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Abstract
This article deals with the sequential conformable linear equations. We have focused
on the solution techniques of these equations and particularly on the controllability
conditions of the time-invariant system. For the controllability conditions and results,
we have defined the conformable controllability Gramian matrix, the conformable
fundamental matrix, and the conformable controllability matrix.
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1 Introduction
Fractional calculus has gained importance due to the adequate analysis approach in real
world problems. It is generally used in medical sciences [27], material sciences, fluid
mechanics, edge detection, and electromagnetics [12, 16, 25, 26]. Numerous physical
phenomena having memory and hereditary characteristics can be efficiently interpreted
through the fractional calculus approach [21]. There are various publications which are
based upon the study of fractional differential equations and have also highlighted their
respective applications, see [4–6, 19, 23, 24].

There are various real world problems which are expressed as both linear and nonlinear
system of fractional order differential equations. The solution technique, along with the
applications of such systems, can be seen in [12, 14, 20].

Several definitions of fractional order derivative are introduced by famous researchers
like Euler, Fourier, Abel, Sonin, Letnikov, Laurent, Nekrasov, and Nishimoto. Also, the
most popular definitions for it are Riemann–Liouville, Caputo, and Grünwald–Letnikov
definitions. Some other definitions for fractional derivatives and fractional integrals are
also provided in [16, 19] by Kilbas and Miller.

Here are some of the well-known definitions on which we have focused throughout in
our article:

• Riemann–Liouville derivative:

Dα
x f (x) =

1
Γ (n – α)

dn

dxn

∫ x

0
(x – t)n–α–1f (t) dt, n – 1 < α ≤ n; (1)
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• Caputo derivative:

Dα
x f (x) =

1
Γ (n – α)

∫ x

0
(x – t)n–α–1f (t)(n) dt, n – 1 < α ≤ n; (2)

• Grünwald–Letnikov derivative:

aDα
x f (x) = lim

h→0
h–α

[ x–a
h ]∑

j=0

(–1)j
(

α

j

)
f (x – jh). (3)

A few properties of these fractional order derivatives are similar to those of the classi-
cal order derivative. However, there are few drawbacks, e.g., Dα

a (1) = 0 does not fulfill in
Riemann–Liouville derivative. And for Caputo derivative, we have to assume that f is dif-
ferentiable, otherwise we cannot apply this definition. It is also important to note that
Liouville’s theorem in fractional case does not hold as well. In short, all fractional deriva-
tives are deficient in some mathematical properties, like the product, chain, and quotient
rules. For a review about various properties of these fractional order derivatives, one can
see [26].

Due to these issues, a new definition of fractional order derivative is required, which can
fulfill more mathematical conditions as compared to the previous ones. Recently, Khalil
and Horani have introduced a new well-defined and simple definition of fractional or-
der derivative known as conformable fractional derivative [7, 15, 34]. This definition de-
pends on the basic limit which is defined for classical order derivative. They have also
established various properties like the product, quotient, and chain rules, and addition-
ally mean value theorem of conformable fractional derivative. Some other new ideas on
conformable derivative can be seen in [1, 2, 9, 11, 28, 30, 31, 33]. However, the conformable
fractional derivative is not considered to be the same as a fractional order derivative, it is a
first-order derivative multiplied by an additional simple factor. Hence, this new definition
appears to be a natural extension of the conventional order derivative to arbitrary order
without memory affect. A recent new approach in defining fractional operators with non-
singular Mittag-Leffler kernel with memory affect can be found in [8].

With the popularity of fractional calculus approach in mathematical modeling, control
theory has also utilized it in the controllability analysis. For a review on fractional con-
trollability, one can see [10, 18, 22, 32]. In these articles the controllability criterion and
conditions with different fractional order derivatives are discussed.

With this motivation, in this article, we have used the definitions of conformable frac-
tional derivative, conformable fractional integrals, and some fundamental results of con-
formable fractional calculus. By using the definition of conformable fractional derivative,
we will demonstrate the Liouville’s theorem, the controllability conditions for a time-
invariant system.

The methodology of our work in this manuscript has two strategies: the first is a direct
technique and the second uses a transformation into state equations. We will also define
a conformable fractional transition matrix and the fundamental matrix.

For obtaining the controllability conditions, we will study sequential linear conformable
fractional differential equations of order nα. We will revise some results about the exis-
tence and uniqueness for order nα sequential linear conformable fractional homogeneous
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and nonhomogeneous fractional differential equations defined in the following form:

Tnαy + an–1T (n–1)αy + an–2T (n–2)αy + · · · + a0y = 0

and

Tn
α y + pn–1(t)Tn–1

α y + · · · + p1(t)Tαy + p0(t)y = f (t),

with

y(t0) = y0, Tαy(t0) = y1, . . . , Tn–1
α y(t0) = yn–1, a < t0 < b,

respectively [3, 13]. There are several ways to solve the conformable fractional differential
equations, some of which are the same as those involving the classical order conformable
derivative.

2 Basic concepts
Here, basic results and a few definitions on conformable fractional calculus will be revised.

Definition 1 ([1]) Let a ∈ R. For a function f : [a,∞) → R, the conformable fractional
derivative Ta

α of f of order α ∈ (0, 1] is given by

Ta
α f (t) = lim

ε→0

f (t + ε(t – a)1–α) – f (t)
ε

for all t > a. (4)

In particular, if a = 0 then (4) becomes

Tαf (t) = lim
ε→0

f (t + εt1–α) – f (t)
ε

. (5)

If a given function f satisfies Definition 1 for all t > a, then f is called an α-differentiable
function.

Lemma 1 ([15]) Let f , g : [a,∞) →R be α-differentiable functions at a point t > a, then
1. Ta

α (fg) = fTa
α (g) + gTa

α (f );
2. Ta

α ( f
g ) = gTa

α (f )–fTa
α (g)

g2 , where g �= 0 for all t > a;
3. If f is differentiable, then

Ta
α (f )(t) = (t – a)1–α df (t)

dt
.

Remark 1 The α-derivative is a linear operator, that is,

Ta
α (λf + βg) = λTa

α (f ) + βTa
α (g).

