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Abstract
In this paper, general decay synchronization of delayed bidirectional associative
memory neural networks with reaction–diffusion terms is studied. First, a useful
lemma is introduced to determine the general decay synchronization of considered
systems. Furthermore, a type of nonlinear controller is designed. Then, some sufficient
conditions are obtained to insure the general decay synchronization of the
drive–response systems via using Lyapunov functional method and Poincaré
inequality. Finally, the obtained theoretical results are evaluated by giving one
numerical example. The exponential synchronization, polynomial synchronization,
and some other types of synchronization can be seen as special cases of the general
decay synchronization.
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1 Introduction
In the last two decades, a great number of scholars from science and engineering commu-
nity have been paying their attention to the investigation of dynamical behavior and con-
trol problems of neural networks [1–9]. Among various neural networks, bidirectional as-
sociative memory neural network (BAMNN), introduced by Kosko [10, 11], has been stud-
ied wildly since this class of neural network has extensive applications in pattern recog-
nition, complex control, and intelligent processing [12]. In addition, the synchronization
of chaotic nonlinear systems has received enormous attention in the past two decades for
its significant role in many areas, including biology, climatology, sociology, etc. [3–9]. The
authors of [13] studied the global asymptotic stability for continuous BAMNNs by using
Lyapunov method, while those of [14] considered the synchronization of memristor-based
BAMNNs by using linear matrix inequality technique. In [15], a nonlinear feedback con-
troller is designed for a general decay synchronization of delayed BAMNNs.

As it is known to all, the reaction–diffusion effect cannot be neglected when consider-
ing the motion of electrons in an asymmetric electromagnetic field [16]. Therefore it is
necessary to introduce a diffusion term in neural networks, where this term is expressed
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by a partial differential equation [16–19]. In [20], the authors studied the global expo-
nential stability and synchronization of the delayed reaction–diffusion neural networks
(RDNNs) under the impulsive control. The authors of [21] discussed the global expo-
nential synchronization of delayed BAMNNs with reaction–diffusion terms. In [22], an
adaptive synchronization controller is derived for the global asymptotic synchronization
of RDNNs with delays. The authors of [23] investigated the state synchronization of BAM
neural networks with reaction–diffusion terms via a feedback control law. In [24], the au-
thors have derived sufficient conditions for the H∞ synchronization of RDNNs with mixed
time-varying delays based on an adaptive controller method. In [25], an adaptive pinning
controller is designed to guarantee the tracking synchronization for a class of neural net-
works with coupled reaction–diffusion terms. In [18], a sufficient condition for the ψ-type
stability of RDNNs with bounded distributed delays and time-varying discrete delays was
presented. In [26], an appropriate nonlinear controller was utilized, and the decay lag anti-
synchronization criteria were designed for multiweighted coupled RDNNs. However, few
researches can be found on the general decay synchronization problem of BAMNNs with
reaction–diffusion terms. As mentioned in [15], there exist stable systems which are not
exponentially stable, but with a general convergence rate.

Inspired by the above discussions, in this paper, we are concerned with the general de-
cay synchronization for a BAMNN model with reaction–diffusion terms and time-varying
delays. By using a novel inequality technique and constructing a suitable Lyapunov–
Krasovskii-type functional, we obtained some simple sufficient conditions for the general
decay synchronization of considered BAMNNs. Finally, we give a numerical example and
its simulations to illustrate the effectiveness of the derived results. The polynomial syn-
chronization, asymptotical synchronization, and exponential synchronization can be seen
as special cases of the general decay synchronization.

The rest of the paper is organized as follows. In Sect. 2, we will introduce the details
of the model and a useful lemma, which plays a critical role in proving the main result
of this paper. Then, in Sect. 3, we will design a feedback controller for the general decay
synchronization of delayed BAMNNs with reaction–diffusion terms. In Sect. 4, we will
give an example to evaluate the effectiveness of theoretical results of this paper. In the
final section, we give a brief summary to end up the paper.

