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Abstract
This paper is devoted to the study of the global synchronization of multiple neural
networks (MNNs) via impulsive coupling control. Compared to one-layer neural
networks, MNNs have more complex dynamics behavior and greater practical
significance. In this paper, two interconnected bidirection MNNs are constructed; for
this type of neural network system, each node in their network will be affected by the
corresponding node in another network, then the synchronization problem of
unidirection MNNs is extended to bidirection MNNs. In order to achieve
synchronization of the bidirection MNNs, we adopt the method of impulsive coupling
control, and together with the appropriate Lyapunov function, we deduce the
relationship of the synchronization error system at the adjacent two impulsive
moments, through iteration, and we finally obtain sufficient conditions to realize the
global synchronization of the two interconnected bidirection MNNs. We illustrate the
effectiveness of the results by simulation.

Keywords: Multiple neural networks; Impulsive coupling control; Synchronization;
Coupling strength; Variable topology

1 Introduction
As an important subject, neural networks (NNs) have attracted more and more attention
of scholars. Because of their superior performance, they have been widely used in asso-
ciative memory, signal processing, optimization, machine learning and so on. Common
dynamic behaviors just like periodicity, synchronization, chaos, multi-stability, dissipa-
tion, stability, self-association and other dynamic behaviors have been widely studied, and
new results are still emerging (see [1–3]).

As an important dynamic behavior in neural network, synchronization is of great sig-
nificance [4]. At present, there are many excellent research results in neural network syn-
chronization. Ramirez et al. [5] study master–slave synchronization, and propose poten-
tial solutions to the problem that master–slave synchronization control scheme cannot
induce synchronization. In Ref. [6], a new impulsive pinning strategy involving pinning
ratio has been proposed to study pinning synchronization under impulsive control. In
Ref. [7], Fečkan et al. study the synchronization of a nonlinear fractional system, and ana-
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lyze the time response and chaotic behaviors of this system. Alsaedi et al. [8] have studied
the finite-time synchronization of a class of complex dynamical networks with Marko-
vian hopping and time-varying delay. Generalized multi-synchronization is studied in Ref.
[9]. Cruz-Ancona et al. [10] study the problem of generalized multi-synchronization in a
master–slave topology in the framework of differential algebra and design a control proto-
col that can solve the problem of leadership following consensus. A class of sampling-data
synchronization is given in Ref. [11], which is through the method of sampling-data syn-
chronization control to make the system with time-varying sampling period achieve syn-
chronization, the sampling period in [11] is time-varying, switching between two values
according to random probability, it is a synchronous way which is defined by the charac-
teristics of the controller.

The dynamic behavior of multiple neural networks (MNNs), which is composed of mul-
tiple sub-networks, has been more and more concerned in the past 20 years, and the com-
mon examples are the robot group [12], the unmanned aerial vehicle group, and the mi-
gration of fish stocks. The synchronization behavior of MNNs is embodied as a common
behavior for each sub-network with different initial state. In the multi-network synchro-
nization scheme, the coupling between each subnetwork has great effects, resulting in syn-
chronization under various coupling schemes, such as linear coupling. Lu and Chen [13]
use variational methods to study the local synchronization of linear coupled NNs, which
is also an earlier study of coupled networks. Liu and Liao [14] study a class of finite-time
driven-response synchronization problems for a general delay memory neural network
(DMNN) with interval parameters, fuzzy logic system models, and nonlinear coupling,
and they present a unified condition for finite-time synchronization of a fuzzy DMNN
with nonlinear coupling. As for fixed topology coupling, Wang and Cao [15] study the ex-
ponential synchronization of a class of coupled NNs with probabilistic time-varying delay
coupling and time-varying impulsive delay based on random memory. Mathiyalagan et al.
[16] study the impulsive synchronization of a class of BAM NNs based on time-varying
delay. Li and Cao [17] study the synchronization of inertial memristor system with linear
coupling, and use a variety of methods, such as differential inclusion method and matrix
measure method, the coupling topology is also fixed. In practical applications, some links
are broken, or new links are generated; then the coupling topology is not always fixed,
for instance, in limited communication channel, links are usually changed as needed to
reduce redundant connections and save resources, so a concept of switching topology is
proposed to describe the sudden change of the connection topology of NNs. Because the
study of switched topology meets the needs of network change in practical applications,
it motivates many scholars. In NNs with switching topology, synchronization is one of the
dynamics we have to study. In this regard, Yang et al. [18] study a class of multi-recursive
NNs with impulsive coupling control and give sufficient conditions for global synchroniza-
tion in which the coupling topology is variable and introduce the concepts of sequential
connection and common connection to describe the switching mode of coupling topology.

In many studies, the coupling scheme has always been effective, but we may only need
coupling in some times, and the communication bandwidth is limited, so this kind of cou-
pling scheme causes a lot of unnecessary cost waste. Therefore, if the coupling between
NNs only occurs at some discrete time (such as impulsive time), then the cost of the appli-
cation can be effectively reduced, so it is necessary to study the impulsive coupling control
scheme. In [18–21], the impulsive coupling control is used to switch the coupling topol-
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ogy at the impulsive time, so as to achieve better control effect and practical significance.
In the non-impulsive time, each node is independent, and information exchange only oc-
curs at the impulsive time, which greatly reduces the waste of communication resources.
There are examples of this in real life, for example, a synchronous flash of fireflies, the
flash of each firefly in a population as an impulsive coupled signal, which finally achieves
a synchronous flash.

The structure of the NNs is complex and diverse. For bidirectional NNs, as early as 1987,
a bidirectional associative memory (BAM) NNs with bilayer is first proposed by Kosko.
What is special about this type of neural network is that its u-layer is not independent of
the v-layer, but is closely linked through the respective neurons. Because of this particular-
ity, this type of NNs has been used in the fields of artificial intelligence, signal processing,
combination optimization and image processing. For this network model, in [22], Cheng et
al. investigate the Mittag-Lefflfler synchronization and stability of fractional-order BAM
NNs. Similarly, for this characteristic of the BAM NNs, if we apply it on the MNNs, then
we can combine the characteristics of the two networks, which is also very meaningful.

In practice, it is inevitable to study the NNs with time-delay, because of the limited
switching speed of the amplifier and the limited information processing speed, thus a
large amount of complex dynamical behaviors can be generated. And in the neural net-
work model study, if the type or size of the time-delay is different, then the results may
also be completely different. The common delays in currently studies are discrete delay,
time-varying delay, state-dependent state delay, and infinite time-delay [23].