Definition 2 ([15]) The α-fractional integral for a function f , is defined as

Ia
α(f )(t) =

∫ t

a

f (x)
x1–α

dx,

where the integral is the usual improper Riemann integral and α ∈ (0, 1).
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Remark 2 The α-fractional integral is a linear operator if t > a:

Ia
α(λf + βg) = λIa

α(f ) + βIa
α(g).

Lemma 2 ([15]) For any continuous function f in the domain of Iα we have

Ta
α Ia

α(f )(t) = f (t).

Lemma 3 ([1]) Ia
αTa

α (f )(t) = f (t) – f (a), where f : (a, b) → R is an α-differentiable function
and 0 < α ≤ 1.

Let us consider the following conformable fractional linear homogeneous differential
equation:

Tαy + p(t)y = 0, (6)

and conformable fractional nonhomogeneous differential equation

Tαy + p(t)y = q(t), (7)

where y ∈ C1, p(t) and q(t) are real-valued continuous functions.
If we have a conformable fractional initial value problem

Tαy + p(t)y = q(t), y(t0) = y0, (8)

where p(t) and q(t) are assumed to be continuous and defined for all t ∈ (a, b), then there
exists a unique solution of the initial value problem (8).

Lemma 4 ([13]) Let tα–1p(t), tα–1q(t) ∈ C(a, b), and y be a continuously differentiable func-
tion. Then, the initial value problem

Tαy + p(t)y = q(t), y(t0) = y0, (9)

has a unique solution on the interval (a, b) where t0 ∈ (a, b).

Let us consider a second-order conformable fractional equation of the following form:

TαTαy + a1Tαy + a0y = r(t), (10)

where a0, a1 are real constants and r(t) is a nonzero continuous function, and a homoge-
neous fractional differential equation of the form

TαTαy + a1Tαy + a0y = 0. (11)

Definition 3 The conformable fractional Wronskian Wα[y1, y2] for two independent
functions y1 and y2 is defined as

Wα[y1, y2] =

∣∣∣∣∣
y1 y2

y(α)
1 y(α)

2

∣∣∣∣∣ .
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Lemma 5 If y1 and y2 are two linearly independent solutions of conformable fractional ho-
mogeneous equation (11), then the particular solution yp of corresponding the conformable
fractional nonhomogeneous equation (10) is

yp(x) = Ia
α

(
K(x, t)f (t)

)
,

where

K(x, t) =

∣∣ y1(t) y2(t)
y1(x) y2(x)

∣∣
Wα[y1, y2](t)

. (12)

Let us consider the linear sequential conformable homogeneous fractional differential
equation of order nα given by

T (n)
α y + an–1T (n–1)

α y + an–2T (n–2)
α y + · · · + a0y = 0, (13)

where the coefficients a0, a1, . . . , an are real constants, α ∈ (0, 1) and T (n)
α = TαTα · · ·Tα . If

y is n times differentiable, then there exist n independent solutions y1, y2, . . . , yn for the
homogeneous equation (13). For α = 1, equation (13) becomes an nth order linear homo-
geneous differential equation. Let us discuss the nonhomogeneous case

⎧⎪⎪⎨
⎪⎪⎩

T (n)
α y + an–1T (n–1)

α y + · · · + a1(t)Tαy + a0(t)y = f (t),

y(t0) = y0,

Tαy(t0) = y1, . . . , Tn–1
α y(t0) = yn–1, a < t0 < b.

(14)

Note that for α = 1, equation (14) becomes an nth order linear nonhomogeneous differ-
ential equation.

Now, we will define the conformable fractional Wronskian for the particular solution of
(14).

Definition 4 ([3]) If equation (13) has n linearly independent solutions y1, y2, . . . , yn then
the function

Wα[y1, y2, . . . , yn] =

∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y(α)
1 y(α)

2 · · · y(α)
n

...
...

. . .
...

y((n–1)α)
1 y((n–1)α)

2 · · · y((n–1)α)
n

∣∣∣∣∣∣∣∣∣∣

is called the conformable fractional Wronskian.

Theorem 1 ([3]) If y1, y2, . . . , yn are linearly independent solutions of the nα-order linear
conformable fractional differential equation (13), then the particular solution for (14) is

yp(x) =
n∑

m=1

ym

∫ x

a

f (t)W α
m(t)

W αt1–α
dt,

here W α(x) = W α(y1, y2, . . . , yn)(x) and W α
m = det(W α) after substituting (0, 0, . . . , 1) into the

mth column.
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It is important to mention here that there are some problems with the previous tech-
nique. For example, it is a fact that for complementary solutions of (13), we have to change
this equation into a classical order differential equation, which becomes a lengthy process.
Moreover, for the particular solution yp of (13) it is necessary that y1, y2, . . . , yn are linearly
independent. Here we make the following changes of variables for equation (14):

x1 = y, x2 = Tαy, x3 = T2
αy, . . . , xn–1 = Tn–1

α y. (15)

Therefore, we can write

Tαx1 = x2,

Tαx2 = x3,

. . . ,

Tαxn–1 = xn,

Tαxn = –an–1xn – · · · – a1x2 – pa0x1 + q(t),

in the matrix form as:

Tα

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xn–1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 –1 0 0 · · · 0
0 0 –1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · –1
a0 a1 a2 a3 · · · an–1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xn–1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0

q(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

so that

Tαx(t) + P(t)x(t) = Q(t), (16)

where

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xn–1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

P(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 –1 0 0 · · · 0
0 0 –1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · –1
a0 a1 a2 a3 · · · an–1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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and

Q(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0

q(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (16) is called the state representation of equation (14). The choice of state vari-
ables is by no means unique. In fact, the choice is limitless. So, the existence of the solution
and its uniqueness of are firstly addressed for this state equation representation.

To solve the nonhomogeneous conformable fractional vector differential equation

Tαx(t) = A(t)x + q(t), (17)

we first solve its corresponding homogeneous portion, that is,

Tαx(t) = A(t)x. (18)

For this, we need a linear conformable fractional differential operator.

Definition 5 Consider a set A consisting of all n by 1 continuously differentiable vector-
valued functions on a certain used interval I . Let B be a set consisting of all n by 1 con-
tinuous vector-valued functions on the same interval I (A and B are linear spaces). Let us
define Lα : A → B as

Lαξ (t) = Tαξ (t) – A(t)ξ (t),

for t ∈ I , then Lα is called a conformable fractional vector differential operator.