2 Preliminaries
In this paper, we consider the following delayed BAMNNs with reaction-0diffusion terms:

∂ui

∂t
=

�∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)
– piui(t, x)

+
n∑

j=1

bjifj
(
vj(t, x)

)
+

n∑

j=1

b̃jifj
(
vj

(
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))
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∂vj
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(
D̃jk

∂vj

∂xk
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+
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with the following Neumann boundary condition:

∇ui = 0, ∇vj = 0, x on ∂Ω , t ≥ 0, (2)

and the following initial condition:

ui(s, x) = Γi(s, x), vj(s, x) = Λi(s, x), x in Ω , s ≤ 0, (3)

where x = (x1, x2, . . . , x�)T ∈ Ω , Ω is a bounded open subset of R� with a C2 boundary
∂Ω , and |Ω| > 0 (where |Ω| is the volume of Ω); ∇ν := ( ∂ν

∂x1
, ∂ν

∂x1
, . . . , ∂ν

∂x�
)T stands for the

gradient of function ν , ui and vj for i ∈ I = {1, 2, . . . , m}, j ∈ J = {1, 2, . . . , n} denote to the
state variables of the ith and jth neuron at time t and in space point x, respectively; Dik ≥ 0
and D̃jk ≥ 0 represent transmission diffusion coefficients along the ith and jth neuron,
respectively; pi and qj stand for the passive decay rates to the state of ith and jth neuron,
respectively; bji, b̃ji, dij, and d̃ij are the connection strengths between the neurons; fj(ν)
and gi(ν) correspond to the respective neuron activation functions; θji(t) and τij correspond
to the continuous time-varying discrete delays, respectively satisfying 0 ≤ θji(t) ≤ θji and
0 ≤ τij(t) ≤ τij; Ii and Jj denote to the external inputs on the ith and jth neuron, respectively.

Through out the paper, we assume that the neuron activation functions fj(ν), gj(ν) and
time-varying delays τij(t), σij(t) satisfy the following assumptions:

Assumption 1 For any i ∈ I , j ∈ J , there exist constants Lf
j and Lg

i such that

∣∣fj(ν1) – fj(ν2)
∣∣ ≤ Lf

j |ν1 – ν2|, ν1,ν2 ∈ R,
∣∣gi(ν1) – gi(ν2)

∣∣ ≤ Lg
i |ν1 – ν2|, ν1,ν2 ∈R.

Assumption 2 Time-varying delays θji(t) and τij(t) are differentiable, and there exist con-
stants μji,κij ∈ (0, 1) such that

0 ≤ θ̇ji(t) ≤ μji,

0 ≤ τ̇ij(t) ≤ κij.

The corresponding system of (1) is given as

∂ũi

∂t
=

�∑
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∂ũi
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)
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)

+
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(
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))
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∂ ṽj

∂t
=

�∑

k=1

∂

∂xk

(
D̃jk

∂ ṽj

∂xk

)
– qjṽj(t, x) +

m∑

i=1

dijgi
(
ũi(t, x)

)

+
m∑

i=1

d̃ijgi
(
ũi

(
t – τij(t)

))
+ Jj + ϕj(t, x),

(4)

where φi(t, x) and ϕ(t, x) are the external control inputs to be designed.
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Let ei(t, x) = ũi(t, x) – ui(t, x) and zj(t, x) = ṽj(t, x) – vj(t, x), then the error system between
(1) and (4) is rewritten as

∂ei

∂t
=

�∑

k=1

∂

∂xk

(
Dik

∂ei

∂xk

)
– piei(t, x)

+
n∑

j=1

bjif̃j
(
zj(t, x)

)
+

n∑

j=1

b̃jif̃j
(
zj
(
t – θji(t)

))
+ φi(t, x),

∂zj

∂t
=

�∑

k=1

∂

∂xk

(
D̃jk

∂zj

∂xk

)
– qjzj(t, x)

+
m∑

i=1

dijg̃i
(
ei(t, x)

)
+

m∑

i=1

d̃ijg̃i
(
ei

(
t – τij(t)

))
+ ϕj(t, x),

(5)

where

f̃j
(
zj(t, x)

)
= fj(ṽj(t, x) – fj

(
vj(t, x)

)
,

f̃j
(
zj
(
t – θji(t), x

))
= fj(ṽj

(
t – θji(t), x

)
– fj

(
vj

(
t – θji(t), x

))
,

g̃i
(
ei(t, x)

)
= gi(ũi(t, x) – gi

(
ui(t, x)

)
,

g̃i
(
ei

(
t – τji(t), x

))
= gi(ũi

(
t – τji(t), x

)
– gi

(
ui

(
t – τji(t), x

))
.

