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1 Introduction

Recently, the study of fractional calculus has attracted a great attention due to its poten-
tial applications in various fields [1-5]. As a branch of mathematical analysis, fractional
calculus can be considered as the generalization of the conventional calculus. Most of the
systems in interdisciplinary fields can be described via fractional calculus [6-14]. More-
over, fractional-order model can provide an explicit description and gives a further insight
into physical process. That is, fractional-order systems can serve as a valuable tool in the
modeling of many phenomena. Due to the fact that fractional calculus provides another
good way to describe, predict, and control physical systems accurately, it has been ap-
plied to control system, physics, and system modeling. With the development of interdis-
ciplinary applications, it has been investigated that various research fields can be elegantly
described with the help of fractional derivatives, such as viscoelastic bodies, quantitative
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finance, dielectric polarization, electromagnetic waves, and polymer physics. On the other
hand, there exist many significant differences between fractional-order system and the
corresponding integer-order differential systems. As compared to the integer-order sys-
tem, the fractional-order nonlinear system can display a richer dynamical behavior, such
as showing various bifurcations under certain conditions which are different from the cor-
responding integer-order system.

Synchronization of chaos occurs in a process where in two (or many) chaotic systems
(either equivalent or inequivalent) have a common behavior due to diffusive and multi-
plicative couplings [15, 16]. The idea underlying the phenomenon of synchronization of
chaos is that two chaotic systems may evolve on different attractors, but when coupled,
they initially start on different attractors and then somehow eventually follow a common
trajectory. Such a synchronization between two systems is achieved when the trajectories
of the systems are equal, which is the case when one of the two systems changes its tra-
jectory to follow that of the other system or when both systems follow a new common
trajectory. Nowadays, after the pioneering work of Pecora and Carroll [17], various types
of chaos synchronization such as complete synchronization [18, 19], phase synchroniza-
tion [20, 21], generalized synchronization [22, 23], lag synchronization [24, 25] projective
synchronization [26, 27], Q—S synchronization [28], amplitude envelope synchronization
[29], anticipated and lag synchronization [30, 31] have been described. There are many
methods of synchronization, such as the active control, adaptive control, linear or nonlin-
ear feedback control, and sliding mode control [32-49]. The fractional-order of the chaotic
systems effects the transient performance of the chaotic synchronization, it has been in-
vestigated that the error in the synchronization of fractional-order systems decreases if
the fractional order is increased. In other words, for the larger value of the fractional-
order, synchronization starts earlier [50]. Using a nonlinear feedback control technique,
[51] investigates that the chaotic and hyperchaotic systems with fractional orders are syn-
chronized, while their integer orders do not, so the aim of the present article is to develop
a technique which will serve the purpose of synchronization of fractional order as well as
integer-order chaotic systems.

The main object of this paper is to study the synchronization of the fractional-order
chaotic with different order and with unknown parameters using the modified adaptive
sliding-mode controller. Synchronization controller and parameter identification tech-
nique are designed based on the Lyapunov stability method. Computer simulations based
on the Adams—Bashforth—Moulton method support the theoretical findings. The orga-
nization of this paper is as follows. In Sect. 2, preliminaries of fractional-order calculus
is presented. In Sect. 3, presents a methodology for the modified adaptive sliding-mode
synchronization controller design. Two simulations examples are presented to verify the
effectiveness of the proposed method in Sects. 4 and 5. Finally, a conclusion in Sect. 6
closes the work.

2 Properties of fractional derivative
Fractional calculus is a generalization of integration and differentiation to a non-integer-

order integro-differential operator ,Df defined by

%, R(a) > 0,
D =11, R() =0, (1)
[ido)®, R(@) <0,
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where « is the fractional order which can be a complex number, R(«) denotes the real
part of @ and a < ¢, a is the fixed lower terminal and ¢ is the moving upper termi-
nal. There exist several definitions for fractional derivatives and fractional integrals like
the Riemann-Liouville, Caputo, Hadamard, Riesz, Griinwald—Letnikov [52—55]. The two
most commonly used are Riemann—Liouville and Caputo definitions. Each definition uses
Riemann-Liouville fractional integration and derivatives of whole order. The difference
between the two definitions is in the order of evaluation. Caputo’s definition which is a
modification of Riemann-Liouville definition has the advantage of dealing properly with
initial value problems in which the initial conditions are given in terms of the field vari-
ables and their integer order which is the case in most physical processes. The commonly
used definition is the Riemann-Liouville definition, defined by

n

d
Di(t) = TSI, >0, ©

where n = [«], i.e,, n is the first integer which is not less than «. J¥ is the fractional
Riemann-Liouville integral operator which is described as follows:

