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Abstract
This paper investigates the existence of solutions to subquadratic operator equations
with convex nonlinearities and resonance by means of the index theory for
self-adjoint linear operators developed by Dong and dual least action principle
developed by Clarke and Ekeland. Applying the results to subquadratic convex
Hamiltonian systems satisfying several boundary value conditions including Bolza
boundary value conditions, generalized periodic boundary value conditions and
Sturm–Liouville boundary value conditions yield some new theorems concerning the
existence of solutions or nontrivial solutions. In particular, some famous results about
solutions to subquadratic convex Hamiltonian systems by Mawhin and Willem and
Ekeland are special cases of the theorems.
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1 Introduction and main results
Periodic solutions of Hamiltonian systems are important in applications. In recent years,
the existence of periodic solutions for Hamiltonian systems has been studied extensively
by means of critical point theory and the least action principle, and many interesting
results have been obtained. Different solvability hypotheses on the potential are given,
such as: the convexity conditions (see [2, 5, 7–9, 15, 16, 20]); the subquadratic condi-
tions (see [5, 7, 10–13, 15–18, 20]) and the sublinear conditions (see [19]). In particular,
Mawhin and Willem [15, 16] and Ekeland [7] investigated the existence of periodic so-
lutions to convex Hamiltonian systems under subquadratic growth assumptions on the
Hamiltonian. In this paper, we will generalize their results to abstract operator equa-
tions. Let X be a real infinite-dimensional separable Hilbert space with norm ‖ · ‖ and
inner product (·, ·). Let A : D(A) ⊂ X → X be an unbounded self-adjoint operator with
σ (A) = σd(A) = {λ ∈ R|λ belongs to the point spectrum of A}. We consider the existence
of solutions of the following equation:

Ax – B1x ∈ ∂�(x), (1.1)
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where B1 ∈Ls(X) and Ls(X) denotes the usual space consisting of bounded symmetric op-
erators in X, νA(B1) �= 0 (see the Appendix for the notation νA(B1)), � : X → R is continu-
ous and convex, and ∂� denotes the subdifferential of �. Set �∗(y) = supx∈X{(y, x) – �(x)}
and �ε(x) = �(x) + ε

2‖x‖2 for ε > 0. Now we use the index (iA(B),νA(B)) ∈ Z × N defined
in [5, 6] (see the Appendix) for all B ∈Ls(X) to formulate our main results.

Theorem 1.1 Assume that � ∈ C(X, R) and satisfies
(�1) � is convex;
(�2) there exists l0 ∈ X such that for all x ∈ X one has

�(x) ≥ (x, l0); (1.2)

(�3) there exist B2 ∈Ls(X), ε0 > 0 and c > 0, such that B2 ≥ B1 and B2 > B1 with respect to
ker(A – B1) (see the Appendix for the notation B2 ≥ B1 and B2 > B1), νA(B2 + ε0) = 0,
iA(B2 + ε0) = iA(B1) + νA(B1), and for all x ∈ X one has

�(x) ≤ 1
2
(
(B2 – B1)x, x

)
+ c; (1.3)

(�4) �(x) → +∞ as ‖x‖ → ∞ and x ∈ ker(A – B1).
Then (1.1) has at least one solution x such that y = (A – B1)x minimizes the dual action

ψ1 : R(A – B1) → R, y → –
1
2
(
	–1y, y

)
+ �∗(y)

provided �∗
ε ∈ C1(X, R), where 	x = (A – B1)x for all x ∈ D(A) ∩ R(A – B1).

Theorem 1.2 Under the hypotheses in Theorem 1.1, assume, in addition, that
(�5) ∇�(θ ) = θ , �(θ ) = 0 and there exist B01 ∈Ls(X) and ε01 > 0 such that B01 –ε01 ≥ B1,

iA(B01) > iA(B1) + νA(B1), and

�(x) ≥ 1
2
(
(B01 – B1)x, x

)
, ∀x ∈ X with small ‖x‖. (1.4)

Then (1.1) has at least one nontrivial solution.

Remark 1 In [5], Theorem 3.1.7, one only assumed that (�1) and (�3) hold. The following
BVP can serve as a counterexample:

⎧
⎨

⎩
ẍ(t) + π2x(t) = 1, t ∈ (0, 1),

x(0) = 0 = x(1).
(1.5)

In fact, it is easy to check that Eq. (1.5) satisfies the conditions of Theorem 3.1.7 in [5], but
it has no solution, so Theorem 3.1.7 is also incorrect. These show that our results improve
Theorem 3.1.7 in [5].

The paper is organized as follows. The proofs of Theorems 1.1–1.2 are given in Sect. 2
and in Sect. 3 we investigate their applications to convex Hamiltonian systems satisfying
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several boundary value conditions including Bolza boundary value conditions, general-
ized periodic boundary value conditions and Sturm–Liouville boundary value conditions,
and we obtain some new theorems on the existence of solutions or nontrivial solutions.
In addition, we give some remarks to illustrate that some famous results about solutions
to subquadratic convex Hamiltonian systems by Mawhin and Willem [16] and Ekeland [7]
are special cases of these results. In the Appendix we recall some useful results concerning
the index theory for unbounded linear self-adjoint operator equations from [5, 6] used in
other sections.

2 Proofs of the theorems
In order to prove Theorems 1.1–1.2 we need some lemmas from [8, 16].

Lemma 2.1 ([16], Theorem 1.1) If ϕ : X → R is weakly lower semi-continuous on a Hilbert
space X and has a bounded minimizing sequence, then ϕ has a minimum on X.

Lemma 2.2 ([16], Theorem 1.2) If X is a Hilbert space and ϕ : X → R is lower semi-
continuous and convex, then ϕ is weakly lower semi-continuous.

Let X be a Hilbert space, we shall denote by 
(X) the set of all convex lower semi-
continuous functions F : X → R. The conjugate function F∗ of F is the function F∗ : X → R
defined by

F∗(v) = sup
u∈X

{
(v, u) – F(u)

}
.

We define the subdifferential of a function F ∈ 
(X) at a point u ∈ X to be the set

∂F(u) =
{

v ∈ X : F(w) ≥ F(u) + (v, w – u) for all w ∈ X
}

,

and say that F is subdifferentiable at u if ∂F(u) �= ∅.