Definition 1 ([26]) If the function ψ(t) : R+ → (0, +∞) satisfies the following four condi-
tions:

(1) ψ(t) is differentiable and nondecreasing;
(2) ψ(0) = 1 and ψ(+∞) = +∞;
(3) ψ̃(t) := ψ̇(t)

ψ(t) is nonincreasing;
(4) ψ(μ + ν) ≤ ψ(μ)ψ(ν) for all μ,ν ≥ 0,

then the function ψ(t) is called a ψ-type function.

Definition 2 If there exists a scalar ε > 0 such that

lim sup
t→∞

ln(
∫
Ω

‖e(t, x)‖2 + ‖z(t, x)‖2 dx)
lnψ(t)

≤ –ε,

where e(t, x) = (e1(t, x), e2(t, x), . . . , em(t, x))T , z(t, x) = (z1(t, x), z2(t, x), . . . , zn(t, x))T , and
ψ(t) is a ψ-type function defined in Definition 1, then drive–response systems (1) and
(4) are said to be general decay synchronized.

Lemma 1 If there exist a function �(t) ∈ C(R,R+), a Lyapunov functional V (t) : R+ →R
+,

and constants r1, r2 satisfying the following:

ψ̃(t) ≤ 1, (6)

sup
t∈[0,+∞)

∫ t

0
ψε(s)�(s) ds < +∞, (7)

r1

∫

Ω

∥∥e(t)
∥∥2 +

∥∥z(t)
∥∥2 dx ≤ V (t), (8)
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dV (t)
dt

+ εV (t) ≤ r2�(t), (9)

where ε is defined in Definition 2, while ψ(t) and ψ̃(t) are defined in Definition 1, then the
drive–response systems (1) and (4) are general decay synchronized.

Proof It can be easily obtained that

d[ψε(t)V (t)]
dt

= εψε–1ψ̇(t)V (t) + ψεV̇ (t),

from which we can get following by utilizing (6) and (9):

d[ψε(t)V (t)]
dt

≤ εψε(t)
ψ̇(t)
ψ(t)

V (t) – εψε(t)V (t) + r2ψ
ε�(t)

= εψε(t)
(
ψ̃(t) – 1

)
V (t) + r2ψ

ε(t)�(t)

≤ r2ψ
ε(t)�(t).

Using the condition ψ(0) = 1 in Definition 1 and (7), we get

ψε(t)V (t) ≤
∫ t

0
r2ψ

ε�(t) dt – V (0) < +∞,

then, using (8), one has

r1ψ
ε

∫

Ω

∥∥e(t, x)
∥∥2 +

∥∥z(t, x)
∥∥2 dx < +∞.

Thus there must exist a constant M > 0 such that

r1ψ
ε

∫

Ω

∥∥e(t, x)
∥∥2 +

∥∥z(t, x)
∥∥2 dx ≤ M,

which yields

ln
∫
Ω

‖e(t, x)‖2 + ‖z(t, x)‖2 dx
lnψ(t)

≤ ln M
r1

lnψ(t)
– ε.

Finally,

lim sup
t→+∞

ln
∫
Ω

‖e(t, x)‖2 + ‖z(t, x)‖2 dx
lnψ(t)

≤ ε.

This completes the proof. �

Lemma 2 (Poincaré inequality) Assume Ω is a bounded open subset of Rn and suppose
u ∈ H1

0 (Ω). Then we have

∫

Ω

u2 dx ≤ 1
c

∫

Ω

�∑

k=1

(
∂u
∂xk

)2

dx. (10)
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3 Main results
In this paper, the external control inputs φi(t, x) and ϕj(t, x) are designed as

φi(t, x) = –
ηi‖e(t, x)‖2ei(t, x)
(‖e(t, x)‖2 + �(t)

,

ϕj(t, x) = –
λj‖z(t, x)‖2zj(t, x)
‖z(t, x)‖2 + �(t)

,
(11)

where ηi for i ∈ I and λj for j ∈ J are positive control gains.

Theorem 1 Suppose that Assumptions 1 and 2 hold, and there exists a function �(t) ∈
C(R,R+) satisfying (7) with a ψ-type function satisfying (6), then (4) can be general decay
synchronized with system (1) under the feedback controller (11) if the control gains ηi and
λj satisfy the following inequalities:

ciDi + pi + ηi –
n∑

j=1

(
Lg

i
2

|dij| +
Lf

j

2
|bji| +

Lf
j

2
|b̃ji| + σijχij +

πij

1 – κij

)
> 0,

c̃jD̃j + qj + λj –
m∑

i=1

(Lf
j

2
|bji| +

Lg
i

2
|dij| +

Lg
i

2
|d̃ij| + τijνij +

ωij

1 – μij

)
> 0.