9 1 " op(v)
o0 =1 | T v )

with 0 < ¥ <1, I'(-) is the gamma function. The Caputo differential operator of fractional

order « is defined as
‘Dix(t) =7 %x"(t), o >0, (4)
where n = [«a].

Lemma 1 For Riemann—Liouville derivatives if s >n > 0, « and B are integers such that
0<a-1<s<a,0<pB-1=<n<p,then we obtain [1]

D3 (D7"(8)) = oD} " x(8). )

Lemma 2 For Riemann—Liouville derivatives if s,n > 0, a and B are integers such that
0<a-1<s<a,0<pB-1=<n<p,then we obtain [1]

n

i (t-—a)=7
oD; (D}x(8)) = oD "x() = Y _ [0} 75(®)],_, o (6)
= ra-s-j
3 Problem description
Given the fractional-order chaotic system, i.e., the drive system is
Difxq = f(x4) + F(xa)a, )

where x,; € R™ is the state vector of system (7), & € R* is the unknown parameter vector
of the system, f(x,;) : R” — R™, F(x;) : R — R"™ k. On the other hand, the controlled
response system is given by

D?xr =f(xr) + F(x,)B +u, )
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where x, € R" is the state vector of the system, 8 € R’ is the unknown parameter vector
of the system, f(x,) : R" — R", F(x,) : R" — R"™*, U € R". When order m = n, £ = k and
the functions f(x;) = f(x,), F(x4) = F(x,), the response system is identical to the drive sys-
tem, and the synchronization problem has been well studied. When two systems satisfy
the condition m # n (of course f(x;) # f(x,), and F(x;) # F(x,)), that is, the order of the
response system is lower or higher than that of the drive system, the synchronization is
only attained in reduced order or increased order. The aim of this section is to address
the synchronization of two coupled fractional-order chaotic systems via modified adap-
tive sliding mode control with different order, namely, reduced-order synchronization and

increased-order synchronization.

3.1 Reduced-order synchronization of fractional-order chaotic systems
To achieving reduced-order synchronization of fractional-order chaotic systems via mod-
ified adaptive sliding mode control, we divide the drive system into two parts,

Dixq, = f;(x4) + F,(xa)x, )
wherex;, € R”, f, : R" — R”, and F, : R" — Rk Furthermore,
Dixq, =f(x4,) + F(xa,)at, (10)

wherex, € R",f, : R" — R', F, : R" — R"*K and orders n, v satisfy n+v = m. The dynamics
of the reduced-order synchronization errors can be expressed as

Dfe(t) = f(x,) + F(x,)B — f,(xa) — F,(xa)et + u, (11)

where e = x, — x4,. Our goal is to introduce a modified adaptive sliding-mode procedure
to design the controller # to make the controlled uncertain response system synchronous
with master system asymptotically, such that

lim [le]| = lim [x, — x4, || = O. (12)
t—00 t—00

In accordance with the design procedure used for a modified adaptive sliding-mode con-
trol, if the nonlinear control function u is selected in (8) as follows:

U = fi(xa) + Fi (k) — f(x,) — F(x,) B + DV [F, (x2)(@ — @) = F(x,)(B - B)

(!

-1
- (P e) £ oy

- w(t)ki|, (13)

where &, ,3 are estimate values of the unknown parameters and k = [ky, ks, . .k, is a
constant gain vector. Now, substituting « into the synchronization error system (11) yields
a form that is comfortable for the oncoming stability analysis:

(e !