Lemma 2.3 ([8], Proposition 5.1 and Corollary 5.2) If F ∈ 
(X), the following statements
are equivalent:

(i) v ∈ ∂F(u);
(ii) F(u) + F∗(v) = (v, u);

(iii) u ∈ ∂F∗(v).

Lemma 2.4 ([8], Proposition 5.3) If F : X → R is convex and differentiable at u, then
∂F(u) = {∇F(u)}.

Proposition 2.5 For any B1 ∈ Ls(X), if x ∈ R(A – B1) ∩ D(A) ⊂ X, then there exists λ̃0 > 0
such that

‖x‖2 ≤ 1
λ̃2

0

∥∥(A – B1)x
∥∥2.

Proof By Kato–Rellich’s theorem ([1], Theorem 6.5.10), A – B1 is unbounded self-adjoint.
σ (A) = σd(A) shows that there is a basis {ei}∞i=–∞ of X and · · · ≤ λ–2 ≤ λ–1 ≤ λ0 ≤ λ1 ≤ λ2 ≤
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· · · such that Aej = λjej, D(A) = {∑∞
j=–∞ cjej|∑∞

j=–∞ λ2
j c2

j < ∞}. Let ‖x‖2
A = ‖x‖2 + ‖Ax‖2 =

∑∞
j=–∞(λ2

j + 1)c2
j for all x ∈ D(A). If {xj} ⊂ D(A) such that {‖xj‖A} is bounded, then {xj} has

a convergent subsequence in X and so does {B1xj}. This implies that B1 : (D(A),‖ ·‖A) → X
is compact and B1 is A-compact. By Weyl’s theorem ([1], Theorem 6.5.21), we can see that
A – B1 is also an unbounded linear self-adjoint operator in X and σess(A – B1) = σess(A) = ∅,
i.e., σ (A – B1) = σd(A – B1) is unbounded. From Lemma 3.2.1 in [5], we know that A –
B1 : D(A) → X is continuous, ker(A – B1) is finite-dimensional, R(A – B1) is closed and
X = ker(A – B1) ⊕ R(A – B1). Note that νA(B1) �= 0, we can assume that there is a basis
{ẽj}∞j=–∞ of X and · · · ≤ λ̃–2 ≤ λ̃–1 ≤ 0 ≤ λ̃1 ≤ λ̃2 ≤ · · · such that (A – B1)ẽj = λ̃jẽj. Thus, for
all x =

∑
λ̃j �=0 cjẽj ∈ R(A – B1) ∩ D(A), one has

‖x‖2 =
∑

λ̃j �=0

c2
j ≤ 1

λ̃2
0

∑

λ̃j �=0

λ̃2
j c2

j =
1
λ̃2

0

∥∥(A – B1)x
∥∥2,

where λ̃0 = min{|λ̃j| �= 0}. �

Consider the dual functional ψ : R(A – B1) → R defined by

ψ(x) = –
1
2
(
	–1x, x

)
+ F∗(x), (2.1)

where F∗(x) = supy∈X{(x, y) – F(y)} for every F ∈ 
(X), 	 = (A – B1)|R(A–B1) : R(A – B1) ∩
D(A) → R(A – B1) and for the existence of 	–1, we refer to the Appendix.

Proposition 2.6 Let F : X → R be convex and continuous and assume F∗ ∈ C1(X, R). Then
the dual functional ψ : R(A – B1) → R defined by (2.1) is continuously differentiable and,
if y ∈ R(A – B1) is a critical point of ψ , the element x defined by x = 	–1y + ξ for some
ξ ∈ ker(A – B1) satisfies

(A – B1)x ∈ ∂F(x).

Proof If y ∈ R(A – B1) is a critical point of ψ , Lemma 2.4 implies that, for all h ∈ R(A – B1),
one has

0 = –
(
	–1y, h

)
+

(∇F∗(y), h
)
. (2.2)

It is then easy to see that –	–1y + ∇F∗(y) ∈ ker(A – B1) via X = ker(A – B1) ⊕ R(A – B1),
and there is ξ ∈ ker(A – B1) such that

–	–1y + ∇F∗(y) = ξ .

Setting x = 	–1y + ξ = ∇F∗(y), we have x ∈ X, (A – B1)x = 	x = y and, by duality, y ∈ ∂F(x).
Thus

(A – B1)x ∈ ∂F(x).

The proof is complete. �
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Proof of Theorem 1.1 We divide the proof into three steps.
Step 1. Existence of a solution for a perturbed problem. Let

�ε : X → R, x → ε

2
‖x‖2 + �(x), (2.3)

where ε ∈ (0, ε0). From (�2) and (�3), we can obtain

ε

2
‖x‖2 – ‖l0‖‖x‖ ≤ �ε(x) ≤ ε0

2
‖x‖2 +

1
2
(
(B2 – B1)x, x

)
+ c, (2.4)

hence

ε‖x‖2

4
–

‖l0‖2

ε
≤ �ε(x) ≤ ε0 + ‖B2 – B1‖

2
‖x‖2 + c.

So that by Proposition 2.6, the perturbed dual functional

ψε(y) = –
1
2
(
	–1y, y

)
+ �∗

ε (y)

is continuously differentiable on R(A – B1) and if yε ∈ R(A – B1) is a critical point of ψε ,
then the element xε defined by

xε = 	–1yε + ξ

for some ξ ∈ ker(A – B1) is a solution of (A – B1)x = ∇�ε(x), i.e.,

(A – B1)xε – εxε ∈ ∂�(xε), (2.5)

and the relation

(A – B1)xε = yε

holds. Again by (2.4) and (2.1), we can obtain

�∗
ε (y) ≥ 1

2
(
y, (B2 + ε0 – B1)–1y

)
– c

and

ψε(y) ≥ –
1
2
(
y,	–1y

)
+

1
2
(
y, (B2 + ε0 – B1)–1y

)
– c

=
1
2

qA,(B2+ε0)|B1 (y, y) – c, ∀y ∈ R(A – B1). (2.6)

From Proposition A.4, Lemma A.6 and (�3), we have νA(B1) = iA(B2 + ε0) – iA(B1) =
IA(B1, B2 + ε0) = iA((B2 + ε0)|B1) + νA(B1), which implies that iA((B2 + ε0)|B1) = 0 and
E–