(12)

Proof Consider the following Lyapunov functional:

V (t) = V1(t) + V2(t), (13)

where

V1(t) =
∫

Ω

m∑

i=1

1
2

e2
i (t, x) +

m∑

i=1

n∑

j=1

∫ t

t–σij(t)

πij

(1 – κij)
e2

i (s, x) ds

+
m∑

i=1

n∑

j=1

∫ 0

–σij

∫ t

t+s
χije2

i (r, x) dr ds dx,

V2(t) =
∫

Ω

n∑

j=1

1
2

z2
i (t, x) +

n∑

j=1

m∑

i=1

∫ t

t–τij(t)

ωij

(1 – μij)
z2

j (s, x) ds

+
n∑

j=1

m∑

i=1

∫ 0

–τij

∫ t

t+s
νijz2

i (r, x) dr ds dx.

(14)

It is not difficult to prove that there exist positive scalars ξ > 1 and γ > 1 such that

∫

Ω

1
2

m∑

i=1

e2
i (t, x) dx ≤ V1(t) ≤

∫

Ω

ξ

m∑

i=1

e2
i (t, x) +

ξ

α

m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds dx,

∫

Ω

1
2

n∑

j=1

z2
i (t, x) dx ≤ V2(t) ≤

∫

Ω

γ

n∑

j=1

z2
i (t, x) +

γ

β

n∑

j=1

m∑

i=1

νij

∫ t

t–τij

z2
i (s, x) ds dx,

(15)
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where α = mini∈I{αi}, β = minj∈J {βj} with

αi = ciDi + pi + ηi –
n∑

j=1

(
Lg

i
2

|dij| +
Lf

j

2
|bji| +

Lf
j

2
|b̃ji| + σijχij +

πij

1 – κij

)
,

βj = c̃jD̃j + qj + λj –
m∑

i=1

(Lf
j

2
|bji| +

Lg
i

2
|dij| +

Lg
i

2
|d̃ij| + τijνij +

ωij

1 – μij

)
.

where Di = mink{Dik} and D̃j = mink{D̃jk} for all k ∈ {1, 2, . . . ,�}.
Now, calculate the time derivative of V1(t) and V2(t):

V̇1 =
∫

Ω

m∑

i=1

[
ei(t, x)

∂ei

∂t
(t, x) +

n∑

j=1

(
πij

(1 – κij)
e2

i (t, x) –
πij(1 – σ̇ij(t))

(1 – κij)
e2

i
(
t – σij(t), x

))
]

+
n∑

j=1

χij

∫ 0

–σij

e2
i (t, x) – e2

i (t + s, x) ds] dx

=
∫

Ω

m∑

i=1

[
ei(t, x)

�∑

k=1

Dik
∂2ei

∂x2
k

– pie2
i (t, x) +

n∑

j=1

bjiei(t, x)f̃j
(
zj(t, x)

)

+
n∑

j=1

b̃jiei(t, x)f̃j
(
zj
(
t – θji(t), x

))
–

ηi‖e(t, x)‖2e2
i (t, x)

(‖e(t, x)‖2 + �(t))

+
n∑

j=1

(
πij

(1 – κij)
e2

i (t, x) –
πij(1 – σ̇ij(t))

(1 – κij)
e2

i
(
t – σij(t), x

))

+
n∑

j=1

σijχije2
i (t, x) –

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds

]
dx,

where

∫

Ω

ei(t, x)
�∑

k=1

Dik
∂2ei

∂x2
k

dz =
∫

∂Ω

ei(t, z)
�∑

k=1

Dik
∂ei

∂xk
dx –

∫

Ω

�∑

k=1

Dik

(
∂ei

∂xk

)2

dx

= –
∫

Ω

�∑

k=1

Dik

(
∂ei

∂xk

)2

dx.

Since Di = mink{Dik} for all k ∈ {1, 2, . . . ,�}, one gets the following inequality via Lemma 2:

∫

Ω

ei(t, x)
�∑

k=1

Dik
∂2ei

∂x2
k

dx ≤ –
∫

Ω

ciDie2
i (t, x) dx.