According to the above discussion, in this paper, we study the synchronization problem
of bidirectional MNNs with time-delay under impulsive coupling control. Through the
impulsive coupling controller, we finally achieve the synchronization of the two MNNs.
The coupling controller in this paper makes the two networks to be coupled only at the
discrete time, the coupling topology will switch with time, and it is sequential connection.
The two MNNs are not only affected by their respective impulsive coupling controllers,
but also by the corresponding nodes of another network. Generally speaking, the main
work of this paper can be summed up in the following two points:

(1) The synchronization problem of two interconnected bidirection MNNs with
impulsive coupling control is studied. Because impulsive control is adopted,
communication resources can be saved. In addition, the design of impulsive
coupling controller is more convenient through coupling intensity selection.

(2) We give the sufficient conditions of MNNs with time-delay to achieve global
synchronization under impulsive coupling control.

The remaining part of this paper is organized as follows. Section 2 gives some prelimi-
naries on graph theory, the system of bidirection MNNs and impulsive coupling controller.
Section 3 derives sufficient conditions for global synchronization of the continuous-time
MNNs with impulsive interactions. Section 4 gives a numerical example to substantiate
the theoretical analysis. Finally, the conclusion of this paper is given in Sect. 5.

2 Preliminaries
2.1 Graph theory
A graph G = (V,E) is composed of two sets: V is the set of nodes, and E ⊆ V × V is the
set of edges. Each graph G = (V,E) has a unique nonnegative matrix A = (aij)N×N ∈ RN×N

corresponding to it where aij > 0 represents the connection relationship between node i
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and node j, (i, j) ∈ V× V. The union of two graphs G1 = (V,E1) and G2 = (V,E2) is defined
by G1 ∪ G2 = (V,E1 ∪ E2).

Given a graph G = (V,E) and a nonempty subset N⊆ V, the neighbors of N are defined as
the set M(N,G) = {j ∈ V\N|∃i ∈ N, such that (i, j) ∈ E}. If the set N is a singleton, then M(N,G)
represents the neighbor of one node.

If
⋃m

i=1 Gi contains a spanning tree (a detailed introduction is provided in [19]), then the
sequence of graphs (Gi)m

i=1 is jointly connected. If the set of Vk satisfies Vk ⊆ V(1 ≤ k ≤
m + 1) and Vk+1 ⊆ Vk ∪ N(Gk ,Vk) where V1 is a singleton, Vm+1 = V, then the sequence of
graphs (Gi)m

i=1 is sequentially connected. It is also T-sequential connected with the period
T = m. For some more properties of jointly connected and sequentially connected cases
refer to [18, 19].

Remark 2.1 Note that each graph of Gi has the common nodes. In addition, we can see
that, if the sequence of graphs (Gi)m

i=1 is T-sequentially connected, then the information
spread process of nodes is given by the spanning tree of the sequence of graphs (Gi)m

i=1.
At the same time, if a sequence of graphs (Gi)m

i=1 is sequentially connected, then it is also
jointly connected, but the converse is not true.

2.2 Model description
Let Vx = Vy = {1, 2, . . . , N} be the sets of nodes. In this paper, we study two interconnected
bidirection MNNs system and consider each MNNs consisting of N NNs. Each of the NNs
corresponds to a node, and the state equations of the ith and the jth NN are given by

dxis(t)
dt

= –csxis(t) +
n∑

i=1

asifi
(
yji(t)

)
+

n∑

i=1

bsif τ
i
(
yji(t – τ1)

)
+ Is(t) + uis(t), (2.1)

dyjs(t)
dt

= –csyjs(t) +
n∑

j=1

asjgj
(
xij(t)

)
+

n∑

j=1

bsjgτ
j
(
xij(t – τ2)

)
+ Is(t) + vjs(t), (2.2)

or in compact forms

dxi(t)
dt

= –Cxi(t) + Af
(
yj(t)

)
+ Bf τ

(
yj(t – τ1)

)
+ I(t) + ui(t), (2.3)

dyj(t)
dt

= –Cyj(t) + Ag
(
xi(t)

)
+ Bgτ

(
xi(t – τ2)

)
+ I(t) + vj(t), (2.4)

where i ∈ Vx, j ∈ Vy, t ≥ t0, xi(t) = (xi1(t), xi2(t), . . . , xin(t)) ∈ Rn and yj(t) = (yj1(t), yj2(t), . . . ,
yjn(t)) ∈ Rn are the state vectors of the ith NN and jth NN of the two MNNs, respectively.
C = diag{c1, c2, . . . , cn}, ci > 0 and C = diag{c1, c2, . . . , cn}, ci > 0 are self-inhibitions of the two
neurons. I(t) ∈ Rn, I(t) ∈ Rn represent the input or bias, ui, vi are control inputs of two
neurons, respectively. τ1 > 0, τ2 > 0 are the transmission delays and let τ = max{τ1, τ2}.
f (yj(t)) = (f1(yj1(t)), f2(yj2(t)), . . . , fn(yjn(t)))T , g(xi(t)) = (g1(xi1(t)), g2(xi2(t)), . . . , gn(xin(t)))T

and f τ (yj(t –τ1)) = (f τ
1 (yj1(t –τ1)), f τ

2 (yj2(t –τ1)), . . . , f τ
n (yjn(t –τ1)))T , gτ (xi(t –τ2)) = (gτ

1 xi1(t –
τ2), gτ

2 xi2(t – τ2), . . . , gτ
n xin(t – τ2))T are activation functions, and A = [aij]n×n, A = [aij]n×n,

B = [bij]n×n, B = [bij]n×n are the connection weight matrices and delay connection weight
matrices of the two NNs.

Given an impulsive instant sequence {t1, t2, t3, . . .} satisfying 0 < tk < tk+1(k ∈ Z+) and
tk → ∞ when k → ∞. For the distributed impulsive controllers of the ith and jth nodes,
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we assign

ui(t) =
+∞∑

k=1

(

xi(t) –
N∑

j=1

dij(t)Γ (t)xj(t)

)

δ(t – tk), (2.5)

vj(t) =
+∞∑

k=1

(

yj(t) –
N∑

j=1

dji(t)Λ(t)yi(t)

)

δ(t – tk), (2.6)

δ(·) is the Dirac impulsive function; Γ (tk) = diag{γ1(tk),γ2(tk), . . . ,γn(tk)} and Λ(tk) =
diag{λ1(tk),λ2(tk), . . . ,λn(tk)} represent the coupling gains between two nodes with γi(tk) >
0 and λi(tk) > 0. D(tk) = (dij(tk))N×N and D(tk) = (dji(tk))N×N represent the impulsive cou-
pling matrices with

⎧
⎨

⎩

dij(tk) ≥ 0, i 
= j,
∑N

j=1 dij(tk) = 1, ∀i ∈ Vx,
(2.7)

⎧
⎨

⎩

dij(tk) ≥ 0, i 
= j,
∑N

j=1 dij(tk) = 1, ∀i ∈ Vy.
(2.8)

In algebraic graph theory, G(D(tk)) and G(D(tk)) are the adjacent matrices of the directed
weight graphs Gx

k and Gy
k .