Die(t) = Df_l [Fl (xa)(@ - ) — F(x,)(B - B) - (Df_le(t))m

- w(t)k:|. (14)
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Here w(t) € R is a control input and can be determined as

wt(t), s(e) =0,

t) = - (15)
w (), s(e)<0,

where s = s(e) is a switching surface which introduces the desired sliding dynamics. The

sliding surface function is designed as
s(e) = ce, (16)

where ¢ = [¢1,¢2,...,¢4] is a constant vector. There are necessary two conditions for the
state trajectory on the sliding surface:

s(e)=0 and 3(e)=0. (17)

The second condition is a necessary condition to constrain the state trajectory to stay on
the switching surface s(e) = 0. In accordance to the sliding-mode design strategy, we design

the sliding mode as follows:

wit) = [ u ] (18)
Is| +y

where y > 0. The update laws parameters are defined as
(19)

where A = sc7.
Theorem 1 Counsidering the error dynamic systems (14) with control laws (13) that obeys
update laws parameters in (19). Then the error dynamic systems trajectories will converge

to the sliding surface s(t) = 0.

Proof Consider the following Lyapunov candidate function:

1 O
V= §[s2+&T&+,3Tﬂ], (20)
where & = & — o and 8 = B — B. The time derivative of (20) is
V= [séTcT +ala+ ETE] (21)

Using (6) in (21) yields V:

. -1 -1 ()"0 TT ~TL AT
V:s[D‘; (DYe)+ (D) e(t))m] T aTé+ BT, 22)
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From (14) and (21), we obtain

i = s[ o2t (02 [ F i = Fs— (0 et) -

'S[f ( [”‘““ #)B = (D e®) 7 2
s 0 tee) D ety 575 (23)

_|s|+y{|)+( P e )F(—(p—l))i| crata+ptp,

since Vp € [0,1], (1 — p) >0 and (p — 1) < 0. Now, using (5) and (19), (23) reduces to

(e s )

V= s| (R~ P - 0 o) (- ok

+ (Dp_le(t))M]TcT +ala+ ETB (24)
' r'-p-1) ’
T
V- s(F, (506~ Ffi- k) ¢~ aTF,(ea) %+ BTF(x) . (25)
Then (25) yields

. 52

V= —ck|: ] <0. (26)
Is| +

Since s> > 0 and |s| > 0 both hold true, when e # 0 and ck > 0, the inequality V < 0 holds.
According to the Lyapunov stability theory [56] V' is positive-definite, and V is negative-
definite. Thus, the trajectories of the fractional error dynamical system (14) asymptotically
converge to s(¢) = 0. Therefore, the state variables of the of the drive system (9) and the
states variables of the response (8) system can be synchronized asymptotically and globally
with the control law (13) and the adaptive parameter update laws (19). Here, the proof is
completed. d

3.2 Increasing-order synchronization of fractional-order chaotic systems
To formulate the adaptive increasing-order problem, we consider response system as fol-

lows:
D?xrz =ft (xrz) +F, (xrz)ﬁ +u, (xd:xrz)7 (27)
the response system x,, € R" is the state vector of system (27), B € R’ is the vector of

system parameters, f;(x,,) : R" — R", F,(x,,) : R" — R"™*, u,(x4,%,,) € R" is the control
input, hence, the controlled response system is rewritten as follows:

Dix, = f(%,) + F(x,)B + uxa, %), (28)

where

e (S [ Fixr)
xr—(xrj), f(xr)—< 0 ) F(xr)—< 0 )

Uu,\xX4,x
u(xa, x,) = (i) . X u; €RTT
uj(xd,xrj)
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The dynamics of the add-order synchronization errors can be expressed as
Die(t) = f(x,) + F(x,)B —f (xa) - F(xa)t +u, (29)

where e = x, — x4. Our aim is to design a suitable adaptive sliding-mode controller u to

achieve the add-order synchronization between two different systems i.e.,
lim |le|| = lim ||lx, — x4]| = O. (30)
t—>00 t—>00

In accordance with the design strategy for adaptive sliding-mode control, we choose the

input signal vector as follows:

N

u = f(xa) + F(xa)ot —f (%) — F(x,)B + D} " [F(xd)(& —a) = F(x,)(B - B)

— (D} e(t))

_(p_ )_
U s ] (31)

- k
r-p-1) Isl+y

where @, ﬁ are estimate values of the unknown parameters and k = [ki, ks, ..., k,]T is a
constant gain vector. Substituting a particular expression for # and (31) into the error

dynamics (29) yields a form that is convenient for the forthcoming stability analysis:

Die(t) = DY | F(xa)(é — ) — F(x,)(B — B) — (DY e(®) W

Pe(t) = DY [ xa)(@—a)-Fx.)(B-B) - (D} e )m
__S 1<}. (32)
Isl +y

The laws for updating parameters can be specified as follows:

& =-[Fxa)] 2, )

B =[F@)] 2,

where A = sCT. The following theorem introduces the necessary conditions for verify-
ing the stability of the error system in (29): Assume a positive Lyapunov function V =
s> +a’a + BTP), where@ =& —a and B = B — B. With the choice of the updating laws
(33) and reasonable control function u, the time derivative of V along the solution in (32)
will be smaller than zero. In other words, the error vector will approach zero as time goes
to infinity, and from Lyapunov stability theory [56], the states of the (28) system is asymp-
totically synchronized with the drive system (27). This completes the proof.

4 Reduced-order synchronization of fractional-order hyperchaotic Lorenz and
fractional-order chaotic Lorenz systems via modified adaptive sliding mode
control

To observe the reduced—order synchronization between the fractional-order hyper-

chaotic Lorenz [57] and fractional-order chaotic Lorenz [58] systems via modified adap-

tive sliding mode control, we assume that the x — y — z projection of the fractional-order
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hyperchaotic Lorenz systems is the drive system and it can be presented in the form of

Dl;lxl =ai(y —x1) + wi,
szyl =bix1 - %121 Y1 (34)

Df3Z1 =%X1)1 — 121,
and the response system can be presented in the form of

Dflxz = ay(y2 — x2) + uy,
Dyy = baxy — X323 — Y2 + U, (35)
Df3zz =X2)2 — €223 + U3,
where the variables (i1, 12, u3)T are controllers to be designed. Let e; = x, —x1, €2 = y2 — 1,
es = zp — z1. Then, we get the following error dynamic system between the drive (34) and
response (35) systems:
Dflel = ay(y2 — %2) —ar1(y1 — %1) — w1 + uy,
szez = bz?Cz — X222 — )2 — b1x1 + X121 + )1 + U, (36)
DP3es = xyyy — Cazp — X191 + €121 + U3.
The goal of the modified adaptive sliding-mode control is to find an effective controller

function (u1, 4y, u3)” capable synchronizing the states of the response and drive systems
with a parameter estimation update law. An appropriate sliding surface can be chosen as

s(e) =e; +e3,
s (37)
w(t) = ——.
|s| +0.01

It is assumed that the constant vectors are ¢ = (1,0,1), k = (2,0,40)7, and y = 0.01. The
adaptive sliding-mode controller of the error dynamic system (36) can be calculated as
follows:

1| A o
Uy = —ax(ys — %2) + a1(y1 —x1) + wy +Df:71 [—ﬂz@z —x2) + ai(y1 — x1)

—-(p1-1)-
7 MU }

I'(~(p1-1)) |[s]+0.01

Uy = —b2x2 + X227 + )2 + b1x1 X121 — )1 + sz_l |:—l;2x2 + lel
(38)

.1 (t)f(pz—l)—l
- (B e W) £ g, 1>>}

_ Dp3—1 A A
Uz = —X2ys + €222 + X1y1 — €121 + Ly CoZy) — C1Z1

~ (DPeat)

(£)~3-1-1 40s
T'(—(p3-1) |s|+ 0.01]'

Page 8 of 17
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The adaptive laws for estimating the parameters a;, by, ¢1, a3, by, and ¢, are chosen as

follows:

a = —()’1 - x1)s,

lLal =X15,

& =215, )
élz = (2 —®)s,

Zz = X8,

éz = —238.

Theorem 2 The state variables of the response system (35) and and the states variables
of (x — y — z) projection of the drive system (34) can be synchronized asymptotically and
globally for all initial conditions using the control law (38) and the adaptive parameter
update laws (39).

