)

Integrating (22) from t2 to t, t ∈ [σ (t2),∞)T, we obtain

z(t) – z(t2)

= –
n–1∑

k=2

Rk
(
t1, x(t1)

)∫ t

t2

∫ ∞

un–1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ un–k+1

t1

�un–k�un–k+1 · · ·�un–1
∏n–1

i=n–k ri(ui)

+
∫ t

t2

∫ ∞

un–1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1. (23)

Letting t → ∞, by (18) we deduce that

∫ ∞

t2

∫ ∞

un–1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, b/2)
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 < ∞,

which covers (21) and implies that (14) holds. The proof is complete. �

Theorem 3.5 Suppose that (18) holds for all 2 ≤ k ≤ n – 1. If (4) has an eventually positive
solution x ∈ A(∞, 0), then

∫ ∞

t0

∫ un–2

t0

∫ un–3

t0

· · ·
∫ u1

t0

f (u0, 3/4)
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 < ∞ (24)

and
∫ ∞

t0

∫ ∞

un–1

∫ un–2

t0

∫ un–3

t0

· · ·
∫ u1

t0

f (u0, R(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 = ∞. (25)

Proof Suppose that x ∈ A(∞, 0) is an eventually positive solution to (4). Then we have

lim
t→∞ z(t) = ∞, lim

t→∞ rn–1(t)z�(t) = lim
t→∞

z(t)
R(t)

= 0,
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and there exists a T ∈ [t0,∞)T satisfying that 3/4 ≤ x(t) ≤ R(t) for t ∈ [T ,∞)T. From (C3),
there exists a t1 ∈ [T ,∞)T such that g(t) ≥ T and h(t) ≥ T , t ∈ [t1,∞)T. As the proof in
Theorem 3.4, there exists a t2 ∈ [t1,∞)T such that (20) holds. In view of (C4), we get

∫ ∞

t2

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, 3/4)
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2 < ∞,

that is, (24) holds. Proceeding as in the proof of Theorem 3.4, we arrive at (23). Letting
t → ∞, by (C4) and (18) we obtain

∫ ∞

t2

∫ ∞

un–1

∫ un–2

t1

∫ un–3

t1

· · ·
∫ u1

t1

f (u0, R(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1 = ∞,

which implies that (25) holds. The proof is complete. �

Remark 3.6 From Theorems 3.2 and 3.4, it is clear to see that, when (18) holds for all
2 ≤ k ≤ n – 1, (4) has an eventually positive solution x ∈ A(b, 0) if and only if there exists a
constant K > 0 such that (14) holds, where b is a positive constant.

Remark 3.7 Assume that x ∈ A(0, 0) is an eventually positive solution to (4). The asymp-
totic behavior of x is more complex than that in other types. Hence, it is not easy to find
a sufficient and necessary condition for the type A(0, 0). Some sufficient conditions were
presented to ensure that (4) has an eventually positive solution x ∈ A(0, 0), we refer the
reader to [13, Theorems 3.2 and 3.3].

Remark 3.8 It is obvious that the theorems reported in this paper cover those in [12] when
n = 3. Furthermore, they are consistent with the conclusions in [5] when n = 2. Besides,
they also complement and improve the results in [13].

4 Examples
In this section, we present two typical examples to illustrate the applications of our results.

Example 4.1 Let T =
⋃∞

n=0[4n, 4n + 3]. For t ∈ [4,∞)T, consider the nth-order dynamic
equation

Rn
(
t, x(t)

)
+

x(t)
t2 = 0, (26)

where n ≥ 4,

Rk
(
t, x(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

x(t) + (t – 1)x(t – 4)/(3t), k = 0,

tαn–k R�
k–1(t, x(t)), 1 ≤ k ≤ n – 1,

R�
n–1(t, x(t)), k = n,

α1 > 2, αn–2 > 3, and αn–1 = –1. If n ≥ 5, then let αi > 1, i = 2, 3, . . . , n – 3.
Here, ri(t) = tαi , i = 1, 2, . . . , n – 1, p(t) = (t – 1)/(3t), g(t) = t – 4, h(t) = t, and f (t, x) = x/t2.