Under impulsive controllers (2.5) and (2.6) with the conditions (2.7) and (2.8), then con-
trolled systems (2.1) and (2.2) can be described in the following forms:

⎧
⎨

⎩

dxi(t)
dt = –Cxi(t) + Af (yj(t)) + Bf τ (yj(t – τ1)) + I(t), t 
= tk ,

xi(t+
k ) =

∑N
j=1 dij(tk)Γ (tk)xj(tk),

(2.9)

⎧
⎨

⎩

dyj(t)
dt = –Cyj(t) + Ag(xi(t)) + Bgτ (xi(t – τ2)) + I(t), t 
= tk ,

yj(t+
k ) =

∑N
i=1 dji(tk)Λ(tk)yi(tk),

(2.10)

where xi(t–
k ) = xi(tk), yj(t–

k ) = yj(tk).
We use D(tk) and D(tk) to describe the coupling topology of NNs (2.9) and (2.10) at im-

pulsive time tk . The graphs Gx
k and Gy

k correspond to matrices D(tk) and D(tk), respectively.
Coupling matrices D(tk) and D(tk) can switch at impulsive time tk with period. It should
be noted that Gx

k and Gy
k may contain selfloops, which means the conditions dii(tk) > 0 and

dii(tk) > 0 exist.

Remark 2.2 Through (2.7) and (2.8) we can see that the couplings of the two MNNs only
occur at the impulsive time tk , and each node of the two MNNs is independent at other
times. In addition, there is an interaction between the corresponding nodes of the two
MNNs, so that there is also an interaction between the two MNNs. Then how to syn-
chronize the two networks through certain conditions will be a problem we will discuss
later.

Remark 2.3 Compared with the controllers used in articles [24–26], the controllers in
these three articles are all used in single-layer network, but the system in this paper is a
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bidirection MNNs system, for which one needs to consider the coupling between nodes
at the impulsive time, so this type of controllers may not be suitable. The controllers used
in this paper can be regarded as a generalization of this kind of controller in MNNs.

Note that when each NNs in MNNs (2.9) and (2.10) satisfy

lim
t→∞

∥
∥xi(t) – xj(t)

∥
∥ = 0, i, j ∈ Vx,

lim
t→∞

∥
∥yi(t) – yj(t)

∥
∥ = 0, i, j ∈ Vy,

then MNNs (2.9) and (2.10) are globally synchronized.
Let γmax = maxk≥1,i∈N {γi(tk)}, λmax = maxk≥1,i∈N {λi(tk)} and γ = – ln(γmax), λ = – ln(λmax)

are called coupling strength of Gx
k and Gy

k .
For the continuous activation functions fi(x), gi(x) and f τ

i (x), gτ
i (x), Assumption 1 is

made.

Assumption 1 There exist pi > 0, pτ
i > 0 and lj > 0, lτj > 0 such that

∣
∣fi(x) – fi(y)

∣
∣ ≤ pi|x – y|,

∣
∣f τ

i (x) – f τ
i (y)

∣
∣ ≤ pτ

i |x – y|,
∣
∣gj(x) – gj(y)

∣
∣ ≤ lj|x – y|,

∣
∣gτ

j (x) – gτ
j (y)

∣
∣ ≤ lτj |x – y|,

for any x, y ∈ R and i = 1, 2, . . . , n, j = 1, 2, . . . , n. Denote P = diag{p1, p2, . . . , pn}, Pτ =
diag{pτ

1 , pτ
2 , . . . , pτ

n} and L = diag{l1, l2, . . . , ln}, Lτ = diag{lτ1 , lτ2 , . . . , lτn}.

2.3 Definitions and properties
In this paper, we give some concepts of the convex set [19]. Given a set M ⊆ Rn, then the
convex hull of M is defined as

co(M) =

{ n∑

i=1

aixi :
n∑

i=1

ai = 1, ai ≥ 0, xi ∈ M, n ≥ 1

}

.

We define the diameter of M as

diam(M) = sup
x,y∈M

‖x – y‖.

Given two sets M1, M2 ⊆ Rn, define

M1 + M2 = {x + y : x ∈ M1, y ∈ M2}.

It is obvious that diam(M1 + M2) ≤ diam(M1) + diam(M2).
Let eij(t) = xi(t) – xj(t), i, j ∈ Vx, eij(t) = yi(t) – yj(t), i, j ∈ Vy, The state error between NNs

of (2.9) and (2.10) are defined as ‖eij(t)‖ and ‖eij(t)‖, ‖ ·‖ represent the 1-norm. Besides, let
‖ẽij(t)‖ = supθ1∈[–τ ,0] ‖eij(t + θ1)‖, ‖ẽij(t)‖ = supθ2∈[–τ ,0] ‖eij(t + θ2)‖ and hk = tk+1 – tk , hinf =
infk∈z+{hk}, hsup = supk∈z+{hk}, 0 ≤ τ ≤ hinf .
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Lemma 2.1 For any i, j ∈ {1, 2, . . . , N} and t ∈ (tk , tk+1], k ∈ Z+, we have

∥
∥eij(t)

∥
∥ ≤ ∥

∥ẽij
(
t+
k
)∥
∥ exp

{
–r(t – tk)

}
, (2.11)

∥
∥eij(t)

∥
∥ ≤ ∥

∥ẽij
(
t+
k
)∥
∥ exp

{
–r(t – tk)

}
, (2.12)

where r 
= 0 and satisfies

r – cmin + ‖AP‖ +
∥
∥BPτ

∥
∥ exp{rτ } ≤ 0, (2.13)

r – cmin + ‖AL‖ +
∥
∥BLτ

∥
∥ exp{rτ } ≤ 0, (2.14)

in which cmin = min1≤i≤n{ci}, cmin = min1≤i≤n{ci}.