Lemma 6 The conformable fractional vector differential operator Lα is linear, that is,

Lα[λ1x + λ2y](t) = λ1Lα[x](t) + λ2Lα[y](t),

where x and y both are n by 1 continuously differentiable vector-valued functions and λ1,
λ2 are arbitrary real constants.

Theorem 2 If (λ0, ξ0) be an eigenpair for the matrix A of order n × n, then

ξ (t) = eλ0
tα
α ξ0,

is a solution of Tαξ (t) = A(t)ξ on R.

Proof Let us consider

ξ (t) = eλ0
tα
α ξ0.
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Applying the α-conformable derivative on both sides, we have

Tαξ (t) = eλ0
tα
α λ0ξ0.

As (λ0, ξ0) is an eigenpair,

eλ0
tα
α Ax0 = Aeλ0

tα
α ξ0 = Aξ (t),

for t ∈R, and the proof is completed. �

Example 1 We will solve the conformable fractional differential equation given as

Tαx =

[
0 1

–4 –5

]
x.

The characteristic equation of A can be written as

λ2 + 5λ + 4 = (λ + 1)(λ + 4) = 0

and the eigenvalues are λ1 = –1 and λ2 = –4. The first eigenpair for A corresponding to
λ1 = –1 is

(
–1,

[
1

–1

])
.

Similarly, the eigenpair for λ2 = –4 is

(
–4,

[
1

–4

])
.

Hence from Theorem 2, the vector functions ψ1 and ψ2 are of the form

ψ1(t) = e
–tα
α

[
1

–1

]
, ψ2(t) = e

–4tα
α

[
1

–4

]
.

Since ψ1 and ψ2 are linearly independent on R, the general solution x(t) is of the following
form:

x(t) = c1e
–tα
α

[
1

–1

]
+ c2e

–4tα
α

[
1

–4

]
, t ∈R.

Let us define the matrix conformable fractional equation as

TαX(t) = A(t)X, (19)

where both X(t) and A are n by n continuous matrix functions on an interval I . We say that
a matrix function Ψ is a solution of (19) on I if Ψ is a continuously differentiable n by n
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matrix function on I such that (19) holds for all t ∈ I ; and then Ψ is called the conformable
fractional fundamental matrix for conformable fractional vector differential equation (18)
for t ∈ I .

The next theorem establishes the relationship between (18) and (19).

Theorem 3 Let A be a continuous n by n matrix function, and Ψ (t) be defined on an
interval I as

Ψ (t) =
[
ψ1(t),ψ2(t), . . . ,ψn(t)

]
, t ∈ I.

Then Ψ (t) is the solution of the conformable fractional differential matrix equation (19) on
I if and only if each column ψ1(t),ψ2(t), . . . ,ψn(t) is a solution of the conformable fractional
vector differential equation (18) on I for 1 ≤ i ≤ n. Moreover, if Ψ (t) is the solution of the
conformable fractional differential matrix equation (19) then x(t) = Ψ (t)c is a solution of
the conformable fractional differential vector equation (18) for any constant vector c of
order n × 1.

Proof Assume that ψi, i = 1, 2, . . . , n are solutions of (18) on I . Then the n by n matrix
function Ψ is of the following form:

Ψ (t) =
[
ψ1(t),ψ2(t), . . . ,ψn(t)

]
, t ∈ I.

As Ψ is a continuously differentiable matrix function, we can easily obtain TαΨ (t) = AΨ (t)
for t ∈ I . Hence it is proved that Ψ is a solution of conformable matrix differential equation
(19). Next, for the converse part, suppose that Ψ is the solution of conformable matrix
differential equation (19). We have to prove that ψis are solutions of (18).

As Ψ is a solution of conformable matrix differential equation (19),

Tα

[
ψ1(t),ψ2(t), . . . ,ψn(t)

]
=
[
Aψ1(t), Aψ2(t), . . . , Aψn(t)

]
.

This implies that

Tαψ1(t) = Aψ1(t),

Tαψ2(t) = Aψ2(t),

. . . ,

Tαψn(t) = Aψn(t),

and this shows that ψis are solutions of (18). Next assume that Ψ (t) is the solution of con-
formable fractional differential matrix equation (19) and let t ∈ I . Consider x(t) = Ψ (t)c.
Then

Tαx(t) = Ax(t),

for t ∈ I , which proves the theorem. �
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Theorem 4 (Fractional Liouville’s theorem) If Ψ (t) = [ψ1(t),ψ2(t), . . . ,ψn(t)] is the matrix
function of n solutions of the conformable differential vector equation (18), then for t0 ∈ I ,

detΨ (t) = eIt0
α tr[A(s)] detΨ (t0).

Proof We will prove this result for n = 2. Suppose ψ1(t) and ψ2(t) are two solutions of (18)
on I and Ψ is a matrix function of the form

Ψ (t) =
[
ψ1(t),ψ2(t)

]
,

where

ψ1(t) =

[
ψ11(t)
ψ21(t)

]
and ψ2(t) =

[
ψ12(t)
ψ22(t)

]
.

Let

h(t) = detΨ (t) =

∣∣∣∣∣
ψ11(t) ψ12(t)
ψ21(t) ψ22(t)

∣∣∣∣∣ , for t ∈ I.

Taking the conformable fractional derivative of both sides, we get

Tt0
α h(t) =

∣∣∣∣∣
Tt0

α ψ11(t) Tt0
α ψ12(t)

ψ21(t) ψ22(t)

∣∣∣∣∣ +

∣∣∣∣∣
ψ11(t) ψ12(t)

Tt0
α ψ21(t) Tt0

α ψ22(t)

∣∣∣∣∣ ,

or

Tt0
α h(t) = [a11 + a22]

∣∣∣∣∣
ψ11(t) ψ12(t)
ψ21(t) ψ22(t)

∣∣∣∣∣ .

After simplifying, we have

Tt0
α h(t) = tr

[
A(t)

]
h(t).

Solving this conformable differentiable equation results in

Tαh(t) – tr
[
A(t)

]
h(t) = 0. (20)

Multiplying equation (20) with eIt0
α –tr[A(t)]h(t) = e–

∫ t
t0

tr[A(s)]h(s)
s1–α ds, we can write

e–
∫ t

t0
tr[A(s)]h(s)

s1–α dsTαh(t) – e–
∫ t

t0
tr[A(s)]h(s)

s1–α ds tr
[
A(t)

]
h(t) = 0.