Proof Substituting (38) into (36), this yields

Dl —D"‘l[‘é (2 =) + (1 —x1) = (D) e “UM

pe1 =Dy 202 = %) +d1)h — X1 LY (- 1)

2s
- m]
(40)

D’e —Dpz_l[—l; X + bixy — (Dpz_le (t))M]

;e =1y 242 T U1 ¢ 2 1—'(—(102—1)),

3 oL . (£)-3-D-1 40
DYe3 = DY 1[C222 - (121 — (Df 1e?)(t)) I'(-(p3 — 1)) - Is| + (;.01]’

whereél =&1—ﬂ1,b1 =b1—b1,61 =61—Cl,6~12=212—612, b2=b2—b2,and52262—62.we

select a Lyapunov function candidate in the form of
1 - -
V:E(2+&%+b%+5f+&%+b§+6§). (41)

Taking the derivative of (41) with respect to time using (6), one has

V = (SS + élc:il + 1311;1 + Elél + leélz + 5222 + Egég)
1-p1 1 1-1 (t)_(pl_l)_l
= (s| D, (D er(n) + (DY e(r))

1-p3 3
I'(~(pr - 1))] ”[Dt (Di*ea(t)

Dp -1 (t)_(pg_l)_l ~ X ~ L ~ 2 ~ 2
tB D) —F"
+( es(t)) e 1))] +d1dyL + C1C1 + dody + czcz>
~(p1-1)-1
= o (01| o -~ (P2 0)

-(p1-1)-1
- |s| 32.01 :|> * (Dflilel(t)) %} + S|:D;p3 <D}p3 |:5222 -Gz
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N ) D
— (D es(d)) F D) T +0'01D +(Df es(t))m}

+ legll + 5151 + lele + 2262, (42)

since Vp € [0,1], (1 - p) > 0 and (p — 1) < 0. Now, using (5) and introducing update laws
(39), in (42) one obtains

2s 40s
V=s|-a — X)) +a —x1)—————— | +8| Crzp—C121 — ——
( 202 = %) + @y —:1) |s|+0.01> (2 2o |s|+0.01>

+ay (=1 — x1)s) + C1(218) + a2 ((y2 — x2)s) + Ca(—228). (43)
Then (43) reduces to

. 425>
Vee—oou—, (44)
|s|] + 0.01

Since s> > 0 and |s| > 0 both hold true, when e # 0 and ck > 0, the inequality V <0 holds.
According to the Lyapunov stability theory [56], V is positive-definite, and V is negative-
definite. Thus, the trajectories of the fractional error dynamical system (36) asymptotically
converge to s(¢) = 0. Therefore, the state variables of (x — y — z) projection of the drive sys-
tem (34) and the states variables of the response (35) system can be synchronized asymp-
totically and globally with the control law (38) and the adaptive parameter update laws
(39). Here, the proof is completed. O

In the numerical simulations, the Adams—Bashforth—Moulton method is used to solve
systems. The uncertain parameters are set to a; = 10, b; = 28, ¢; = 8/3, ay = 10, b, = 28,
¢y = 8/3. The initial values of the fractional-order drive and response systems (34)—
(35) and the estimated parameters are, respectively, and arbitrarily set in simulations to
x1(0) = 12,y1(0) = 22,2:(0) = 31, w1(0) = 4, x,(0) = 0, 2(0) = 1, and 2,(0) = 2 and a;(0) = 10,
b1(0) = 10, €,(0) = 10, @,(0) = 10, b(0) = 10 and &(0) = 10. Figures 1-2 depict the mod-

\ A\

~110 ~110

10 140

—200 —200

230
2 4 6 s 10 12 14 16 18 20 0

(a) (b) I

Figure 1 State trajectories of drive system (34) and response system (35): (@) signals x; and x; (b) signals y;
and yy; () signals z; and z,.in (x -y - 2) projection
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Figure 2 (a) error signals between the drive system (34) and the response system (35) systems, (b)—(c):
Estimated values for unknown parameters in (x - y — z) projection

ified adaptive sliding-mode synchronization of systems (34)—(35) via the adaptive con-
trol laws (38) and (39). Figure 1(a)—(c) displays the steady-state trajectories of the drive
(34) and the response (35) systems. Figure 2 (a) displays the synchronization errors ey, e,
and e3 as functions of time ¢. Figure 2(b)—(c) displays the temporal response of the esti-
mated parameter values 4, 1;1, C1, do, Z)g, and ¢, of the drive (34) and the response (35)

systems.