Proof Let

V(t) =
∥
∥eij(t)

∥
∥ exp

{
r(t – tk)

}
,

V(t) =
∥
∥eij(t)

∥
∥ exp

{
r(t – tk)

}
,

and W(t) = max{V(t),V(t)}.
According to (2.9) and (2.10), when t ∈ (tk , tk+1), we have

deij(t)
dt

=
dxi(t)

dt
–

dxj(t)
dt

= –C
(
xi(t) – xj(t)

)
+ A

[
f
(
yj(t)

)
– f

(
yi(t)

)]

+ B
[
f τ

(
yj(t – τ1)

)
– f τ

(
yi(t – τ1)

)]
,

deij(t)
dt

=
dyi(t)

dt
–

dyj(t)
dt

= –C
(
yi(t) – yj(t)

)
+ A

[
g
(
xj(t)

)
– g

(
xi(t)

)]

+ B
[
gτ

(
xj(t – τ2)

)
– gτ

(
xi(t – τ2)

)]
.

Then

dV(t)
dt

= sign
(
eij(t)

)T deij

dt
exp

{
r(t – tk)

}
+ rV(t)

= – sign
(
eij(t)

)T C
(
xi(t) – xj(t)

)
exp

{
r(t – tk)

}

+ rV(t) + sign
(
eij(t)

)T A
[
f
(
yj(t)

)
– f

(
yi(t)

)]
exp

{
r(t – tk)

}

+ sign
(
eij(t)

)T B
[
f τ

(
yj(t – τ1)

)
– f τ

(
yi(t – τ1)

)]
exp

{
r(t – tk)

}

≤ (r – cmin)V(t) + ‖AP‖∥∥yi(t) – yj(t)
∥
∥ exp

{
r(t – tk)

}

+
∥
∥BPτ

∥
∥
∥
∥yi(t – τ1) – yj(t – τ1)

∥
∥ exp

{
r(t – tk)

}

≤ (r – cmin)V(t) + ‖AP‖V(t) +
∥
∥BPτ

∥
∥V(t – τ1) exp{rτ }

≤ (
r – cmin + ‖AP‖)W(t) +

∥
∥BPτ

∥
∥W(t – τ1) exp{rτ }.
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Let

W̃(t) = sup
θ∈[–τ ,0]

W(t + θ ).

Then one has

W̃(t) ≥ W(t) ≥ 0. (2.15)

From (2.13) and (2.15) we have

dV(t)
dt

= sign
(
eij(t)

)T deij

dt
exp

{
r(t – tk)

}
+ rV(t)

≤ (
r – cmin + ‖AP‖)W(t) +

∥
∥BPτ

∥
∥W(t – τ1) exp{rτ }

≤ (
r – cmin + ‖AP‖ +

∥
∥BPτ

∥
∥ exp{rτ })W̃(t)

≤ 0. (2.16)

Let Ṽ(t) = supθ1∈[–τ ,0] V(t + θ1), from (2.16) and using the Lyapunov–Razumikhin method,
we can get

dṼ(t)
dt

≤ 0, ∀t ∈ (tk , tk+1),

then we can get

V(t) ≤ Ṽ(t) ≤ Ṽ
(
t+
k
)

=
∥
∥ẽij

(
t+
k
)∥
∥,

hence

∥
∥ẽij(t)

∥
∥ ≤ ∥

∥ẽij
(
t+)∥

∥ exp
{

–r(t – tk)
}

.

Similarly we can get

dV(t)
dt

= sign
(
eij(t)

)T deij

dt
exp

{
r(t – tk)

}
+ rV(t)

≤ (
r – cmin + ‖AL‖ +

∥
∥BLτ

∥
∥ exp{rτ })W̃(t)

≤ 0 (2.17)

and

∥
∥ẽij(t)

∥
∥ ≤ ∥

∥ẽij
(
t+
k
)∥
∥ exp

{
–r(t – tk)

}
,

which mean (2.11) and (2.12) are true. �

Remark 2.4 The result of the Lemma 2.1 is important in the subsequent proof, it estab-
lishes the relationship of ‖eij(t)‖ and ‖eij(t)‖ in two adjacent impulsive interval, so we can
go through the iteration to derive them up to time t = t1.
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3 Main results
3.1 Globally synchronization
Theorem 3.1 Assume that Assumption 1 holds and the model satisfies the following con-
ditions:

(1) There exist two integers T ≥ 1 and T ≥ 1, such that each sequence of graphs
{Gx

j }(m+1)T
j=mT+1 and {Gy

j }(m+1)T
j=mT+1 are sequentially connected for ∀m ∈ N+. Furthermore, for

any i ∈ Vx
k+1, j ∈ V

y
k+1, there exist α1 ∈ (0, 1) and α2 ∈ (0, 1), satisfying

∑

j∈Vx
k

dij(tk) ≥ α1, (3.1)

∑

i∈Vy
k

dji(tk) ≥ α2. (3.2)

(2) r 
= 0 satisfies the inequalities (2.13), (2.14) and

ρT exp{–rqm – Tγ }(1 – (α1)T)
< 1, (3.3)

ρT exp{–rqm – Tλ}(1 – (α2)T
)

< 1, (3.4)

where qm = t(m+1)T+1 – tmT+1, qm = t(m+1)T+1 – tmT+1 and ρ = max{1, exp{rτ }}. γ and
λ are the coupling strength of Gx and Gy, respectively, then MNNs (2.9) and (2.10) are
globally synchronized.

Proof By the condition (1), we can see that the graph sequences {Gx
j }(m+1)T

j=mT+1 and {Gy
j }(m+1)T

j=mT+1

are sequentially connected.
First, consider the condition of m = 0, namely, concentrating on the moments of t = tk

with k = 1, 2, . . . , T or k = 1, 2, . . . ,T. Since {Gx
k}T

k=1 and {Gy
k}Tk=1 are sequentially connected,

we may suppose that

Vx
k+1 ⊆ Vx

k ∪ N
(
Gx

k ,Vx
k
)
,

V
y
k+1 ⊆ V

y
k ∪ N

(
G

y
k ,Vy

k
)
,

where Vx
1, Vy

1 are singletons and Vx
T+1 = Vx, Vy

T+1 = Vy. For any i ∈ Vx
k+1 and j ∈ V

y
k+1, from

(2.9) and (2.10) we have

xi
(
t+
k
)

=
N∑

j=1

dij(tk)Γ (tk)xj(tk)

=
∑

j∈Vx
k

dij(tk)Γ (tk)xj(tk) +
∑

j∈Vx\Vx
k

dij(tk)Γ (tk)xj(tk), (3.5)

yj
(
t+
k
)

=
N∑

i=1

dji(tk)Λ(tk)yi(tk)