Therefore,

V̇1(t) ≤
∫

Ω

m∑

i=1

[
–ciDie2

i (t, x) – pie2
i (t, x) +

n∑

j=1

bjiei(t, x)f̃j
(
zj(t, x)

)

+
n∑

j=1

b̃jiei(t, x)f̃j
(
zj
(
t – θji(t), x

))
–

ηi‖e(t, x)‖2e2
i (t, x)

(‖e(t, x)‖2 + �(t))
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+
n∑

j=1

(
πij

(1 – κij)
e2

i (t, x) –
πij(1 – σ̇ij(t))

(1 – κij)
e2

i
(
t – σij(t), x

))

+
n∑

j=1

σijχije2
i (t, x) –

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds

]
dx.

In the light of Assumption 1, we have

V̇1(t) ≤
∫

Ω

–
m∑

i=1

(ciDi + pi)e2
i (t, x) +

m∑

i=1

n∑

j=1

Lf
j

2
|bji|

(
e2

i (t, x) + z2
j (t, x)

)

+
m∑

i=1

n∑

j=1

Lf
j

2
|b̃ji|

(
e2

i (t, x) + z2
j
(
t – θji(t), x

))
–

m∑

i=1

ηie2
i (t, x)

+
m∑

i=1

(
ηie2

i (t, x) –
ηi‖e(t, x)‖2e2

i (t, x)
(‖e(t, x)‖2 + �(t))

)
+

m∑

i=1

e2
i (t, x)

n∑

j=1

πij

1 – κij

+
m∑

i=1

n∑

j=1

σijχije2
i (t, x) –

m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds dx.

Here we used the following inequality:

m∑

i=1

(
ηie2

i (t, x) –
ηi‖e(t, x)‖2e2

i (t, x)
(‖e(t, x)‖2 + �(t))

)
=

m∑

i=1

ηi�(t)e2
i (t, x)

‖e(t, x)|2 + �(t)

≤ max
i∈I

{ηi} �(t)
‖e(t, x)‖2 + �(t)

m∑

i=1

e2
i (t, x)

= η
�(t)‖e(t, x)‖2

‖e(t, x)‖2 + �(t)
≤ η�(t).

Due to 0 ≤ ab/(a + b) ≤ a for any a > 0 and b > 0, where η = maxi∈I{ηi} > 0,

V̇1(t) ≤
∫

Ω

m∑

i=1

[
–ciDi – pi – ηi +

n∑

j=1

(Lf
j

2
|bji| +

Lf
j

2
|b̃ji| +

πij

1 – κij
+ σijχij

)]
e2

i (t, x)

+
m∑

i=1

n∑

j=1

Lf
j

2
|bji|z2

j (t, x) + η�(t) –
m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds dx.

Similarly,

V̇2(t) ≤
∫

Ω

n∑

j=1

[
–c̃jD̃j – qj – λj +

m∑

i=1

(
Lg

i
2

|dij| +
Lg

i
2

|d̃ij| +
ωij

1 – μij
+ τijνij

)]
z2

j (t, x)

+
n∑

j=1

m∑

i=1

Lg
i

2
|dij|e2

i (t, x) + λ�(t) –
n∑

j=1

m∑

i=1

νij

∫ t

t–τij

z2
j (s, x) ds dx,
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where λ = maxj∈J {λj} > 0. Then we have

V̇ (t) ≤
∫

Ω

m∑

i=1

[
–ciDi – pi – ηi +

n∑

j=1

(
Lg

i
2

|dij| +
Lf

j

2
|bji| +

Lf
j

2
|b̃ji| + σijχij

+
πij

1 – κij

)]
e2

i (t, x) + η�(t) –
m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds

+
n∑

j=1

[
–c̃jD̃j – qj – λj +

m∑

i=1

(Lf
j

2
|bji| +

Lg
i

2
|dij| +

Lg
i

2
|d̃ij| + τijνij

+
ωij

1 – μij

)]
z2

j (t, x) + λ�(t) –
n∑

j=1

m∑

i=1

νij

∫ t

t–τij

z2
j (s, x) ds dx

≤
∫

Ω

–α

m∑

i=1

e2
i (t, x) + η�(t) –

m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds

– β

n∑

j=1

z2
j (t, x) + λ�(t) –

n∑

j=1

m∑

i=1

νij

∫ t

t–τij

z2
j (s, x) ds dx.