A((B2 + ε0)|B1) = {θ}. By (1) of Lemma A.6, we have νA((B2 + ε0)|B1) = νA(B2 + ε0) = 0
and E0

A((B2 + ε0)|B1) = {θ}. By (A.2) of the Appendix, we have

R(A – B1) = E–
A
(
(B2 + ε0)|B1

) ⊕ E0
A
(
(B2 + ε0)|B1

) ⊕ E+
A
(
(B2 + ε0)|B1

)
.
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Thus we can see that R(A – B1) = E+
A((B2 + ε0)|B1), which implies that ψε(u) → +∞ as

‖u‖ → +∞ and ψε(u) is bounded from below. Assume that ψε(yj) → infψε ; then ψε(yj) is
bounded and ‖yj‖ is also bounded. Now ψε,1(y) = �∗

ε (y) is weakly lower semi-continuous
on R(A – B1) by Lemma 2.2 and ψε,2(y) = – 1

2 (y,	–1y) is weakly continuous on R(A – B1)
by the compactness of 	–1. Thus ψε = ψε,1 + ψε,2 is weakly lower semi-continuous, and by
Lemma 2.1, has a minimum at some point yε ∈ R(A – B1).

Step 2. A posteriori estimates on xε . From the obvious inequality �(x) ≤ �ε(x) we de-
duce �∗

ε (y) ≤ �∗(y). Thus, we can obtain

1
2

qA,(B2+ε0)|B1 (yε , yε) – c ≤ ψε(yε) ≤ ψε(y) ≤ –
1
2
(
	–1y, y

)
+ �∗(y) = ψ1(y),

for all y ∈ R(A – B1), which implies that ψε(yε) ≤ ψ1(y0) = c1 < +∞ and ‖yε‖ ≤ c2 with c2

independent of ε. By yε = 	xε , we know that

‖	x̃ε‖ = ‖	xε‖ ≤ c2,

where x̃ε = xε – x̄ε , x̄ε ∈ ker(A – B1). Proposition 2.5 implies that ‖x̃ε‖ ≤ c3. From the con-
vexity of �, hypothesis (�3) and (2.5) we have

�

(
x̄ε

2

)
= �

(
xε

2
–

x̃ε

2

)
≤ 1

2
�(xε) +

1
2
�(–x̃ε)

≤ 1
2
(
∂�(xε), xε

)
+

1
2
�(θ ) +

1
4
‖B2 – B1‖ · ‖x̃ε‖2 +

c
2

≤ 1
2
(
(A – B1)xε , xε

)
–

ε

2
‖xε‖2 +

1
4
‖B2 – B1‖ · ‖x̃ε‖2 + c

≤ 1
2
∥
∥	–1∥∥ · ‖	xε‖2 +

1
4
‖B2 – B1‖ · ‖x̃ε‖2 + c

≤ c4

due to the boundedness of B1, B2 and 	–1. By assumption (�4), ‖x̄ε‖ ≤ c5. Then

‖xε‖ ≤ ‖x̃ε‖ + ‖x̄ε‖ ≤ c3 + c5 = c6.

Step 3. Existence of a solution for the original problem. Since ‖	x̃ε‖ ≤ c2 and ‖x̄ε‖ ≤ c5,
there is a sequence {εn} in (0, ε0) tending to 0 and some x̃ ∈ R(A – B1), x̄ ∈ ker(A – B1) such
that 	x̃εn ⇀ 	x̃ and x̄εn → x̄ in X. Moreover, by the compactness of 	–1, we have

x̃εn → x̃, xεn = x̃εn + x̄εn → x = x̃ + x̄ ∈ X.

Again note that 	xε = yε and ‖	xε‖ ≤ c2, we have 	–1yε = xε – x̄ε and yεn ⇀ y in R(A – B1),
so that 	–1yεn converges to

	–1y = x – x̄. (2.7)

From Proposition 2.6, we can see that

	xεn – εnxεn ∈ ∂�(xεn ). (2.8)
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By definition,

�(u) ≥ �(xεn ) + (	xεn – εnxεn , u – xεn ), ∀u ∈ X.

Taking the limit yields

	x ∈ ∂�(x),

which shows that x ∈ X is a solution of (1.1).
Finally, as �∗

ε (y) ≤ �∗(y), we have, for all h ∈ R(A – B1)

ψεn (yεn ) ≤ ψεn (h) ≤ ψ(h).

Now, by the duality between xεn and yεn , we have

ψεn (yεn ) = –
1
2
(
	–1yεn , yεn

)
+ �∗

εn (yεn )

= –
1
2
(
	–1yεn , yεn

)
+ (xεn , yεn ) – �εn (xεn )

= –
1
2
(
	–1yεn , yεn

)
+ (xεn , yεn ) – �(xεn ) –

εn

2
‖xεn‖2. (2.9)

It follows from (1.1) and (2.7) that

y = (A – B1)x ∈ ∂�(x). (2.10)

Letting n → ∞ in (2.9), by (2.10) and Lemma 2.3, we obtain

lim
n→∞ψεn (yεn ) = –

1
2
(
	–1y, y

)
+ (x, y) – �(x)

= –
1
2
(
	–1y, y

)
+ �∗(y) = ψ(y).

Thus ψ(y) ≤ ψ(h) for all h ∈ R(A – B1) and the proof is complete. �

Proof of Theorem 1.2 From Theorem 1.1 we know that there is y0 ∈ R(A – B1) such that
x = 	–1y0 + x̄ for some x̄ ∈ ker(A – B1) is a solution of (1.1), and

ψ(y0) ≤ ψ(h), ∀h ∈ R(A – B1).

If θ ∈ ∂�(θ ), then θ is a solution of (1.1). We can prove that y0 �= θ under assumption (�5).
In fact, by (1.4), we can obtain

ψ(h) ≤ –
1
2
(
h,	–1h

)
+

1
2
(
h, (B01 – B1)–1h

)

=
1
2

qA,B01|B1 (h, h) as h → θ .

From Proposition A.4, Lemma A.6 and (�5), we have IA(B1, B01) = iA(B01|B1) + νA(B1) =
iA(B01) – iA(B1) > νA(B1), which shows that iA(B01|B1) > 0 and dim(E–

A(B01|B1)) ≥ 1 by (A.2)
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in the Appendix. So, for any h ∈ E–
A(B01|B1)\{θ} small enough, we have ψ(h) < 0 = ψ(θ ).