=
∑

i∈Vy
k

dji(tk)Λ(tk)yi(tk) +
∑

i∈Vy\Vy
k

dji(tk)Λ(tk)yi(tk). (3.6)
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Let ζi(tk) =
∑

j∈Vx
k

dij(tk), ηj(tk) =
∑

i∈Vy
k
dji(tk) and d̂ij(tk) = 1

ζi(tk ) dij(tk), d̂ji(tk) = 1
ηj(tk )dji(tk),

then we have
∑

j∈Vx
k

d̂ij(tk) = 1,
∑

i∈Vy
k
d̂ji(tk) = 1 and

∑

j∈Vx
k

dij(tk)Γ (tk)xj(tk) = ζi(tk)
∑

j∈Vx
k

d̂ij(tk)Γ (tk)xj(tk), (3.7)

∑

i∈Vy
k

dji(tk)Λ(tk)yi(tk) = ηj(tk)
∑

i∈Vy
k

d̂ji(tk)Λ(tk)yi(tk). (3.8)

Similarly, denote φi(tk) = 1 – ζi(tk) > 0, ψj(tk) = 1 – ηj(tk) > 0 and

ďij(tk) =

⎧
⎨

⎩

dij(tk )
φ(tk ) , j ∈ Vx\Vx

k ,

0, j ∈ Vx
k ,

ďji(tk) =

⎧
⎨

⎩

dji(tk )
ψ(tk ) , i ∈ Vy\Vy

k ,

0, i ∈ V
y
k .

Obviously

∑

j∈Vx

dij(tk) =
∑

j∈Vx\Vx
k

dij(tk) +
∑

j∈Vx
k

dij(tk) = 1,

∑

i∈Vy

dji(tk) =
∑

i∈Vy\Vy
k

dji(tk) +
∑

i∈Vy
k

dji(tk) = 1,

then we have

∑

j∈Vx\Vx
k

ďij(tk) =

∑
j∈Vx\Vx

k
dij(tk)

φ(tk)

=

∑
j∈Vx\Vx

k
dij(tk)

1 – ζi(tk)

=

∑
j∈Vx\Vx

k
dij(tk)

1 –
∑

j∈Vx
k

dij(tk)

= 1,

∑

i∈Vy\Vy
k

ďji(tk) =

∑
i∈Vy\Vy

k
dji(tk)

φ(tk)

=

∑
i∈Vy\Vy

k
dji(tk)

1 – ηj(tk)

=

∑
i∈Vy\Vy

k
dji(tk)

1 –
∑

i∈Vy
k
dji(tk)

= 1,
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and

∑

j∈Vx\Vx
k

dij(tk)Γ (tk)xj(tk) = φi(tk)
∑

j∈Vx\Vx
k

ďij(tk)Γ (tk)xj(tk)

= φi(tk)
N∑

j=1

ďij(tk)Γ (tk)xj(tk), (3.9)

∑

i∈Vy\Vy
k

dji(tk)Λ(tk)yi(tk) = ψj(tk)
∑

i∈Vy\Vy
k

ďji(tk)Λ(tk)yi(tk)

= ψj(tk)
N∑

i=1

ďji(tk)Λ(tk)yi(tk). (3.10)

From (3.1), (3.2), we can get ζi(tk) ≥ α1 and ηj(tk) ≥ α2, combining (3.5), (3.7), (3.9) and
(3.6), (3.8), (3.10) we have

xi
(
t+
k
)

=
N∑

j=1

dij(tk)Γ (tk)xj(tk)

= α1
∑

j∈Vx
k

d̂ij(tk)Γ (tk)xj(tk) +
(
ζi(tk) – α1

)∑

j∈Vx
k

d̂ij(tk)Γ (tk)xj(tk)

+
(
1 – ζi(tk)

) N∑

j=1

ďij(tk)Γ (tk)xj(tk),

yj
(
t+
k
)

=
N∑

i=1

dji(tk)Λ(tk)yi(tk)

= α2
∑

i∈Vy
k

d̂ji(tk)Λ(tk)yi(tk) +
(
ηj(tk) – α2

)∑

i∈Vy
k

d̂ji(tk)Λ(tk)yi(tk)

+
(
1 – ηj(tk)

) N∑

i=1

ďji(tk)Λ(tk)yi(tk).

Let

d̄ij(tk) =

⎧
⎨

⎩

[ζi(tk )–α1]d̂ij(tk )
1–α1

, j ∈ Vx
k ,

[1–ζi(tk )]ďij(tk )
1–α1

, j ∈ Vx\Vx
k ,

d̄ji(tk) =

⎧
⎨

⎩

[ηj(tk )–α2]d̂ji(tk )
1–α2

, i ∈ V
y
k ,

[1–ηj(tk )]ďji(tk )
1–α2

, i ∈ Vy\Vy
k ,

then we get

N∑

j=1

d̄ij(tk) =
∑

j∈Vx
k

d̄ij(tk) +
∑

j∈Vx\Vx
k

d̄ij(tk)

=
[ζi(tk) – α1]

∑
j∈Vx

k
d̂ij(tk)

1 – α1
+

[1 – ζi(tk)]
∑

j∈Vx\Vx
k

ďij(tk)

1 – α1
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=
[ζi(tk) – α1] + [1 – ζi(tk)]

1 – α1

= 1,

N∑

i=1

d̄ji(tk) =
∑

i∈Vy
k

d̄ji(tk) +
∑

i∈Vy\Vy
k

d̄ji(tk)

=
[ηj(tk) – α2]

∑
i∈Vy

k
d̂ji(tk)

1 – α2
+

[1 – ηj(tk)]
∑

y∈Vy\Vy
k
ďji(tk)

1 – α2

=
[ηj(tk) – α2] + [1 – ηj(tk)]

1 – α2

= 1,

and we can write (3.5), (3.6) as follows:

xi
(
t+
k
)

= α1
∑

j∈Vx
k

d̂ij(tk)Γ (tk)xj(tk) +
(
ζi(tk) – α1

)∑

j∈Vx
k

d̂ij(tk)Γ (tk)xj(tk)

+
(
1 – ζi(tk)

) N∑

j=1

ďij(tk)Γ (tk)xj(tk)

= α1
∑

j∈Vx
k

d̂ij(tk)Γ (tk)xj(tk) + (1 – α1)
N∑

j=1

d̄ij(tk)Γ (tk)xj(tk),

yj
(
t+
k
)

= α2
∑

i∈Vy
k

d̂ji(tk)Λ(tk)yi(tk) +
(
ηj(tk) – α2

)∑

i∈Vy
k

d̂ji(tk)Λ(tk)yi(tk)

+
(
1 – ηj(tk)

) N∑

i=1

ďji(tk)Λ(tk)yi(tk)

= α2
∑

i∈Vy
k

d̂ji(tk)Λ(tk)yi(tk) + (1 – α2)
N∑

i=1

d̄ji(tk)Λ(tk)yi(tk).