Thus

Tα

[
h(t)e–

∫ t
t0

tr[A(s)]h(s)
s1–α ds] = 0.
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Applying It0
α on both sides, we have

h(t)e–
∫ t

t0
tr[A(s)]h(s)

s1–α ds = c0, (21)

and at t = t0 we can write

h(t0)e–
∫ t0

t0
tr[A(s)]h(s)

s1–α ds = c0,

which implies that h(t0) = c0. Substituting the value of c0 into equation (21), we get

h(t)e–
∫ t

t0
tr[A(s)]h(s)

s1–α ds = h(t0),

or h(t) = e
∫ t

t0
tr[A(s)]h(s)

s1–α dsh(t0), which can be written as

h(t) = eIt0
α tr[A(s)]h(t0), for t ∈ I,

or equivalently,

detΨ (t) = eIt0
α tr[A(s)] detΨ (t0), for t ∈ I,

which completes the proof. �

With the above theorem, we can write a corollary that helps us observe the behavior of
detΨ (t) for all t ∈ I .

Corollary 1 If Ψ is the matrix function with columns ψ1(t),ψ2(t), . . . ,ψn(t) of n solutions
of the conformable differential vector equation (18) on I then either

1. For all t ∈ I , detΨ (t) = 0, or
2. For all t ∈ I , detΨ (t) �= 0.

Proof There are two cases which we will study, namely, either ψ1(t),ψ2(t), . . . ,ψn(t) are
linearly independent or linearly dependent. The first case holds if and only if the solutions
ψ1(t),ψ2(t), . . . ,ψn(t) of conformable vector differential equation (18) are linearly depen-
dent on I , while the second case holds if and only if the solutions ψ1(t),ψ2(t), . . . ,ψn(t) of
conformable differential vector equation (18) are lineally independent on I .

For case 1, assume that ψ1(t),ψ2(t), . . . ,ψn(t) are linearly dependent. As ψ1(t),ψ2(t), . . . ,
ψn(t) are linearly dependent for all t ∈ I , then they are linearly dependent for t = t0. By the
definition of linear dependence of vectors, we have

c1ψ1(t) + c2ψ2(t) + · · · + cnψn(t) = 0,

where not all cis are zero. This is equivalent to

Ψ (t0)c = 0, for c �= 0,
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implying that zero is an eigenvalue of Ψ (t0). As we can write the determinant of any matrix
as the product of its eigenvalues,

detΨ (t0) = 0,

and, by Theorem 4, we have

detΨ (t) = eIt0
α tr[A(s)] detΨ (t0) = 0, for t ∈ I.

Next, for the converse part, we assume, for all t ∈ I , thatdetΨ (t) = 0. By Theorem 4,

eIt0
α tr[A(s)] detΨ (t0) = 0, for all t ∈ I,

or equivalently,

detΨ (t0) = 0. (22)

By the fact which we have already used that the determinant of any matrix is actually equal
to the product of its eigenvalues, we have zero as an eigenvalue of Ψ and we can write

Ψ (t0)x = 0, for x �= 0.

This implies that columns ψ1(t0),ψ2(t0), . . . ,ψn(t0) of Ψ (t0) are linearly dependent. As t0 ∈
I is arbitrary, so this part is true for all t0 ∈ I , proving that ψ1(t),ψ2(t), . . . ,ψn(t) are linearly
dependent for all t ∈ I .

Now if ψ1(t),ψ2(t), . . . ,ψn(t) are linearly independent, by the definition of linear inde-
pendence of vectors, we have

c1ψ1(t) + c2ψ2(t) + · · · + cnψn(t) = 0 only when all cis are zero.

This implies

Ψ (t)c = 0, where c is a zero vector. (23)

In (23), it is clear that Ψ (t) is invertible, that is, detΨ (t) �= 0. Now, for the converse part, if
detΨ (t) �= 0 then for all t ∈ I , ψ1(t),ψ2(t), . . . ,ψn(t) are linearly independent. �

Definition 6 A matrix function Ψn×n is said to be a conformable fractional fundamental
matrix for the conformable fractional vector differential equation (18) if Ψ is a solution of
the conformable fractional matrix equation (19) on I such that detΨ (t) �= 0 on I .

Theorem 5 A matrix function Ψn×n is a conformable fractional fundamental matrix for
the conformable fractional vector differential (18) if and only if the columns of Ψ are n
linearly independent solutions of (18) on I . If Ψ is a conformable fractional fundamental
matrix for the conformable differential vector equation (18), then the general solution x of
conformable fractional vector differential equation (18) for t ∈ I is given by

x(t) = Ψ (t)c1,
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where c1 is an arbitrary constant vector of order n × 1. There are infinitely many con-
formable fundamental matrices for the conformable differential vector equation (18).

Proof Consider that the columns of Ψn×n are linearly independent solutions of (18) on I .
Since the columns of Ψ are the solutions of (18), then, by Theorem 3, Ψ is a solution of (19).
Since the columns of Ψ are linearly independent solutions for (18), from Corollary (1) we
have detΨ (t) = 0 on I . Hence Ψ is the conformable fundamental matrix for conformable
differential vector equation (18).

Next, for the converse part, we assume that Ψ is the conformable fundamental matrix for
the conformable differential vector equation (18). Then by the definition of conformable
fundamental matrix, Ψ is the solution matrix of equation (19) on I such that detΨ (t) �= 0.
From Theorem 3, columns of Ψ are solutions of (18). Since detΨ (t) �= 0 and columns of Ψ

are solutions of (18), by Corollary 1, columns of Ψ are linearly independent. Since for any
nonsingular n by n matrix X0, the solution of the IVP

TαX(t) = A(t)X, X(t0) = X0,

is a fundamental matrix for (18). Next assume that Ψ is a conformable fractional funda-
mental matrix for (18). Then by Theorem 3, x(t) = Ψ (t)c is a solution of (18). Now consider
that z is an arbitrary, but fixed solution of (18). Here we define

c0 = Ψ –1(t0)z(t0), t0 ∈ I.