Hence y0 �= θ and x = 	–1y0 + x̄ �= θ . This completes the proof. �

3 Applications to convex Hamiltonian systems
In this section, we consider the applications of the main results to convex Hamiltonian
systems. For systematic research of Hamiltonian systems, we refer to the excellent books
[7, 14].

3.1 First order Hamiltonian systems satisfying Bolza boundary value conditions
As a first example, we now consider a BVP for a the nonlinear Hamiltonian systems (3.1)–
(3.3):

–Jẋ – B̄1(t)x – H ′(t, x) = 0, t ∈ [0, 1]; (3.1)

x1(0) cosα + x2(0) sinα = 0, (3.2)

x1(1) cosβ + x2(1) sinβ = 0, (3.3)

where J =
( 0 –In

In 0
)
, B̄1 ∈ L∞([0, 1],Ls(R2n)) = {B(t) = (bjk)2n×2n|bjk(t) = bkj(t), t ∈ [0, 1],

bjk(t) ∈ L∞([0, 1])} with ν
f
α,β (B̄1) �= 0 and In is the identity matrix on Rn, 0 ≤ α < π ,

0 < β ≤ π , x = (x1, x2) ∈ Rn × Rn, k ∈ Z, H : [0, 1] × R2n → R2n is differentiable and H ′(t, x)
is the gradient of H with respect to x.

From Theorems 1.1–1.2, we have the following theorem.

Theorem 3.1 Assume that H ∈ C1(R2n, R) and satisfies
(H1) H(t, x) is convex in x ∈ R2n for almost every t ∈ [0, 1];
(H2) there exists l0 ∈ L2([0, 1], R2n) such that for all x ∈ R2n one has

H(t, x) ≥ (
x, l0(t)

)
; (3.4)

(H3) there exist B̄2 ∈ L∞([0, 1],Ls(R2n)) and γ ∈ L1([0, 1], R+), such that B̄2 ≥ B̄1,
ν

f
α,β (B̄2) = 0, if

α,β (B̄2) = if
α,β (B̄1) + ν

f
α,β (B̄1), and for every x ∈ R2n and a.e. t ∈ [0, 1]

one has

H(t, x) ≤ 1
2
((

B̄2(t) – B̄1(t)
)
x, x

)
+ γ (t); (3.5)

(H4)
∫ 1

0 H(t, x) dt → +∞ as ‖x‖L2 → ∞ and x ∈ ker(A1 – B̄1).
Then (3.1)–(3.3) has at least one solution.

Proof Let X = L2([0, 1], R2n), D(A1) = {x ∈ H1([0, 1], R2n)|x satisfies (3.2)–(3.3)}. Define
A1 : D(A1) → X by (A1x)(t) = –Jẋ(t). It is easy to see that A1 is self-adjoint in X and
σ (A1) = σd(A1) = {β – α + kπ |k ∈ Z}.

Set Hε(t, x) = ε
2 |x|2 +H(t, x), �(x) =

∫ 1
0 H(t, x(t)) dt, and �ε(x) =

∫ 1
0 Hε(t, x(t)) dt for x ∈ X.

� and �ε are convex because of the convexity of H with respect to x. We have the following
proposition.
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Proposition 3.2 ([16], Proposition 2.2) Let F ∈ C1(Rn, R) be a convex function such that,
for some α > 0, b1 ≥ 0, b2 ≥ 0, one has

–b1 ≤ F(u) ≤ α

2
|u|2 + b2

whenever u ∈ Rn. Then

∣∣F ′(u)
∣∣ ≤ 2α

[|u| + b1 + b2
]

for u ∈ Rn.

By (H2)–(H3),

ε

4
|x|2 –

1
ε

∣
∣l0(t)

∣
∣2 ≤ Hε(t, x) ≤ 1

2
(c + ε)|x|2 +

∣
∣γ (t)

∣
∣

for all x ∈ R2n and a.e. t ∈ [0, 1]. So �ε ∈ C1(X, R) via Proposition 3.2. Moreover,

1
2(c + ε)

|y|2 –
∣∣γ (t)

∣∣ ≤ H∗
ε (t, y) ≤ 1

ε

(|y|2 +
∣∣l0(t)

∣∣2)

for all y ∈ R2n and a.e. t ∈ [0, 1]. By ([16], Proposition 2.4), H∗
ε (t, ·) ∈ C1(R2n, R) for a.e.

t ∈ [0, 1]. And from ([7], pages 93–96),

�∗
ε (y) =

∫ 1

0
H∗

ε

(
t, y(t)

)
dt

for y ∈ X. Hence, �∗
ε ∈ C1(X, R) via Proposition 3.2 again.

(�1) follows from (H1) and obviously, (�2) follows from (H2), (�4) follows from (H4). We
need only to show that (�3) follows from (H3). In fact, for non-zero x ∈ ker(A1 – B̄1), x =
x(t) is a non-zero solution of –Jẋ– B̄1(t)x = 0 and (3.2)–(3.3). So x = x(t) has at most finitely
many zeros on [0, 1], and (B̄2x, x) > (B̄1x, x). Moreover, from Proposition 3.3, condition
(H3) and Proposition A.8 (see the Appendix), we know that there exists ε0 > 0 such that
ν

f
α,β (B2 + ε0I2n) = 0, if

α,β (B2 + ε0I2n) = if
α,β (B1) + ν

f
α,β (B1), which implies that (�3) holds. The

proof is complete. �

Proposition 3.3 ([3], Proposition 2.13) For any B ∈ L∞([0, 1],Ls(R2n)), there exists ε0 > 0
such that for any ε ∈ (0, ε0] we have

ν
f
α,β (B + εI2n) = 0 = ν

f
α,β (B – εI2n),

if
α,β (B – εI2n) = if

α,β (B),

if
α,β (B + εI2n) = if

α,β (B) + ν
f
α,β (B).

In particular, if ν
f
α,β (B) = 0, we have if

α,β (B + εI2n) = if
α,β (B) for all ε ∈ (0, ε0].

Theorem 3.4 Under the conditions in Theorem 3.1, assume, in addition, that
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(H5) H ′(t, θ ) = θ , H(t, θ ) = 0 and there exists B01 ∈ L∞([0, 1],Ls(R2n)) such that B01 ≥ B̄1,
if
α,β (B01) > if

α,β (B̄1) + ν
f
α,β (B̄1), and

H(t, x) ≥ 1
2
(
(B01 – B̄1)x, x

)
, ∀x ∈ R2n with small |x|. (3.6)

Then (3.1)–(3.3) has at least one nontrivial solution.