Let

Sk(t) = co
((

xi(t)
)

i∈Vx
k

)
,

S(t) = co
((

xi(t)
)

i∈Vx
)
,

S+
k
(
t+
k
)

= co
((

xi
(
t+
k
))

i∈Vx
k+1

)

and

Mk(t) = co
((

yj(t)
)

j∈Vy
k

)
,

M(t) = co
((

yj(t)
)

j∈Vy
)
,

M+
k
(
t+
k
)

= co
((

yj
(
t+
k
))

j∈Vy
k+1

)
.
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Then we have

xi
(
t+
k
) ∈ α1Γ (tk)S(tk) + (1 – α1)Γ (tk)S(tk),

yj
(
t+
k
) ∈ α2Λ(tk)Mk(tk) + (1 – α2)Λ(tk)M(tk).

We can also get

S+
k
(
t+
k
) ⊆ α1Γ (tk)S(tk) + (1 – α1)Γ (tk)S(tk), (3.11)

M+
k
(
t+
k
) ⊆ α2Λ(tk)Mk(tk) + (1 – α2)Λ(tk)M(tk). (3.12)

Furthermore, let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�k = diam(Sk(tk)), �+
k = diam(S+

k (t+
k )),

Ek = diam(S(tk)), E+
k = diam(S(t+

k )),

�̃k = supθ1∈[–τ1,0] diam(Sk(tk + θ1)), �̃+
k = supθ1∈[–τ1,0] diam(S+

k (t+
k + θ1)),

Ẽk = supθ1∈[–τ1,0] diam(S(tk + θ1)), Ẽ+
k = supθ1∈[–τ1,0] diam(S(t+

k + θ1)),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇k = diam(Mk(tk)), ∇+
k = diam(M+

k (t+
k )),

Rk = diam(M(tk)), R+
k = diam(M(t+

k )),

∇̃k = supθ2∈[–τ2,0] diam(Mk(tk + θ2)), ∇̃+
k = supθ2∈[–τ2,0] diam(M+

k (t+
k + θ2)),

R̃k = supθ2∈[–τ2,0] diam(M(tk + θ2)), R̃+
k = supθ2∈[–τ2,0] diam(M(t+

k + θ2)).

From (3.11) and (3.12) we can get

�+
k ≤ γmaxα1�k + γmax(1 – α1)Ek , (3.13)

∇+
k ≤ λmaxα2∇k + λmax(1 – α2)Rk . (3.14)

According to Lemma 2.1 we have

⎧
⎨

⎩

�k+1 ≤ �̃k+1 ≤ exp{–r(t – tk)}�̃+
k ≤ ρ exp{–r(tk+1 – tk)}�̃+

k ,

Ek+1 ≤ Ẽk+1 ≤ exp{–r(t – tk)}Ẽ+
k ≤ ρ exp{–r(tk+1 – tk)}Ẽ+

k ,
(3.15)

⎧
⎨

⎩

∇k+1 ≤ ∇̃k+1 ≤ exp{–r(t – tk)}∇̃+
k ≤ ρ exp{–r(tk+1 – tk)}∇̃+

k ,

Rk+1 ≤ R̃k+1 ≤ exp{–r(t – tk)}R̃+
k ≤ ρ exp{–r(tk+1 – tk)}R̃+

k ,
(3.16)

since max{τ1, τ2} ≤ τ ≤ tk+1 – tk . In addition, according to (2.9), (2.10), we have

Ẽ+
k ≤ γmaxẼk , (3.17)

R̃+
k ≤ λmaxR̃k . (3.18)

Combining (3.13), (3.15), (3.17) and by iterations, one obtains

�̃+
k ≤ γmaxα1�̃k + γmax(1 – α1)Ẽk
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≤ ρ exp
{

–r(tk – tk–1)
}
γmax × [

α1�̃
+
k–1 + γmax(1 – α1)Ẽk–1

]

≤ ρ2 exp
{

–r(tk – tk–2)
}
γ 2

max × [
α2

1�̃
+
k–2 + γmax

(
1 – α2

1
)
Ẽk–2

]

· · ·
≤ ρv1 exp

{
–r(tk – tk–v1 )

}
γ v1

max × [
α

v1
1 �̃+

k–v1 + γmax
(
1 – α

v1
1

)
Ẽk–v1

]
,

for any 1 ≤ v1 ≤ k ≤ T .
Also combining (3.14), (3.16), (3.18) we can get

∇̃+
k ≤ λmaxα2∇̃k + λmax(1 – α2)R̃k

≤ ρ exp
{

–r(tk – tk–1)
}
λmax × [

α2∇̃+
k–1 + λmax(1 – α2)R̃k–1

]

≤ ρv2 exp
{

–r(tk – tk–v2 )
}
λv2

max × [
α

v2
2 ∇̃+

k–v2 + λmax
(
1 – α

v2
2

)
R̃k–v2

]
,

for any 1 ≤ v2 ≤ k ≤ T.
So, when k = T , v1 = T – 1 and k = T, v2 = T – 1, from (3.15) and (3.16), we can get

�̃T+1 ≤ exp
{

–r(tT+1 – tT )
}
�̃+

T

≤ ρT exp{–rq0}γ T–1
max

[
αT–1

1 �̃+
1 + γmax

(
1 – αT–1

1
)
Ẽ1

]
, (3.19)

∇̃T+1 ≤ exp
{

–r(tT+1 – tT)
}∇̃+

T

≤ ρT exp{–rq0}λT–1
max

[
αT–1

2 ∇̃+
1 + λmax

(
1 – αT–1

2
)
R̃1

]
. (3.20)

Since Vx
1 and Vy

1 are singletons, �̃1 = 0, ∇̃1 = 0.
Therefore

�̃+
1 ≤ γmaxα1�̃1 + γmax(1 – α1)Ẽ1 ≤ γmax(1 – α1)Ẽ1 (3.21)

and

∇̃+
1 ≤ λmaxα2∇̃1 + λmax(1 – α2)R̃1 ≤ λmax(1 – α2)R̃1. (3.22)