Then z and Ψ (t)c0 are solutions of (18) which have the same vector value at t0. Hence, by
the uniqueness theorem, we have z(t) = Ψ (t)c0. Therefore, for t ∈ I ,

x(t) = Ψ (t)c,

where c is an arbitrary constant vector, defines a general solution of (18). �

Example 2 For the conformable fractional vector differential equation

Tαx =

[
–2 3
2 3

]
x, (24)

find the conformable fractional fundamental matrix Ψ and write the general solution of
this equation (24) in the term of Ψ .

Solution. For the matrix A, the characteristic equation is as follows:

λ2 – λ – 12 = 0,

and the respective eigenvalues and eigenvectors are λ1 = –3, λ2 = 4,
[ 3

–1

]
, and

[ 1
2

]
. From

Theorem 6, the vector functions ψ1 and ψ2, defined as

ψ1(t) = e
–3tα

α

[
3

–1

]
and ψ2(t) = e

4tα
α

[
1
2

]
,
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are solutions of (24), and the matrix function Ψ (t), given by

Ψ (t) =
[
ψ1(t), ψ2(t)

]
=

[
3e–3 tα

α e4 tα
α

–e–3 tα
α 2e4 tα

α

]
,

is a matrix solution of conformable fractional matrix equation corresponding to (19). Since
detΨ (t) = 7e tα

α �= 0, this implies that Ψ is a conformable fractional fundamental matrix of
(24) on R. Also, from Theorem 5, the general solution of (24) is given by

x(t) = Ψ (t)c,

for t ∈R, where c is any 2 × 1 constant vector.

Theorem 6 If Ψ is a fundamental matrix for (18), then Φ = Ψ C is a general conformable
fractional fundamental matrix of (18), where C is a nonsingular constant matrix of order
n × n.

Proof Consider that Ψ is a conformable fractional fundamental matrix for (18) and let
Φ = Ψ C, where C is any n × n constant matrix. Then Φ is a continuously differential
function on I and

TαΦ(t) = TαΨ (t)C

= A(t)Ψ (t)C

= A(t)Φ(t).

Hence Φ = Ψ C is a solution of the conformable fractional matrix equation (19).
Now for the general conformable fractional fundamental matrix, assume that C is a non-

singular matrix. Since

detΦ(t) = det
[
Ψ (t)C

]

= det
[
Ψ (t)

]
det[C]

�= 0,

for t ∈ I , Φ = Ψ C is a conformable fractional fundamental matrix of (18). Now the only
remaining thing to prove is that any conformable fractional fundamental matrix is of the
correct form. suppose that Φ is an arbitrary, but fixed matrix of (18). Let t ∈ I and C0 =
Ψ –1(t0)Φ(t0). Then C0 is a nonsingular constant matrix

Φ(t0) = Ψ (t0)C0,

therefore, we have Φ(t) = Ψ (t)C. �

For the solution of conformable fractional time-invariant system, we need to define con-
formable fractional matrix exponential function and its properties.
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Definition 7 For the matrix A of n×n order, the conformable fractional matrix exponen-
tial function defined by e Atα

α is the solution of conformable fractional initial value problem

TαX = AX, X(0) = In×n.

In the following theorem we will give some properties of the conformable fractional
matrix exponential function.

Theorem 7 Assume that A and B are n × n constant matrices. Then
1. Ta

αeA (t–a)α
α = AeA (t–a)α

α = eA (t–a)α
α A.

2. det[eA (t–a)α
α ] �= 0, for t ∈ [a, b).

3. If AB = BA, then eA (t–a)α
α B = BeA (t–a)α

α , for t ∈ [a, b).

4. If AB = BA, then eA (t–a)α
α eB

(t–a)α
α = e(A+B) (t–a)α

α .
5. eA (t–a)α

α =
∑∞

k=0
Ak (t–a)α

αk k! .
6. If A has n distinct eigenvalues, say, λ1,λ2, . . . ,λn, then there exists a non-singular

matrix P such that

eA (t–a)α
α = P diag

{
eλ1

(t–a)α
α , eλ2

(t–a)α
α , . . . , eλn

(t–a)α
α

}
P–1.

Proof We will show that all these properties hold, as eA (t–a)α
α is differentiable. From

Lemma 1, it is obvious that property 1 holds. Since eA (t–a)α
α is an identity matrix and at

t = a, det(I) = 1 �= 0, from [29, Corollary 2.24]. So, det[eA (t–a)α
α ] �= 0 for all t ∈ [a, b). Hence

property 2 is satisfied. To establish property 3, let us consider

Ψ (t) = eA (t–a)α
α B – BeA (t–a)α

α . (25)

Now, when applying Ta
α to equation (25), we have

Ta
αΨ (t) = eA (t–a)α

α AB – BAeA (t–a)α
α

= eA (t–a)α
α AB – ABeA (t–a)α

α

= A
(
eA (t–a)α

α B – BeA (t–a)α
α

)

= AΨ (t).

So Ψ becomes a solution of the conformable fractional matrix equation Ta
αX = AX. Also

Ψ (a) = 0, so by [13, Theorem 4.2], Ψ (t) = 0. Hence

eA (t–a)α
α B = BeA (t–a)α

α .

For property 4, we assume that AB = BA and consider

Ψ (t) = eA (t–a)α
α eB (t–a)α

α – e(A+B) (t–a)α
α .
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Then, by using equation (25),

Ta
αΨ (t) = AeA (t–a)α

α eB (t–a)α
α + BeA (t–a)α

α eB (t–a)α
α – (A + B)e(A+B) (t–a)α

α

= (A + B)
[
eA (t–a)α

α eB (t–a)α
α – e(A+B) (t–a)α

α
]

= (A + B)Ψ (t),

for t ∈ [a, b). Also, Ψ (a) = 0, so by the uniqueness theorem [13], Ψ (t) = 0. Hence

eA (t–a)α
α eB (t–a)α

α = e(A+B) (t–a)α
α .

We know that eAt =
∑∞

k=0
Atk

k! . Replacing t by (t–a)α
α

, we obtain

eA (t–a)α
α =

∞∑
k=0

Ak(t – a)α

αkk!
. (26)

This implies that property 5 is satisfied. Property 6 can be simply proved as in the classical
order case. �

By using the above definition and properties, we prove the following theorem.