It is not difficult to see that (C1)–(C4) are all satisfied. Since

R(t) = 1 +
∫ t

4
s�s = O

(
t2),
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it follows that
∫ ∞

4

∫ un–2

4

∫ un–3

4
· · ·

∫ u1

4

f (u0, R(h(u0)))
∏n–2

i=1 ri(ui)
�u0�u1 · · ·�un–2

< O(1) ·
∫ ∞

4

∫ ∞

4
· · ·

∫ ∞

4

�u1�u2 · · ·�un–2

uα1–1
1 · ∏n–2

i=2 uαi
i

= O(1) ·
∫ ∞

4

�u1

uα1–1
1

·
n–2∏

i=2

∫ ∞

4

�ui

uαi
i

< ∞,

∫ ∞

4

∫ ∞

un–1

∫ un–2

4

∫ un–3

4
· · ·

∫ u1

4

f (u0, 1)
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1

=
∫ ∞

4

∫ ∞

un–1

∫ un–2

4

∫ un–3

4
· · ·

∫ u1

4

�u0�u1 · · ·�un–1

u2
0 · ∏n–1

i=1 ri(ui)

< O(1) ·
∫ ∞

4

∫ ∞

un–1

un–1

uαn–2
n–2

�un–2�un–1 ·
n–3∏

i=1

∫ ∞

4

�ui

uαi
i

= O(1) ·
∫ ∞

4

�un–1

uαn–2–2
n–1

·
n–3∏

i=1

∫ ∞

4

�ui

uαi
i

< ∞,

and
∫ ∞

4

∫ ∞

un–1

∫ un–2

4

∫ un–3

4
· · ·

∫ u1

4

f (u0, R(h(u0)))
∏n–1

i=1 ri(ui)
�u0�u1 · · ·�un–1

= O(1) ·
∫ ∞

4

∫ ∞

un–1

∫ un–2

4

∫ un–3

4
· · ·

∫ u1

4

�u0�u1 · · ·�un–1
∏n–1

i=1 ri(ui)

< O(1) ·
∫ ∞

4

∫ ∞

un–1

un–1

uαn–2
n–2

�un–2�un–1 ·
∫ ∞

4

�u1

uα1–1
1

·
n–3∏

i=2

∫ ∞

4

�ui

uαi
i

< ∞,

where
∏n–3

i=2
∫ ∞

4 1/uαi
i �ui is deleted when n = 4. The results mean that (11) and (14) hold,

but (25) is not satisfied. Therefore, by Theorems 3.1 and 3.2, we conclude that (26) has
eventually positive solutions x1 ∈ A(∞, b1) and x2 ∈ A(b2, 0), where b1 and b2 are both
positive constants. However, (26) has no eventually positive solutions in A(∞, 0) due to
Theorem 3.5. In addition, for n = 3, letting r1(t) = tα1 and r2(t) = 1/t, where α1 > 4, we can
get similar conclusions.

Example 4.2 LetT = [1,∞)R. For t ∈ [3,∞)T, consider the fourth-order dynamic equation

R4
(
t, x(t)

)
+

x(
√

t)
tβ

= 0, (27)

where

Rk
(
t, x(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

x(t) – x(t/3)/t, k = 0,

tα4–k R�
k–1(t, x(t)), 1 ≤ k ≤ 3,

R�
3 (t, x(t)), k = 4,

α1 = α2 = 2, α3 = 0, and β ≥ 3/2.
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Here, r1(t) = r2(t) = t2, r3(t) = 1, p(t) = –1/t, g(t) = t/3, h(t) =
√

t, and f (t, x) = x/tβ . Ob-
viously, conditions (C1)–(C4) are satisfied. Since

R(t) = 1 +
∫ t

3
ds = t – 2,

taking M = 5/4, we obtain

∣
∣p(t)R(t)

∣
∣ =

t – 2
t

< M,
∫ ∞

3

∫ u2

3

∫ u1

3

f (u0, R(h(u0)))
u2

1u2
2

du0 du1 du2 <
∫ ∞

3

∫ u2

3

∫ u1

3

du0 du1 du2

uβ–1/2
0 u2

1u2
2

< ∞,

and

∫ ∞

3

∫ ∞

u3

∫ u2

3

∫ u1

3

f (u0, M + 3/4)
u2

1u2
2

du0 du1 du2 du3

=
∫ ∞

3

∫ ∞

u3

∫ u2

3

∫ u1

3

2
uβ

0 u2
1u2

2
du0 du1 du2 du3 = ∞.

Therefore, we deduce that (27) has an eventually positive solution x ∈ A(∞, 0) in terms of
Theorem 3.3.
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