Therefore, (3.19) and (3.21) imply

�̃T+1 ≤ ρT exp{–rq0}γ T–1
max

[
αT–1

1 γmax(1 – α1)Ẽ1 + γmax
(
1 – αT–1

1
)
Ẽ1

]

≤ ρT exp{–rq0}γ T
max

(
1 – αT

1
)
Ẽ1

≤ ρT exp{–rq0 – Tγ }(1 – αT
1
)
Ẽ1, (3.23)

from (3.20) and (3.22) we can get

∇̃T+1 ≤ ρT exp{–rq0}λT–1
max

[
αT–1

2 λmax(1 – α2)R̃1 + λmax
(
1 – αT–1

2
)
R̃1

]

≤ ρT exp{–rq0}λT
max

(
1 – αT

2
)
R̃1

≤ ρT exp{–rq0 – Tλ}(1 – αT
2
)
R̃1. (3.24)
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It follows from (3.23) and (3.24) that

�̃T+1 ≤ ε1Ẽ1, (3.25)

∇̃T+1 ≤ ε2R̃1, (3.26)

where

ε1 = ρT exp{–rqm – Tγ }(1 – αT
1
)
,

ε2 = ρT exp{–rqm – Tλ}(1 – αT
2
)
.

Since Vx
T+1 = Vx, Vy

T+1 = Vy, we have �T+1 = ET+1, ∇T+1 = RT+1, hence (3.25), (3.26) imply

ẼT+1 ≤ ε1Ẽ1, (3.27)

R̃T+1 ≤ ε2R̃1. (3.28)

Now, we get the relationships of ẼT+1 and Ẽ1, R̃T+1 and R̃1, So when m = 1, similar to the
analysis of (3.25) and (3.26), we can obtain

Ẽ2T+1 ≤ ε1ẼT+1,

R̃2T+1 ≤ ε2R̃T+1.

By iterations, we can get

ẼmT+1 ≤ ε1Ẽ(m–1)T+1 ≤ · · · ≤ εm
1 Ẽ1,

R̃mT+1 ≤ ε1
2 R̃(m–1)T+1 ≤ · · · ≤ εm

2 R̃1.

Hence, limm→∞ ẼmT+1 = 0 and limm→∞ R̃mT+1 = 0, which means limt→∞ max‖xi(t) –
xj(t)‖ = 0, i, j ∈ Vx and limt→∞ max‖yi(t) – yj(t)‖ = 0, i, j ∈ Vy then MNNs (2.9) and (2.10)
are in global synchronization. �

Remark 3.1 The NNs models in this paper are slightly distinct from the general NNs
model. By observing the models (2.9) and (2.10) we find that the two networks are not only
affected by the impulsive coupling control of their own sub-networks, but also each node
is affected by the corresponding node of another MNNs. Compared with other network
models, this model has more complex dynamic behavior. In addition, impulsive coupling
control is used in this paper, which saves communication resources more than continuous
coupling.

Remark 3.2 Theorem 3.1 offers a sufficient criterion under which global synchronization
of MNNs models (2.9) and (2.10) can be achieved with conditions (1), (2) and Assump-
tion 1. How to make the sufficient conditions more general present challenges for future
research.

Remark 3.3 The impulsive sequence in this paper is a set of given random sequences, but
in order to achieve global synchronization, not all impulsive instants need to be coupled,
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so the number of control can be further reduced. In the existing methods, we can use an
event-triggered scheme to further reduce the number of impulsive sequences, but how
to design this event-triggered scheme to work more efficiently is also a direction we will
consider in our next work.

Remark 3.4 For proving the synchronization of general networks, we mainly prove the
stability of the error system which is composed of a drive system and a response system.
However, the synchronization of MNNs requires the trajectory of all nodes to converge
to one track. In this paper, we define two convex hulls �(t) and ∇(t), which introduced in
Sect. 2.3 (the definition of the convex hull of M), then the diameter of �(t) and ∇(t) means
the maximum error between nodes, when the diameter of the two convex hulls tends to
zero, the maximum error between the nodes tends to zero, and this means that the two
MNNs are synchronized.

Remark 3.5 The main proof ideas of this paper can be summed up as follows: Firstly, we
give the relation between the error of impulsive instant t+

k (ẽij(t+
k )) and the error of non-

impulsive instant t ∈ (tk , tk+1] (eij(t)) by Lemma 2.1, then we get the relationship ‖xi(t) –
xj(t)‖ i, j ∈ Vx, ‖yi(t) – yj(t)‖ i, j ∈ Vy between the maximum error at impulsive instant tk

and at t ∈ (tk , tk+1], respectively. In other words, we get the relationships of �k , �+
k and ∇k ,

∇+
k . Next, we derive the expansion rates of �(t) and ∇(t) in an impulsive interval (tk , tk+1],

and �(t), ∇(t) will be reduced by impulsive coupling. By conditions (2.15), (2.16), we can
see that the decreasing rates of �(t) and ∇(t) are larger than their expansion rates, then
the two MNNs are able to achieve synchronization.

4 Numerical example
In this section, in order to prove the validity of the appeal theorem, we give the following
numerical simulation.

Example 4.1 Consider the MNNs (2.9) and (2.10) with N = 4

⎧
⎨

⎩

dxi(t)
dt = –Cxi(t) + Af (yj(t)) + Bf τ (yj(t – τ1)) + I(t), t 
= tk ,

xi(t+
k ) =

∑N
j=1 dij(tk)Γ (tk)xj(tk),

(4.1)

⎧
⎨

⎩

dyj(t)
dt = –Cyj(t) + Ag(xi(t)) + Bgτ (xi(t – τ2)) + I(t), t 
= tk ,

yj(t+
k ) =

∑N
i=1 dji(tk)Λ(tk)yi(tk),

(4.2)

where xi(t) = (xi1(t), xi2(t))T , yj(t) = (yj1(t), yj2(t))T are the state vectors. It is assumed that
f (x) = f τ (x) = (f1(x1), f2(x2))T , g(y) = gτ (y) = (g1(y1), g2(y2))T , and fi(xi) = (1/2)(|xi + 1| – |xi –
1|), i = 1, 2, gj(yj) = (1/3)(|yj +1|– |yj –1|), j = 1, 2. The delays of τ1 and τ2 are set to be 0.1. We
give the initial states by x11(s) = 0.2, x12(s) = 0.5, x21(s) = 0.1, x22(s) = 0.65, x31(s) = –0.35,
x32(s) = –3, x41(s) = –0.7, x42(s) = –0.6, y11(s) = 0.2, y12(s) = 0.3, y21(s) = 0.4, y22(s) = 0.15,
y31(s) = –0.5, y32(s) = –0.8, y41(s) = –0.45, y42(s) = –0.1, s ∈ [–0.1, 0].