Proof It is obvious that (H5) implies (�5) and it remains to apply Theorems 1.1–1.2. �

3.2 First order Hamiltonian systems satisfying generalized periodic boundary
value conditions

As a second example, consider the nonlinear Hamiltonian systems:

–Jẋ – B̄1x – H ′(t, x) = 0, t ∈ [0, 1]; (3.7)

x(1) = Px(0), (3.8)

where B̄1 ∈ L∞([0, 1],Ls(R2n)) with ν
f
P(B1) �= 0, P is symplectic, i.e. PT JP = J , H : [0, 1] ×

R2n → R2n is differentiable and H ′(t, x) is the gradient of H with respect to x.

Theorem 3.5 Assume that H ∈ C1(R2n, R) and satisfies (H1), (H2) and
(H3,1) there exist B̄2 ∈ L∞([0, 1],Ls(R2n)) and γ ∈ L1([0, 1], R+), such that B̄2 ≥ B̄1,

ν
f
P(B̄2) = 0, if

P(B̄2) = if
P(B̄1) + ν

f
P(B̄1), and for every x ∈ R2n and a.e. t ∈ [0, 1] one

has (3.5) holds.
(H4,1)

∫ 1
0 H(t, x) dt → +∞ as ‖x‖L2 → ∞ and x ∈ ker(A2 – B̄1).

Then (3.7)–(3.8) has at least one solution.

Proof Let X = L2([0, 1], R2n), D(A2) = {x ∈ H1([0, 1], R2n)|x satisfies (3.8)}. Define A2 :
D(A2) → X by (A2x)(t) = –Jẋ(t). It is easy to check that A2 is self-adjoint in X and
σ (A2) = σd(A2) = {μi + 2jπ |i = 1, 2, . . . , m; j ∈ Z}, where {μi}m

i=1 ⊆ (0, 2π ] are such that, for
some non-zero ξi ∈ R2n, (e–Jμi P – I2n)ξi = 0 and (ξi, ξj)R2n = 0 if μi = μj for i �= j.

Set �(x) =
∫ 1

0 H(t, x) dt for x ∈ X. Because of Proposition 3.2 and Proposition 3.6 and
Proposition A.10 the rest of the proof of Theorem 3.5 is similar to the one of Theo-
rem 3.1. �

Proposition 3.6 ([4], Proposition 2.13) For any B ∈ L∞([0, 1],Ls(R2n)), there exists ε0 > 0
such that for any ε ∈ (0, ε0] we have

ν
f
P(B + εI2n) = 0 = ν

f
P(B – εI2n),

if
P(B – εI2n) = if

P(B),

if
P(B + εI2n) = if

P(B) + ν
f
P(B).

In particular, if ν
f
P(B) = 0, we have if

P(B + εI2n) = if
P(B) for all ε ∈ (0, ε0].

Remark 2 Note that L4([0, 1], R2n) ⊂ L2([0, 1], R2n), L2([0, 1], R+) ⊂ L1([0, 1], R+). If P = I2n,
T = 1, B̄1 = 0I2n, B̄2 = α0I2n < 2πI2n, l0 ∈ L4([0, 1], R2n) and γ ∈ L2([0, 1], R+), then Theo-
rem 3.5 reduces to ([16], Theorem 3.1; [7], Proposition III.2.2). Moreover, since P = I2n,
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T = 1, B̄2 = B̄1 + εI2n, where ε > 0 is small enough, Theorem 3.5 reduces to ([7], Proposi-
tion III.2.3). Clearly, our result generalizes Theorem 3.1 in [16] and Propositions III.2.2–
III.2.3 in [7].

Corollary 3.7 Assume that H ∈ C1(R2n, R) and there exists B̄2 ∈ L∞([0, 1],Ls(R2n)) with
B̄2 ≥ B̄1, such that H(t, x) + 1

2 (B̄1(t)x, x) is (B̄1, B̄2)-subquadratic at infinity, i.e., (H1) holds,
and there exists c ∈ R such that

H(t, x) +
1
2
(
B̄1(t)x, x

) ≤ 1
2
(
B̄2(t)x, x

)
+ c

for all (t, x), and n(‖x‖L2 ) ≤ H(t, x) with n(s)
s → +∞ as s → +∞. Let γi(t) with 0 ≤ γ1(t) ≤

· · · ≤ γ2n(t) be the eigenvalues of B̄2(t) – B̄1(t), and let λj be the eigenvalues of A2 – B̄1, and
set

γ = max
{
γ2n(t)|t ∈ [0, 1]

}
, λ = min{λj > 0}.

Then (3.7)–(3.8) has at least one solution if λ > γ .

Proof Clearly, since H(t, x)+ 1
2 (B̄1(t)x, x) is (B̄1, B̄2)-subquadratic at infinity, we can see that

the conditions (H2), (H4,1), and (3.5) (cf. (H3,1)) hold. It remains to prove that ν
f
P(B̄2) = 0 and

if
P(B̄2) = if

P(B̄1)+ν
f
P(B̄1). In fact, by the definition of γ we have B̄2(t) ≤ B̄1(t)+γ I2n. Since λ >

γ , A2x–B̄1x–μx = 0 has no nontrivial solutions for any μ ∈ (0,γ ]. From Definition A.9 and
(2) of Proposition A.4, we know that if

P(B̄1 + γ I2n) = if
P(B̄1) + ν

f
P(B̄1). Since B̄1(t) < B̄2(t) ≤

B̄1(t) + γ I2n, we have if
P(B̄1) + ν

f
P(B̄1) ≤ if

P(B̄2), if
P(B̄2) + ν

f
P(B̄2) ≤ if

P(B̄1 + γ I2n). So ν
f
P(B̄2) = 0

and if
P(B̄2) = if

P(B̄1) + ν
f
P(B̄1). �

Remark 3 Noticing that Theorem III.2.1 in [7] considers the eigenvalue of operator –A2 +
B̄1, it is easy see that Corollary 3.7 reduces to ([7], Theorem III.2.1) as P = I2n, T = 1.

Similarly to Theorem 3.4, we have the following.