Theorem 8 Consider fractional nonhomogeneous system

Ta
αy(t) = Ay(t) + f (t),

where 0 < α ≤ 1, where y and f : [a, b) →R
n are vector functions and A is an n×n constant

matrix. The general solution of the fractional nonhomogeneous system is

y(t) = eA (t–a)α
α C +

∫ t

a
eA (t–a)α

α e–A (s–a)α
α f (s)(s – a)α–1 ds,

where C is a constant vector and

eA (t–a)α
α =

∞∑
k=0

Ak(t – a)kα

αkk!
.

Proof Here the fractional nonhomogeneous system Ta
αy(t) = Ay(t) + f (t) can be written as

Ta
αy(t) – Ay(t) = f (t). (27)

Multiplying equation (27) with integrating factor e–A (t–a)α
α on both sides, we can write

Ta
α

(
e–A (t–a)α

α y(t)
)

= e–A (t–a)α
α f (t).

Applying fractional integration on the both sides, we have

Ia
αTa

α

(
e–A (t–a)α

α y(t)
)

= Ia
α

(
e–A (t–a)α

α f (t)
)
.
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Lemma 3 now yields

e–A (t–a)α
α y(t) – y(a) =

∫ t

a
e–A (s–a)α

α f (s)(s – a)1–α ds,

or

y(t) = eA (t–a)α
α y(a) +

∫ t

a
eA (t–a)α

α e–A (s–a)α
α f (s)(s – a)α–1 ds

= eA (t–a)α
α C +

∫ t

a
eA (t–a)α

α e–A (s–a)α
α f (s)(s – a)α–1 ds,

where C is a constant vector and eA (t–a)α
α =

∑∞
k=0

Ak (t–a)kα

αk k! . �

Now, we move towards the solution of the linear conformable differential equation

Tt0
α x(t) = A(t)x(t). (28)

For this, we construct a Peano–Baker series. By the definition of conformable integral, the
Peano–Baker series becomes

Ψ (t, τ )

= I +
∫ t

τ

A(δ1)
(δ1 – t0)1–α

dδ1

+
∫ t

τ

A(δ1)
(δ1 – t0)1–α

∫ δ1

τ

A(δ2)
(δ2 – t0)1–α

dδ2 dδ1

+ · · ·

+
∫ t

τ

A(δ1)
(δ1 – t0)1–α

∫ δ1

τ

A(δ2)
(δ2 – t0)1–α

· · ·
∫ δk–1

τ

A(δk)
(δk – t0)1–α

dδk dδk–1 · · · dδ1 · · · . (29)

Theorem 9 For t0 ∈ I and vector x0, the conformable linear state equation (28) with con-
tinuous A(t) has the unique and continuously differentiable solution

x(t) = Ψ (t0, t)x0.

If we have the equation

Tt0
α x(t) = A(t)x(t) + B(t)F(t),

where A(t) and B(t) are n × n matrices and x(t), F(t) are n × 1 vectors, then we can guess
the solution of the form

x(t) = Ψ (t0, t)x0 +
∫ t

t0

Ψ (to, t)Ψ (t0, δ)B(δ)F(δ)(δ – t0)α–1 dδ.

For time-invariant conformable fractional linear state equation, we can write the approx-
imating sequence (31) as

x0(t) = x0,
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x1(t) = x0 + AIt0
α x0

= x0 + Ax0

∫ t

t0

dδ1

(δ1 – t0)1–α

= x0 + Ax0
(t – t0)α

1!α
,

and

x2(t) = x0 + AIt0
α x1(t)

= x0 + A
∫ t

t0

[x0 + Ax0
(δ1–t0)α

α
]

(δ1 – t0)1–α
dδ1

= x0 + A
∫ t

t0

x0

(δ1 – t0)1–α
dδ1 + A2x0

∫ t

t0

(δ1 – t0)2α–1

α
dδ1

= X0 + AX0
(t – t0)α

1!α
+ A2X0

(t – t0)2α

2!α2 ,

and so on. The general term of this sequence is

xk(t) = x0 + AIt0
α xk–1(t)

= x0 + A
∫ t

t0

xk–1(δ1) dδ1

(δ1 – t0)1–α

= x0 + Ax0
(t – t0)α

1!α
+ A2x0

(t – t0)2α

2!α2 + · · · + Akx0
(t – t0)kα

k!α2

=
[

I + A
(t – t0)α

1!α
+ A2 (t – t0)2α

2!α2 + · · · + Ak (t – t0)kα

k!α2

]
x0,

the limit of the sequence is the familiar solution

x(t) = eA (t–t0)α
α x0.

Thus in this case the transition matrix is just a conformable fractional matrix exponential
function. Thus if we have the system

Tt0
α x(t) = Ax(t) + BF(t),

where A, B ∈R
n×n matrices and x(t), F(t) are n × 1 vectors. Then we can guess the solution

of the form

x(t) = eA (t–t0)α
α x0 +

∫ t

t0

eA (t–t0)α
α e–A (δ–t0)α

α BF(δ)(δ – t0)α–1 dδ.

3 Controllability
In this section, we will discuss the concept of conformable fractional controllability of
time-invariant system

Tt0
α x(t) = Ax(t) + BF(t), t ∈ [t0, t0 + τ ], (30)
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where x(t) ∈R
n, B ∈R

n×m, A ∈R
n×n, and F(t) is a control vector of order m ×1. For given

t0, x0, and T > 0, we construct a sequence of n × 1 vector functions {xk(t)}∞k=0 defined on
[t0, t0 +T] which can be interpreted as a sequence of approximate solutions of the equation
with x0(t) = x0,

x1(t) = x0 + It0
α

(
A(t)x0(t)

)

= x0 +
∫ t

t0

A(δ1)x0(δ1) dδ1

(δ1 – t0)1–α
,

...

xk(t) = x0 + It0
α

(
A(t)xk–1(t)

)