Taking

C =

[
1.5 0
0 1.5

]

, A =

[ √
2

10 10
0.1

√
2

10

]

, B =

[
– 3

√
2π

40 0.2
0.2 – 3

√
2π

40

]

,
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Figure 1 State trajectory of (4.1) without control

Figure 2 State trajectory of (4.2) without control

C =

[
2 0
0 2.5

]

, A =

[√
2π

20 10
0.5

√
2π

20

]

, B =

[
– 4+π

15 0.1
0.1 – 4+π

15

]

,

from Figs. 1, 2, 3, and 4, we can see that, if we have MNNs (4.1), (4.2) without the impulsive
coupling controls, then the synchronizations cannot be obtained.

Next, consider the switching topology shown in Figs. 5 and 6 connected by choosing
V x

1 = {1}, V x
2 = {1, 2, 3}, V x

3 = {1, 2, 3, 4} and V y
1 = {1}, V y

2 = {1, 2, 3}, V x
3 = {1, 2, 3, 4}. We

can show that {Gx
2m+1,Gx

2(m+1)} and {Gy
2m+1,Gy

2(m+1)} are sequentially connected (also jointly
connected). The matrices corresponding to the graphs are given as

D(t2m+1) =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0.5 0.5 0 0
0.7 0 0.3 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

, D(t2(m+1)) =

⎡

⎢
⎢
⎢
⎣

0.7 0 0 0.3
0 1 0 0
0 0 1 0
0 0 0.8 0.2

⎤

⎥
⎥
⎥
⎦

,
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Figure 3 Variation of �(t) in Example 4.1 of (4.1) without control

Figure 4 Variation of ∇(t) in Example 4.1 of (4.2) without control

D(t2m+1) =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0 0.8 0.2 0

0.9 0 0.1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

, D(t2(m+1)) =

⎡

⎢
⎢
⎢
⎣

0.8 0 0 0.2
0 1 0 0
0 0 1 0
0 0.4 0 0.6

⎤

⎥
⎥
⎥
⎦

.

Noting that di1(t2m+1) ≥ 0.5, di1(t2m+1) ≥ 0.9 for any i ∈ Vx
2 and i ∈ V

y
2. Also we have

∑
j∈Vx

2
dij(t2(m+1)) = 1,

∑
j∈Vy

2
dij(t2(m+1)) = 1 for any i ∈ Vx

3, i ∈ V
y
3, then let α1 = 0.5, α2 = 0.9.

From conditions (2.13) and (2.14) of Lemma 2.1, we solve the following inequality groups
by MATLAB:

r – cmin + ‖AP‖ +
∥
∥BPτ

∥
∥ exp{rτ } = r – 1.5 + 5.0707 + 0.2666 × exp{rτ } ≤ 0,

r – cmin + ‖AL‖ +
∥
∥BLτ

∥
∥ exp{rτ } = r – 2.5 + 3.4074 + 0.1920 × exp{rτ } ≤ 0,

then we can get r <= –1.0797, choose r = –6, then ρ = max{1, exp{–6 × 0.1}} = 1. Let qm =
qm = 0.6, then the impulsive sequence satisfies t2(m+1) – t2m+1 = 0.3. In order to get the



Wang et al. Advances in Difference Equations        (2020) 2020:332 Page 19 of 22

Figure 5 Communication topology among four NNs of Gx ,m ∈ Z+

Figure 6 Communication topology among four NNs of Gy ,m ∈ Z+

conditions (3.3), (3.4) of Theorem 3.1, then solve the following inequality groups:

ρT exp{–rqm – Tγ }(1 – (α1)T)
= 1 × exp{–6 × 0.6 – 0.6 × γ }(1 – 0.50.6) < 1,

ρT exp{–rqm – Tλ}(1 – (α2)T
)

= 1 × exp{–6 × 0.6 – 0.6 × λ}(1 – 0.90.6) < 1,

we can get γ > –7.7969, λ > –10.6544, let γ = –7, λ = –10, then by the definitions γmax =
maxk≥1,i∈N {γi(tk)}, λmax = maxk≥1,,i∈N {λi(tk)} and γ = – ln(γmax), λ = – ln(λmax), we can get
γmax = exp{7}, λmax = exp{10}, then the coupling gains relative to the switching topologies
of {Gx} and {Gy} are given by

Γ (t2m+1) =

[
–0.8 0

0 0.0029

]

, Γ (t2(m+1)) =

[
–0.8 0

0 0.0029

]

,

Λ(t2m+1) =

[
–0.8 0

0 0.0057

]

, Λ(t2(m+1)) =

[
–0.8 0

0 0.0056

]

,

then the conditions (1), (2) of Theorem 3.1 are satisfied, MNNs (4.1) and (4.2) can reach
global synchronizations with impulsive coupling controls under switching topologies of
Figs. 5 and 6. The state trajectories of all MNNs are illustrated in Figs. 7 and 8. We can
see that the two MNNs achieve synchronizations finally. Moreover, the max state errors
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Figure 7 State trajectory of (4.1) with control

Figure 8 State trajectory of (4.2) with control

between four NNs of (4.1) and (4.2) are defined as

�(t) = max
1≤i,j≤4

∥
∥xi(t) – xj(t)

∥
∥,

∇(t) = max
1≤i,j≤4

∥
∥yi(t) – yj(t)

∥
∥.

Then �(t) → 0 and ∇(t) → 0 as t → ∞, which are shown in Figs. 9 and 10.

5 Conclusion
This paper discusses the global synchronizations of the two interconnected bidirection
MNNs with time-delay via an impulsive coupling controller in which the coupling topol-
ogy is variable. After satisfying certain conditions, the two MNNs which affect each other
and achieve synchronizations under the action of impulsive coupling. Compared with con-
tinuous coupling, impulsive coupling can reduce communication bandwidth. In addition,
we give the principle that the model can achieve synchronization under the impulsive cou-
pling controller. Each of the two networks in this paper is not only affected by impulsive
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Figure 9 Variation of �(t) in Example 4.1 of (4.1) with control

Figure 10 Variation of ∇(t) in Example 4.1 of (4.2) with control

coupling, but also affected by the corresponding nodes in another network. The present
studies on this kind of problem are few, so the research in this paper has some significance.
At the same time, as described in Remark 3.3, the communication data can be further re-
duced by designing a suitable event-triggered scheme to determine the impulse sequence,
this will be considered in the future.
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