5 Increasing-order synchronization of fractional-order hyperchaotic Lii and
fractional-order chaotic Lii systems via modified adaptive sliding mode
control

This section investigates the increase—order synchronization behavior via modified adap-

tive sliding mode control. The drive system is assumed to be a fractional-order hyper-

chaotic Lii [59] while the fractional-order chaotic Lii [60] system is taken as the response.

The definitions of both systems have unknown parameters:

Dflxl =ai(y1 —x1) + wi,

DPy1 = biy —x121,

(45)
Dz = xy1 — €121,
Dwy = x121 + riwy,
and
DI'xy = ay(y, — %) + u,
DPy, = —xyz, + b
1" Y2 = —X2Z2 + D2)2 + U,
(46)

a3
Dt 2y =X2)2 — €22y + U3,

Df4W2 = Uy,

Page 11 of 17
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where the variables (u1,u,, u3,u4)” are controllers to be designed. Let e; = xy — x1, ey =
Y2 — y1, €3 = 2o — z1 and eq = wy — wy. Then, we get the following error dynamic system
between the drive (45) and response (46) systems:

Dflel =ay(y2 — %2) —ar1(y1 — x1) — w1 + Uy,

2
Dey = —xy25 + boyy — b1y1 + X121 + o,
(47)
3
D’Z €3 = XYy — €229 — X1Y1 + €121 + U3,
Dy

Yoy = —X121 — FIW1 + Uy

The goal of the modified adaptive sliding-mode control method is to find proper control
functions u; (i = 1,2,3,4) capable of synchronizing the states of the response and drive
systems with fully unknown parameters. Then, the switching surface is described as

s(e) = e + ez,
(48)

s
w() = ————.
® |s| +0.01

It is assumed that the constant vectors are ¢ = (1,0,1,0), k = (7,0,10,0)7, and y = 0.01.

The adaptive sliding-mode controller of the error dynamic system (47) can be calculated
as follows:

-1 & N
Uy = —day(yo — %) + ar1(y1 —%1) + wy +DIZ1 |:—a2(y2—x2)+a1(y1—x1)

_ £)~ -1 7s
_ Dpl 1 ¢ ( _ )
(o eNDF@@rJ» Is| +0.01
-1 3 2 -1 (t) 211
Uy = X223 — bays + b1y — %121 + sz |:b1yl —byyr - (sz ez(t)) m],
—(po —
(49)
1] 4 . 1 ()~ lpsD1
us = —x2y2 + CoZo + x1y1 —C1Z1 + DfB |:6222 —C1Z21 — (Df3 63(t)) m
—(p3 -

10s
Is| +0.01 ]

6. B £)~pa-1-1
Uy = %12, + riwy + DY l[rlwlz - (D 1e4(1.‘)) (©) :|

I'(-(pa—-1))

The adaptive laws for estimating the parameters a;, b1, ¢1, aa, by, and ¢, are chosen as
follows:

a = —()/1 —X1)$,

1;1 = =15
él =218,
1 = —wis, (50)

as = (Vz —%2)s,
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52 =2,

62 = —2Z38S.

Theorem 3 The state variables of the of the drive system (45) and the states variables
of the response (46) system can be synchronized asymptotically and globally for all initial

conditions using the control law (49) and the adaptive parameter update laws (50).

Proof Substituting (49) into (47), this yields

Dle —D‘”'l[‘é (2 = %2) + @1 (1 —x1) - (D' e WM
el =L 202 — %2 V1= t ! I'(-(p1-1))
7s
- m]
Al a1, gy 0
Dye; = Dp? _b1y1 ~bay> - (D} eZ(t))m}’ o
3 L i . (¢)~s-D-1 10s
Df e3 = D‘? ! _C2Z2 —C121 — (D‘f 133(t)) I'(-(p3-1)) B [s| + 0.01],
o . £)-(pa-1-1
Dftes =D | Fowta = (0 ext0) 10— .