Then, there exists a small enough δ satisfying δξ ≤ α and δγ ≤ β such that

V̇ (t) + δV (t) ≤
∫

Ω

–α

m∑

i=1

e2
i (t, x) + η�(t) –

m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds

+ δ

(
ξ

m∑

i=1

e2
i (t, x) +

ξ

α

m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds

)

– β

n∑

j=1

z2
j (t, x) + λ�(t) –

n∑

j=1

m∑

i=1

νij

∫ t

t–τij

z2
j (s, x) ds

+ δ

(
γ

n∑

j=1

z2
i (t, x) +

γ

β

n∑

j=1

m∑

i=1

νij

∫ t

t–τij

z2
i (s, x) ds

)
dx

= (δξ – α)
m∑

i=1

e2
i (t, x) + (η + λ)�(t) –

(
ξδ

α
– 1

) m∑

i=1

n∑

j=1

χij

∫ t

t–σij

e2
i (s, x) ds

+ (δγ – β)
n∑

j=1

z2
j (t, x) –

(
γ δ

β
– 1

) n∑

j=1

m∑

i=1

νij

∫ t

t–τij

z2
j (s, x) ds

≤
∫

Ω

(η + λ)�(t) dx

= (η + λ)|Ω|�(t),

and we have

V̇ (t) + δV (t) ≤ (η + λ)|Ω|�(t). (16)
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Therefore, by Lemma 1, the drive–response systems (1) and (4) achieve general decay
synchronization under the nonlinear feedback controller (11). The convergence rate of
e(t) and z(t) approaching zero is δ. The proof is completed. �

Remark 1 In this paper, we firstly studied the general decay synchronization of BAMNN
with reaction–diffusions terms and time-varying delay by introducing a novel nonlinear
feedback controller and using some inequality techniques. It it not difficult to see that the
results obtained in [13, 16, 21, 23] can be seen as special cases of our results when the
general decay function is chosen as ψ(t) = eαt or ψ(t) = (1 + t)α for any α > 0. From this
viewpoint, our results are more general and have better applicability.

4 Numerical examples
In this section, a numerical example is provided to validate the effectiveness of the estab-
lished theoretical results in this paper.

Example For � = 1, n = m = 2, consider the following BAMNN with reaction–diffusion
terms,

∂ui

∂t
= Di1

∂

∂xk

(
∂ui

∂xk

)
– piui(t, x) +

2∑

j=1

bjifj
(
vj(t, x)

)
+

2∑

j=1

b̃jifj
(
vj

(
t – θji(t)

))
+ Ii,

∂vj

∂t
= D̃j1

∂

∂xk

(
∂vj

∂xk

)
– qjvj(t, x) +

2∑

i=1

dijgi
(
ui(t, x)

)
+

2∑

i=1

d̃ijgi
(
ui

(
t – τij(t)

))
+ Jj,

(17)

for x × t ∈ [–5, 5] × [0, 1], with the following Neumann boundary condition:

∂ui

∂x

∣∣∣∣
x=±5

= 0,
∂vj

∂x

∣∣∣∣
x=±5

= 0, for t ∈ [0, 1], (18)

where the parameters of system (17) are taken as Di1 = D̃j1 = 0.1, pi = 1, qj = 1.05, b11 = 1.8,
b12 = –0.15, b21 = –5.2, b22 = 3.5, b̃11 = –1.7, b̃12 = –0.12, b̃21 = –0.26, b̃22 = –2.5, d11 =
1.71, d12 = –0.1425, d21 = –4.94, d22 = 3.325, d̃11 = –1.87, d̃12 = –0.132, d̃21 = –0.286, d̃22 =
–2.75, Ii = Jj = 0, neuron activation functions are chosen as fi(ν) = gj(ν) = tanh(ν), and time-
varying delays are chosen as θji(t) = τij(t) = et

1+et for i, j ∈ {1, 2}. The initial conditions of
system (17) are chosen as

u1(s, x) = 0.2 cos(πx) + 0.2, u2(s, x) = 0.5 cos(πx) + 0.5,

v1(s, x) = 0.4 cos(πx) + 0.3, v2(s, x) = 0.7 cos(πx) + 0.2

for s × x ∈ [–1, 0] × [–5, 5].