= x0 +
∫ t

t0

A(δ1)xk–1(δ1) dδ1

(δ1 – t0)1–α
,

or we can write

xk(t) = x0 + It0
α A(t)x0

+ It0
α A(t)It0

α A(δ1)x0 + · · ·
+ It0

α A(t)It0
α A(δ1) · · · It0

α A(δk–1)x0

= x0 +
∫ t

t0

A(δ1)x0

(δ1 – t0)1–α
dδ1

+
∫ t

t0

A(δ1)
(δ1 – t0)1–α

∫ δ1

t0

A(δ2)x0

(δ2 – t0)1–α
dδ2 dδ1 + · · ·

+
∫ t

t0

A(δ1)
(δ1 – t0)1–α

∫ δ1

t0

A(δ2)
(δ2 – t0)1–α

· · ·
∫ δk–1

t0

A(δk)x0

(δk – t0)1–α
dδk dδk–1 · · · dδ1. (31)

So, using all of these calculations, the Peano–Baker series becomes

Ψ (t, τ )

= I +
∫ t

τ

A(δ1)
(δ1 – t0)1–α

dδ1

+
∫ t

τ

A(δ1)
(δ1 – t0)1–α

∫ δ1

τ

A(δ2)
(δ2 – t0)1–α

dδ2 dδ1 + · · ·

+
∫ t

τ

A(δ1)
(δ1 – t0)1–α

∫ δ1

τ

A(δ2)
(δ2 – t0)1–α

· · ·
∫ δk–1

τ

A(δk)
(δk – t0)1–α

dδk dδk–1 · · · dδ1 · · · . (32)

Definition 8 System (30) is said to be controllable if one can reach any state from any
admissible initial state and initial control.

In simple words, we can say that a given system (30) is controllable on [t0, tf ] if given
any initial state X(t0) = X0 there exists a continuous control signal F(t) such that the cor-
responding solution of system (30) satisfies X(tf ) = 0.
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Theorem 10 The linear conformable state equation (30) is controllable on [t0, tf ] if and
only if the n × n matrix

Gα(t0, tf ) = I
to ,tf
α

(
eA (t–t0)α

α BBT eAT (t–t0)α
α

)

=
∫ tf

t0

eA (t–t0)α
α BBT eAT (t–t0)α

α (t – t0)α–1 dt, (33)

is invertible.

Proof Suppose W (t0, tf ) is invertible. Then given an n × 1 vector X0 choose

F(t) = –BT eAT (t–t0)α
α G–1

α (t0, t)x0, t ∈ [t0, tf ].

Then the control signal is continuous for t ∈ [t0, tf ] and the corresponding solution of (30)
with x(t0) = x0 can be written as

x(t) = eA (t–t0)α
α x0 +

∫ t

t0

eA (t–t0)α
α e–A (δ–t0)α

α BF(δ)(δ – t0)α–1 dδ.

At t = tf , we can write

x(tf ) = eA
(tf –t0)α

α x0 + eA
(tf –t0)α

α

∫ tf

t0

e–A (δ–t0)α
α BF(δ)(δ – t0)α–1 dδ. (34)

Consider that there exists F(t) of the following form:

F(t) = –BT eAT (t–t0)α
α G–1

α (t0, t)x0, t ∈ [t0, tf ].

Then equation (34) becomes

x(tf ) = eA
(tf –t0)α

α x0 – eA
(tf –t0)α

α

∫ tf

t0

e–A (δ–t0)α
α BBT e–A (δ–t0)α

α W –1(t0, tf )x0 dδ,

or

x(tf ) = eA
(tf –t0)α

α x0

– eA
(tf –t0)α

α

(∫ tf

t0

e–A (δ–t0)α
α BBT e–AT (δ–t0)α

α (δ – t0)α–1 dδ

)
W –1(t0, tf )x0,

= eA
(tf –t0)α

α x0 – eA
(tf –t0)α

α G(t0, tf )G–1(t0, tf )x0,

= eA
(tf –t0)α

α x0 – eA
(tf –t0)α

α x0,

= 0.

Thus the conformable fractional linear state equation (30) is controllable.
For the converse claim, assume that (30) is controllable on [t0, tf ] and the Gramian ma-

trix Gα(t0, tf ) is not invertible. Since Gα(t0, tf ) is not invertible then there exists a nonzero
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n × 1 vector xa such that

xT
a Gα(t0, tf )xa = 0,
∫ tf

t0

xT
a eA (t–t0)α

α BBT eAT (t–t0)α
α xa(t – t0)α–1 dt = 0.

As the integrand in this expression is a nonnegative and continuous function
‖xT

a eA (t–t0)α
α B‖2(t – t0)α–1, it follows that

0 = xT
a eA (t–t0)α

α B. (35)

Since the conformable state equation is controllable on [t0, tf ], choosing X0 = Xa, there
exists a continuous control vector F(t) such that

0 = eA
(tf –t0)α

α xa + eA
(tf –t0)α

α

∫ tf

t0

e–A (δ–t0)α
α BF(δ)(δ – t0)α–1 dδ

= eA
(tf –t0)α

α

(
xa +

∫ tf

t0

e–A (δ–t0)α
α BF(δ)(δ – t0)α–1 dδ

)
.

So, we can write

Xa = –
∫ tf

t0

e–A (δ–t0)α
α B(δ – t0)α–1F(δ) dδ. (36)

Multiplying equation (36) by xT
a on both sides and using (35), we have

xT
a xa = –

∫ tf

t0

xT
a e–A (δ–t0)α

α B(δ – t0)α–1F(δ) dδ = 0,

and this contradicts the fact that xa �= 0. �

In the above theorem, Gα(t0, tf ) is called the conformable fractional controllability
Gramian and it is positive semidefinite, that is,

XT
a Gα(t0, tf )Xa ≥ 0.

Corollary 2 The linear conformable state equation (30) is controllable on [t0, tf ] if and
only if the n × n conformable fractional controllability Gramian matrix is positive definite.

Proof The proof follows from the above theorem. �

Lemma 7 There exist analytic scalar functions λ1(t),λ2(t), . . . ,λn–1(t) such that

eA (t–t0)α
α =

n–1∑
k=0

λk(t)Ak . (37)
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Proof We know that the solution of Tt0
α x = Ax with X(0) = I is eA (t–t0)α

α . So, we can prove
that there exist analytic scalar functions λ1(t),λ2(t), . . . ,λn–1(t) such that

n–1∑
k=0

Tt0
α λk(t)Ak =

n–1∑
k=0

λk(t)Ak+1,
n–1∑
k=0

λk(0)Ak = I, (38)

According to Cayley–Hamilton theorem,

An = –a0I – a1A – · · · – an–1An–1,

where a0, a1, . . . , an–1 are the coefficients of characteristic polynomial of A. Then (38) im-
plies that

n–1∑
k=0

Tt0
α λk(t)Ak =

n–2∑
k=0

λk(t)Ak+1 –
n–1∑
k=0

akλn–1(t)Ak

=
n–1∑
k=1

λk–1(t)Ak –
n–1∑
k=0

akλn–1(t)Ak – a0λn–1(t)I, (39)

n–1∑
k=0

λk(0)Ak = I.