Wherele:211—111,b1:bl—b1,51=21—61,;1:?1—rl &zzaz—dz,bzzbz—bz,and

Cy = Cy — ¢3. We select a Lyapunov function candidate in the form of
Lo =2 52 =0 =2 -2 72 =
Vzg(s +ay+by+ ¢+ +as + by +3). (52)
Taking the derivative of (52) with respect to time using (6), one has

V= (SS + é]gl] + b]bl + 6161 + ;'1;'1 + 512512 + b2b2 + 6252)

_ (S[Dlm (D) + (Dpllel(t))M] +S[D 5 (DPes(t)
B O P o)

-(p3-1)-1 ) . . )
+ (Dlt’S—leg(t)) %] +aidy + C1C1 + dgdo + 5252)
_S|:D —P1 (Dpl 1|:—a2(y2—x2 +6l1(j/1—x1) (D’:l_lel(t))M
I'(-(p1 -
(p1-1
- ﬁ}) + (Dfl_lel(f)) (t) (1 = ))} |: D" (Dl e |:5222 -¢1z1
a1 (&) st -1 (£)
- (P e F T T +00J (D) 1))}

+ &1&1 + 5151 + zlzéz + 2222, (53)
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since Vp € [0,1], (1 — p) > 0 and (p — 1) < 0. Now, using (5) and introducing update laws
(50), (53) one obtains

' 7s 10s
V=s|-ay, - ar(y1 —%1) - ————— R YT
S< ar(y2 — %) + ar(y1 — %1) Is| + 0.01) * S(sz2 az Is] + 0.01>

+d (—(y1 - xl)s) +C1(z18) + Zzz((yz - xz)s) + Co(~228). (54)
Then, (54) reduces to

. 17s*
Ve, (55)
|s| +0.01

Since s> > 0 and |s| > 0 both hold true, when e # 0 and ck > 0, the inequality V < 0 holds.
According to the Lyapunov stability theory [56], V is positive-definite, and V is negative-
definite. Thus, the trajectories of the fractional error dynamical system (47) asymptotically
converge to s(t) = 0. Therefore, the state variables of the drive system (45) and the states
variables of the response (46) system can be synchronized asymptotically and globally
with the control law (49) and the adaptive parameter update laws (50). Here, the proof is
completed. 0

In the numerical simulations, the Adams—Bashforth—Moulton method to solve systems.
The uncertain parameters are set to a; = 36, by = 20, ¢1 = 3, a; = 36, by = 20, ¢; = 3. The ini-
tial values of the fractional-order drive and response systems (34)—(35) and the estimated
parameters are respectively and arbitrarily set in simulations to x;(0) = -1, y;(0) = 0.2,
21(0) = 0.6, w1(0) = 0.4, x,(0) = =2, y5(0) = 4, 22(0) = —13, and w1 (0) = 0.1 and a;(0) = 1,
5(0)=1,6,(0)=1,7 (0) =1, 3(0) = 1, b,(0) = 1 and &,(0) = 1. Figures 3—4 depict the mod-
ified adaptive sliding-mode add-order synchronization of the systems (45)—(46) via the
adaptive control laws (49) and (50). Figure 3(a)—(d) displays the steady-state trajectories
of the drive (45) and the response (46) systems. Figure 4(a) displays the synchronization

0 2 1 6 8 10 12 14 16 18 20 0 2 1 6 s 10 12 14 16 18 20

Figure 3 State trajectories of drive system (45) and the response system (46): (a) signals x; and x»; (b) signals
y1 and yy; (c) signals z; and z;; (d) signals wy and w;
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140

120

(a) T " (b i o

0 2 4 6 s 10 12 14 16 18 20

Figure 4 (a): Error signals between drive (45) and response (46) systems, (b)—(c): Parameter estimates for the

drive (45) and the response systems (46)

errors ei, ey, e, and ey as functions of time ¢. Figure 4(b)—(c) displays the temporal re-
sponse of the estimated parameter values a,, 1;1, C1, 11, G2, l~)2, and ¢, of the drive (45) and
the response (46) systems.

6 Conclusion

In this paper, a new modification of the adaptive sliding-mode synchronization scheme has
been proposed for fractional-order chaotic (hyperchaotic) systems with fully unknown
parameters. A suitable controller and a parameters update law are designed to achieve
the reduce- and add-order synchronization of two different order fractional-order chaotic
(hyperchaotic) systems, based on the Lyapunov stability theorem. Simulations show that
these kinds of reduce- and add-order order synchronization exists between many existing
fractional-order chaotic (hyperchaotic) systems. Numerical simulations are also given to
show the effectiveness of the proposed scheme.
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