Theorem 3.8 Under the hypotheses of Theorem 3.5, assume, in addition, that
(H5,1) H ′(t, θ ) = θ , H(t, θ ) = 0 and there exists B01 ∈ L∞([0, 1],Ls(R2n)) such that B01 ≥

B̄1, if
p(B01) > if

p(B̄1) + ν
f
p(B̄1), and (3.6) holds.

Then (3.7)–(3.8) has at least one nontrivial solution.

3.3 Second order Hamiltonian systems satisfying Sturm–Liouville boundary
value conditions

As a third example, consider the BVP (3.9)–(3.11):

–
(
	(t)x′)′ – B̄1x – V ′(t, x) = 0, (3.9)

x(0) cosα – 	(0)x′(0) sinα = 0, (3.10)

x(1) cosβ – 	(1)x′(1) sinβ = 0, (3.11)

where 	 ∈ C([0, 1],Ls(Rn)), 	(t) is positive definite for t ∈ [0, 1], and B̄1 ∈ L∞([0, 1],
Ls(Rn)) with νs

	,α,β (B̄1) �= 0, 0 ≤ α < π , 0 < β ≤ π .
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Theorem 3.9 Assume that V ∈ C1(Rn, R) and satisfies
(V1) H(t, x) is convex in x ∈ Rn for almost every t ∈ [0, 1];
(V2) there exists l0 ∈ L2([0, 1], Rn) such that for all x ∈ Rn one has

V (t, x) ≥ (
x, l0(t)

)
; (3.12)

(V3) there exist B̄2 ∈ L∞([0, 1],Ls(Rn)) and γ ∈ L1([0, 1], R+) such that B̄2 ≥ B̄1,
νs

	,α,β (B̄2) = 0, is
	,α,β (B̄2) = is

	,α,β (B̄1) + νs
	,α,β(B̄1), and for every x ∈ Rn and a.e.

t ∈ [0, 1] one has

V (t, x) ≤ 1
2
(
(B̄2 – B̄1)x, x

)
+ γ (t); (3.13)

(V4)
∫ 1

0 V (t, x) dt → +∞ as ‖x‖L2 → ∞ and x ∈ ker(A3 – B̄1).
Then (3.9)–(3.11) has at least one solution.

Proof Let X = L2([0, 1], Rn),

D(A3) =
{

x ∈ C2([0, 1], Rn)|(	(t)x′)′ ∈ L2([0, 1], Rn), x satisfies (3.10)–(3.11)
}

.

Define A3 : D(A3) → X by (A3x)(t) = –(	(t)x′(t))′. Using the results presented in [5,
Sect. 3.3], it is possible to show that A3 is self-adjoint and σ (A3) = σd(A3). In particular, if
	(t) = In, α = 0, β = π , we have σ (A3) = σd(A3) = {k2π2|k ∈ Z}.

Set �(x) =
∫ 1

0 V (t, x) dt for x ∈ X. Because of Proposition 3.2 and Proposition 3.10 and
Proposition A.12 the rest of the proof of Theorem 3.9 is similar to Theorem 3.1. �

Proposition 3.10 For any B ∈ L∞([0, 1],Ls(Rn)), there exists ε0 > 0 such that for any ε ∈
(0, ε0] we have

νs
	,α,β (B + εIn) = 0 = νs

	,α,β (B – εIn),

is
	,α,β (B – εIn) = is

	,α,β (B),

is
	,α,β (B + εIn) = is

	,α,β (B) + νs
	,α,β(B).

In particular, if νs
	,α,β(B) = 0, we have is

	,α,β (B + εIn) = is
	,α,β (B) for all ε ∈ (0, ε0].

Similarly to Theorem 3.4, we have the following.

Theorem 3.11 Under the hypotheses of Theorem 3.9, assume, in addition, that
(V5) V ′(t, θ ) = θ , V (t, θ ) = 0 and there exists B01 ∈ L∞([0, 1],Ls(Rn)) such that B01 ≥ B̄1,

is
	,α,β (B01) > is

	,α,β (B̄1) + νs
	,α,β (B̄1), and

V (t, x) ≥ 1
2
(
(B01 – B̄1)x, x

) ∀x ∈ Rn with small |x|. (3.14)

Then (3.9)–(3.11) has at least one nontrivial solution.
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3.4 Second order Hamiltonian systems satisfying generalized periodic boundary
value conditions

Finally, we consider the BVP (3.15)–(3.17):

–x′′ – B̄1x – V ′(t, x) = 0, (3.15)

x(1) = Mx(0), (3.16)

x′(1) = Nx′(0), (3.17)

where B̄1 ∈ L∞([0, 1],Ls(Rn)) with νs
M(B̄1) �= 0, M, N ∈ GL(n) and MNT = In.

Theorem 3.12 Assume that V ∈ C1(Rn, R) and satisfies (V1), (V2) and
(V3,1) there exist B̄2 ∈ L∞([0, 1],Ls(Rn)) and γ ∈ L1([0, 1], R+) such that B̄2 ≥ B̄1,

νs
M(B̄2) = 0, is

M(B̄2) = is
M(B̄1) + νs

M(B̄1), and for every x ∈ Rn and a.e. t ∈ [0, 1] (3.13)
holds;

(V4,1)
∫ 1

0 V (t, x) dt → +∞ as ‖x‖L2 → ∞ and x ∈ ker(A4 – B̄1).
Then (3.15)–(3.17) has at least one solution.

Proof Let X = L2([0, 1], Rn),

D(A4) =
{

x ∈ C2([0, 1], Rn)|x′′ ∈ L2([0, 1], Rn), x satisfies (3.16)–(3.17)
}

.

Define A4 : D(A4) → X by (A4x)(t) = –x′′(t). Using the results presented in [6, Sect. 7.1], it
is possible to show that A4 is self-adjoint in X and σ (A4) = σd(A4) ⊂ [0, +∞). In particular,
if M = N = In, we have σ (A4) = σd(A4) = {(2k)2π2|k ∈ Z}.

Set �(x) =
∫ 1

0 V (t, x) dt for x ∈ X. Because of Proposition 3.2 and Proposition 3.13 the
rest of the proof of Theorem 3.12 is similar to Theorem 3.1. �

Proposition 3.13 For any B ∈ L∞([0, 1],Ls(Rn)), there exists ε0 > 0 such that for any ε ∈
(0, ε0] we have

νs
M(B + εIn) = 0 = νs

M(B – εIn),

is
M(B – εIn) = is

M(B),

is
M(B + εIn) = is

M(B) + νs
M(B).