By equating the coefficients of like powers of A, we get the time-invariant linear state
equation

Tt0
α

⎡
⎢⎢⎢⎢⎣

λ0(t)
λ1(t)

...
λn–1(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 –a0

1 · · · 0 –a1
...

. . .
...

...
0 · · · 1 –an–1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

λ0(t)
λ1(t)

...
λn–1(t)

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

λ0(0)
λ1(0)

...
λn–1(0)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎥⎦ .

Thus there exists an analytic solution of this linear state equation, which shows that the
existence of analytic scalar functions λ1(t),λ2(t), . . . ,λn–1(t) satisfying (39), and hence (38).
So, we can write

eA (t–t0)α
α =

n–1∑
k=0

λk(t)Ak . �

For the necessary and sufficient condition, we also need a matrix of order n × nm of the
following form:

[
B AB · · · An–1B

]
. (40)

Theorem 11 System (30) is controllable for t ∈ [t0, tf ] if and only if the n × nm controlla-
bility matrix satisfies the following condition:

rank
[

B AB · · · An–1B
]

= n. (41)
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Proof We will prove that the rank condition (41) fails if and only if the n×nm conformable
fractional Gramian matrix

W (t0, tf ) =
∫ tf

t0

eA (t–t0)α
α BBT eAT (t–t0)α

α (t – t0)α–1 dt

is not invertible. Assume that the rank condition (41) fails, then there exists a nonzero
vector xa such that

xT
a

[
B AB · · · An–1B

]
= 0,

implying that

xT
a AkB = 0, for all k = 0, 1, . . . , n – 1. (42)

Also, we can write

xT
a W (t0, tf ) =

∫ tf

t0

xT
a eA (t–t0)α

α BBT eAT (t–t0)α
α (t – t0)α–1 dt.

Using Lemma 7, we can write

xT
a W (t0, tf ) =

∫ tf

t0

xT
a

n–1∑
k=0

λk(t)AkBBT eAT (t–t0)α
α (t – t0)α–1 dt

=
∫ tf

t0

xT
a

n–1∑
k=0

λk(t)xT
a AkBBT eAT (t–t0)α

α (t – t0)α–1 dt.

From equation (42), it is clear that

xT
a Gα(t0, tf ) = 0.

This shows that the conformable fractional Gramian is invertible and, according to The-
orem 10, it is clear that system (30) is uncontrollable.

Conversely, assume that the given system (30) is not controllable. Then from Theo-
rem 10, the conformable fractional Gramian is not invertible, and so there exists a nonzero
vector xa such that

xT
a Gα(t0, tf )xa = 0.

This implies, as in the proof of Theorem 10, that

0 = xT
a eA (t–t0)α

α B, t ∈ [t0, tf ]. (43)

If we substitute t = t0 in equation (43), we obtain 0 = xT
a B and, after taking conformable

fractional derivative k times and evaluating the result at t = t0, we get

xT
a AkB = 0, k = 0, 1, 2, . . . , n – 1.
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Therefore

xT
a

[
B AB · · · An–1B

]
= 0,

proving that the rank condition (41) fails. This completes the proof. �

Example 3 Consider the differential equation of an LC circuit

d2q
dt2 +

1
LC

q(t) =
e0

LC
, (44)

where L is inductance, C is capacitance, q(t) is current, and e0 is a constant driving force.
Let ω2

0 = 1
LC be the natural angular frequency. Then the conformable fractional transform

operator [17] is

d2

dt2 = ω
2(1–α)
0 T (2)

α . (45)

By using relation (45), equation (44) becomes

T (2)
α q(t) + ω2α

0 q(t) = e0ω
2α
0 . (46)

We want to check whether the system is controllable or not.
For this, we introduce the state variables

x1 = q, x2 = Tαq.

Then we see that the state representation of equation (45) is

Tα

[
x1

x2

]
=

[
0 1

–ω2α
0 0

][
x1

x2

]
+

[
0

ω2α
0

]
e0, (47)

where A =
[ 0 1

–ω2α
0 0

]
, B =

[ 0
ω2α

0

]
, thus the controllability matrix becomes

[B AB] =

[
0 ω2α

0

ω2α
0 0

]
. (48)

Since ω2α
0 = ( 1

LC )α �= 0, controllability matrix (48) has full rank, that is,

rank[B AB] = 2.

Hence, by Theorem 11, system (47) is controllable.
In the case of harmonic source with angular velocity ω, the equation becomes

d2q
dt2 +

1
LC

q(t) = e0 cosωt. (49)

By using the relation (45), equation (49) becomes

T (2)
α q(t) + ω2α

0 q(t) = e0ω
2(α–1)
0 cosωt. (50)
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Now the conformable state representation of this equation is

Tα

[
x1

x2

]
=

[
0 1

–ω2α
0 0

][
x1

x2

]
+

[
0

ω
2(α–1)
0

]
e0 cosωt.

Here A =
[ 0 1

–ω2α
0 0

]
, B =

[ 0
ω

2(α–1)
0

]
, so the conformable controllability Gramian becomes

[B AB] =

[
0 ω

2(α–1)
0

ω
2(α–1)
0 0

]
.

As ω
2(α–1)
0 = ( 1

LC )α–1 �= 0, the conformable fractional Gramian has rank 2. This implies that
(50) is controllable.

4 Conclusions
In this article, we have studied the sequential conformable linear equations. Using the
conformable fractional derivative approach, we have developed the conformable control-
lability Gramian matrix, the conformable fundamental matrix, and the conformable con-
trollability matrix. Our results are innovative compared to all the previous results obtained
in the conformable case and are application-based as well. They will be highly helpful for
the researchers in the future.
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