Matlab simulations of the drive system (17) under the above initial conditions are pre-
sented in Figs. 1–8, where we can see that the drive system (17) has a chaotic attractor.
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Figure 1 Chaotic attractor of u1 in (17)

Figure 2 Chaotic attractor of u2 in (17)

Figure 3 Chaotic attractor of ũ1 in (17)
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Figure 4 Chaotic attractor of ũ2 in (17)

Figure 5 Chaotic attractor of u1 and u2 in (17) with x = –4

Figure 6 Chaotic attractor of ũ1 and ũ2 in (17) with x = –1
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Figure 7 Chaotic attractor of u1 and u2 in (17) with x = 1

Figure 8 Chaotic attractor of ũ1 and ũ2 in (17) with x = 3

The corresponding response system for the drive system (17) is given as

∂ũi

∂t
= Di1

∂

∂x

(
∂ũi

∂x

)
– piũi(t, x) +

2∑

j=1

bjifj
(
ṽj(t, x)

)

+
2∑

j=1

b̃jifj
(
ṽ1

(
t – θ11(t)

))
+ Ii + φi,

∂ ṽj

∂t
= D̃j1

∂

∂x

(
∂vj

∂x

)
– qjvj(t, x) +

2∑

i=1

dijgi
(
ũi(t, x)

)

+
2∑

i=1

d̃ijgi
(
ũi

(
t – τ11(t)

))
+ Jj + ϕj,

(19)
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for x × t ∈ [–5, 5] × [0, 1], with the following Neumann boundary condition:

∂ũ1

∂x

∣∣∣∣
x=±1

= 0,
∂ ṽ1

∂x

∣∣∣∣
x=±1

= 0, for t ∈ [0, 1], (20)

where φi(t, x) and ϕj(t, x) are given as follows:

φi(t, x) = –
ηi‖e(t, x)‖2ei(t, x)
(‖e(t, x)‖2 + �(t)

,

ϕj(t, x) = –
λj‖z(t, x)‖2zj(t, x)
‖z(t, x)‖2 + �(t)

,
(21)

where η1 = 5.6, η2 = 6.8, λ1 = 6.2, λ2 = 7.1, �(t) = e–0.1t . The other parameters in (19) are
the same as of system (17). The initial conditions of (19) are taken as

ũ1(s, x) = 0.8 cos(πx) + 0.5, ũ2(s, x) = –0.5 cos(πx) + 0.1,

ṽ1(s, x) = 1.2 cos(πx) + 0.5, ṽ2(s, x) = –0.5 cos(πx) + 0.7

for s × x ∈ [–1, 0] × [–5, 5].

It is not difficult to estimate that Lf
i = Lg

j = 1 and μji = κij = 1. Thus, Assumptions 1
and 2 are satisfied. Letting ψ(t) = et , inequalities (6), (7), and (12) are satisfied. Therefore,
according to Theorem 1, the drive–response systems (17) and (19) can achieve general
decay synchronization under the controller (19). The time evolution of synchronization
errors between master–slave systems (17) and (19) are show in Figs. 9–12, from where
we can see that ei(t, x) and zj(t, x) are very close to 0 and maintain this situation as time t
increases.

Remark 2 Unlike the synchronization studies for neural networks such as [13, 16, 20, 21,
23], the convergence rate of the synchronization error can be controlled by appropriately
choosing the function �(t) in the paper, this is because general decay synchronization en-

Figure 9 Evaluation of synchronization error e1
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Figure 10 Evaluation of synchronization error e2

Figure 11 Evaluation of synchronization error z1

Figure 12 Evaluation of synchronization error z2

ables us to estimate to convergence rate of synchronization error via defining a more gen-
eral convergence rate. From this viewpoint, our results are more general and have better
applicability.
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5 Conclusions
In this paper, first, we introduce a useful lemma to determine the general decay synchro-
nization of the considered drive–response system, and then the nonlinear feedback con-
trollers are designed for synchronization of delayed reaction–diffusion bidirectional as-
sociative memory neural networks with Neumann boundary condition via applying Lya-
punov functional method and Poincaré inequality, and useful new conditions are obtained.
This result generalizes the previous results to some extent [15, 21, 26]. In addition, one nu-
merical example is given to show the effectiveness of the proposed model.
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