In particular, if νs
M(B) = 0, we have is

M(B + εIn) = is
M(B) for all ε ∈ (0, ε0].

Remark 4 Note that L4([0, 1], Rn) ⊂ L2([0, 1], Rn), L2([0, 1], R+) ⊂ L1([0, 1], R+). If M = N =
In, T = 1, B̄1 = 0In < B̄2 = α2In < (2π )2In, l0 ∈ L4([0, 1], R2n) and γ ∈ L2([0, 1], R+), then
Theorem 3.12 reduces to ([16], Theorem 3.6). Moreover, as B̄1 = (2kπ )2In < B̄2 = απ2In <
(2(k + 1)π )2In where k ∈ N, then Theorem 3.12 reduces to ([16], Theorem 3.7). Clearly,
our result generalizes Theorems 3.6–3.7 in [16].

Similarly to Theorem 3.4, we have the following.

Theorem 3.14 Under the hypotheses of Theorem 3.12, assume, in addition, that
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(V5,1) V ′(t, θ ) = θ , V (t, θ ) = 0 and there exists B01 ∈ L∞([0, 1],Ls(Rn)) such that B01 ≥ B̄1,
is
M(B01) > is

M(B̄1) + νs
M(B̄1), and (3.14) holds.

Then (3.15)–(3.17) has at least one nontrivial solution.

Appendix
In this section we recall some results from [5, 6] related to index theory for unbounded lin-
ear self-adjoint operator equations. Let X be a real infinite-dimensional separable Hilbert
space with norm ‖ · ‖ and inner product (·, ·). Let A : D(A) → X be unbounded self-adjoint
and σ (A) = σd(A) = {λ ∈ R|λ belongs to the point spectrum of A}. For any B1, B2 ∈ Ls(X),
we write B1 < B2 with respect to X1 (a subspace of X) if and only if (B1x, x) < (B2x, x) for
all x ∈ X1\{θ}; and write B1 ≤ B2 w.r.t. X1 if and only if (B1x, x) ≤ (B2x, x) for all x ∈ X1. If
X = X1 we just write B1 < B2 or B1 ≤ B2.

Definition A.1 ([5], Definition 3.1.1) For any B ∈Ls(X), define

νA(B) = dim ker(A – B).

νA(B) is called the nullity of B, where dim ker(A – B) = dimension of ker(A – B) and ker(A –
B) = {x ∈ X|Ax = Bx}.

It was proved in [5] that the nullity νA(B) is finite.

Definition A.2 ([5], Definition 3.1.2) For any B1, B2 ∈Ls(X) with B1 < B2, define

IA(B1, B2) =
∑

λ∈[0,1)

νA
(
(1 – λ)B1 + λB2

)
;

and, for any B1, B2 ∈Ls(X), define

IA(B1, B2) = IA(B1, kId) – IA(B2, kId),

where Id : X → X is the identity map and kId > B1, kId > B2 for some real number k > 0.

Let B0 ∈Ls(X) be fixed and let iA(B0) be a prescribed integer associated with B0.

Definition A.3 ([5], Definition 3.1.3) For any B ∈Ls(X), define

iA(B) = iA(B0) + I(B0, B).

iA(B) is called the index of B and iA(B0) is called initial index. Generally, the initial index
can be any prescribed integer and the index iA(B) depends on B0 and the initial index.

Proposition A.4 ([5], Proposition 3.1.5)
(1) For any B, B1, B2 ∈Ls(X), IA(B1, B2) and iA(B) are well-defined and finite;
(2) for any B1, B2 ∈Ls(X), IA(B1, B2) = iA(B2) – iA(B1);
(3) for any B1, B2, B3 ∈Ls(X), IA(B1, B2) + IA(B2, B3) = IA(B1, B3);
(4) for any B1, B2 ∈Ls(X), if B1 < B2, then νA(B1) + iA(B1) ≤ iA(B2).
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Let B0 ∈ Ls(X) be given. From Lemma 3.2.1 in [5], we know that A – B0 : Y → X is
continuous, ker(A – B0) is finite-dimensional, R(A – B0) is closed and X = ker(A – B0) ⊕
R(A – B0), and the operator 	0 := (A – B0)|R(A–B0) : R(A – B0) ∩ Y → R(A – B0) is invertible
and the inverse 	–1

0 : R(A – B0) → R(A – B0) ∩ Y ↪→ R(A – B0) is compact and self-adjoint.
For any B ∈Ls(X) with B – B0 ≥ ε for some constant ε > 0, we define a bilinear form:

qA,B|B0 (x, y) = –
(
	–1

0 x, y
)

+
(
(B – B0)–1x, y

)
, ∀x, y ∈ R(A – B0). (A.1)

By Proposition 3.2.2 in [5] we have

R(A – B0) = E+
A(B|B0) ⊕ E0

A(B|B0) ⊕ E–
A(B|B0), (A.2)

such that qA,B|B0 is positive definite, null and negative definite on E+
A(B|B0), E0

A(B|B0) and
E–

A(B|B0), respectively. Moreover, E0
A(B|B0) and E–

A(B|B0) are finite-dimensional.

Definition A.5 ([5], Definition 3.2.3) For any B ∈Ls(X) with B – B0 ≥ ε for some constant
ε > 0, we define

iA(B|B0) = dim E–
A(B|B0),νA(B|B0) = dim E0

A(B|B0).

This relative index is a kind of Morse index. It plays an important role in the relationship
between Morse index and the index (iA(B),νA(B)).

Lemma A.6 ([5], Theorem 3.2.4) For any B ∈ Ls(X) with B – B0 ≥ ε for some constant
ε > 0, we have

(1) νA(B|B0) = νA(B),
(2) iA(B|B0) = IA(B0, B) – νA(B0).

As a first example, consider the following first order Hamiltonian system:

–Jẋ = B(t)x, (A.3)

x1(0) cosα + x2(0) sinα = 0, (A.4)

x1(1) cosβ + x2(1) sinβ = 0, (A.5)

where B ∈ L∞([0, 1],Ls(R2n)), 0 ≤ α < π and 0 < β ≤ π , x = (x1, x2) ∈ Rn × Rn, J =
( 0 –In

In 0
)
. Let X = L2([0, 1], R2n), D(A) = {x ∈ H1([0, 1], R2n)|x satisfies (A.4)–(A.5)}. Define

A : D(A) → X by (Ax)(t) = –Jẋ(t). It is easy to check that A is self-adjoint and σ (A) =
σd(A) = {β – α + kπ |k ∈ Z}. For any B1, B2 ∈ L∞([0, 1],Ls(R2n)), we write B1 ≤ B2 if
B1(t) ≤ B2(t), for a.e. t ∈ [0, 1]; and we write B1 < B2 if B1(t) ≤ B2(t) and B1(t) < B2(t) on a
subset of [0, 1] with positive measure.

Definition A.7 ([5], Definition 3.4.1) For any B ∈ L∞([0, 1],Ls(R2n)), we define

ν
f
α,β (B) = dim ker(A – B),

if
α,β

(
diag{0, In}

)
= is

In ,α,β (0),
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if
α,β (B) = if

α,β
(
diag{0, In}

)
+ If

α,β
(
diag{0, In}, B

)
,

and

If
α,β (B1, B2) =

∑

λ∈[0,1)

ν
f
α,β

(
(1 – λ)B1 + λB2

)
as B1 < B2,

If
α,β (B1, B2) = If

α,β (B1, kId) – If
α,β (B2, kId),

for every B1, B2 with kId > B1, kId > B2.

Proposition A.8 ([5], Proposition 3.4.2; [6], Proposition 8.1.1)
(1) For any B ∈ L∞([0, 1],Ls(R2n)), ν f

α,β is the dimension of the solution subspace of
(A.3)–(A.5) and

(
if
α,β (B),ν f

α,β(B)
) ∈ Z × {0, 1, 2, . . . , n}.

(2) For any B1, B2 ∈ L∞([0, 1],Ls(R2n)), if B1 ≤ B2, then if
α,β (B1) ≤ if

α,β (B2) and
if
α,β (B1) + ν

f
α,β (B1) ≤ if

α,β (B2) + ν
f
α,β (B2); if B1 < B2, then if

α,β (B1) + ν
f
α,β (B1) ≤ if

α,β (B2).
(3) For any B ∈ L∞([0, 1],Ls(Rn)),

(
νs

α,β (B), is
α,β(B)

)
=

(
ν

f
α,β

(
diag{B, In}

)
, if

α,β
(
diag{B, In}

))
.

As a second example, consider the following first order Hamiltonian system:

–Jẋ = B(t)x, (A.6)

x(1) = Px(0), (A.7)

where P is symplectic, i.e., PT JP = J . Let X = L2([0, 1], R2n), D(A) = {x ∈ H1([0, 1], R2n)|
x satisfies (A.7)}. Define A : D(A) → X by (Ax)(t) = –Jẋ(t). It is easy to check that A is self-
adjoint and σ (A) = σd(A) = {μi + 2jπ |i = 1, 2, . . . , m; j ∈ Z}, where {μi}m

i=1 ⊆ (0, 2π ] such
that, for some non-zero ξi ∈ R2n, (e–Jμi P – I2n)ξi = 0 and (ξi, ξj)R2n = 0 if μi = μj for i �= j.

Definition A.9 ([5], Definition 3.5.1) For any B ∈ L∞([0, 1],Ls(R2n)), we define

ν
f
P(B) = dim ker(A – B),

if
P(B) = if

P(0) + If
P(0, B),

and

If
P(B1, B2) =

∑

λ∈[0,1)

ν
f
P
(
(1 – λ)B1 + λB2

)
as B1 < B2,

If
P(B1, B2) = If

P(B1, kId) – If
P(B2, kId),

for every B1, B2 with kId > B1, kId > B2.

Proposition A.10 ([5], Proposition 3.5.2)
(1) For any B ∈ L∞([0, 1],Ls(R2n)), we have ν

f
P(B) ∈ {0, 1, 2, . . . , 2n}.
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(2) For any B1, B2 ∈ L∞([0, 1],Ls(R2n)), if B1 ≤ B2, then if
P(B1) ≤ if

P(B2) and
if
P(B1) + ν

f
P(B1) ≤ if

P(B2) + ν
f
P(B2); if B1 < B2, then if

P(B1) + ν
f
P(B1) ≤ if

P(B2).

As a third example, consider the following second order Hamiltonian system:

–
(
	(t)x′)′ = B(t)x, (A.8)

x(0) cosα – 	(0)x′(0) sinα = 0, (A.9)

x(1) cosβ – 	(1)x′(1) sinβ = 0, (A.10)

where 	 ∈ C([0, 1],Ls(Rn)), 	(t) is positive definite for t ∈ [0, 1], B ∈ L∞([0, 1],Ls(Rn)),
0 ≤ α < π and 0 < β ≤ π . Let X = L2([0, 1], Rn), D(A) = {x ∈ C2([0, 1], Rn)|(	(t)x′)′ ∈
L2([0, 1], Rn), x satisfies (A.9)–(A.10)}. Define A : D(A) → X by (Ax)(t) = –(	(t)x′(t))′.
From Sect. 3.3 in [5], we can check that A is self-adjoint and σ (A) = σd(A). In particular, if
	(t) = In, α = 0, β = π , we have σ (A) = σd(A) = {k2π2|k ∈ Z}.

Definition A.11 ([5], Sect. 3.3) For any B ∈ L∞([0, 1],Ls(Rn)), we define

νs
	,α,β (B) = dim ker(A – B),

is
	,α,β (B) =

∑

λ>0

νs
	,α,β (B + λIn).

Proposition A.12 ([5], Propositions 2.3.3 and 3.1.5)
(1) For any B ∈ L∞([0, 1],Ls(Rn)), we have νs

	,α,β ∈ {0, 1, 2, . . . , n}.
(2) For any B1, B2 ∈ L∞([0, 1],Ls(Rn)), if B1 ≤ B2, then is

	,α,β (B1) ≤ is
	,α,β (B2) and

is
	,α,β (B1) + νs

	,α,β(B1) ≤ is
	,α,β (B2) + νs

	,α,β(B2); if B1 < B2, then
is
	,α,β (B1) + νs

	,α,β(B1) ≤ is
	,α,β (B2).
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