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1 Introduction
In modeling in the biological, physical, and social sciences, it is sometimes necessary to
take account of optimal control or time delays inherent in the phenomena (see for example
[4, 16]). The inclusion of delays explicitly in the equations is often a simplification or ideal-
ization that is introduced because a detailed description of the underlying processes is too
complicated to be modeled mathematically, or because some of the details are unknown.
More generally, how does the qualitative behavior depend on the form and magnitude
of the delays? In this paper we examine how we can apply the distributed delay term for
knowing the behavior of growth of solutions for a coupled nonlinear Klein–Gordon sys-
tem with strong damping, source terms.

We consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + m1u2 – �u – ω1�ut +
∫ t

0 g(t – s)�u(s) ds

+ μ1ut +
∫ τ2
τ1

|μ2(�)|ut(x, t – �) d� = f1(u, v), (x, t) ∈ Ω ×R+,

vtt + m2v2 – �v – ω2�vt +
∫ t

0 h(t – s)�v(s) ds

+ μ3vt +
∫ τ2
τ1

|μ4(�)|vt(x, t – �) d� = f2(u, v), (x, t) ∈ Ω ×R+,

u(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω ,

ut(x, –t) = f0(x, t), vt(x, –t) = k0(x, t) (x, t) ∈ Ω × (0, τ2),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω ,

(1.1)
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where Ω is a bounded domain in R
n with smooth boundary ∂Ω and the source terms are

defined as follows:

⎧
⎨

⎩

f1(u, v) = a1|u + v|2(p+1)(u + v) + b1|u|p.u.|v|p+2,

f2(u, v) = a1|u + v|2(p+1)(u + v) + b1|v|p.v.|u|p+2
(1.2)

and m1, m2,ω1,ω2,μ1,μ3, a1, b1 > 0, and τ1, τ2 are the time delay with 0 ≤ τ1 < τ2, and
μ2,μ4 are L∞ functions, and g, h are differentiable functions.

Viscous materials are the opposite of elastic materials that possess the ability to store
and dissipate mechanical energy. As the mechanical properties of these viscous substances
are of great importance when they appear in many applications of natural sciences, many
authors have given attention to this problem since the beginning of the new millennium.

In the case of only one equation and if ω1 = 0 (i.e., �ut = 0), and μ1 = μ2 = 0. Our prob-
lem (1.1) has been studied in [7]. By using the Galerkin method they established the local
existence result. Also, they showed the local solution is global in time under suitable con-
ditions and with the same rate of decaying (polynomial or exponential) of the kernel g .
They proved that the dissipation given by the viscoelastic integral term is strong enough
to stabilize the oscillations of the solution. Moreover, their result has been obtained un-
der weaker conditions than those used in [11]. In [12], the authors proved the exponential
decay of the following problem:

utt – �u +
∫ t

0
g(t – s)�u(s) ds + a(x)ut + |u|γ .u = 0. (1.3)

This later result has been improved in [7], in which they showed that the viscoelastic dis-
sipation alone is strong enough to stabilize the problem even with an exponential rate.

In many works on this field under assumptions of the kernel g . For problem (1.1) and
with μ1 �= 0, for example, in [18], the authors proved a blow-up result for the following
problem:

⎧
⎨

⎩

utt – �u +
∫ ∞

0 g(t – s)�u(s) ds + ut = |u|p–2.u, (x, t) ∈R
n × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x),
(1.4)

where g satisfies
∫ ∞

0 g(s) ds < (2p – 4)/(2p – 3), initial data were supported with negative
energy like that

∫
u0u1 dx > 0.

If (w > 0). In [29], the authors considered the following problem:

⎧
⎨

⎩

utt – �u +
∫ ∞

0 g(t – s)�u(s) ds – �ut = |u|p–2.u, (x, t) ∈ Ω × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x).
(1.5)

Under suitable assumptions on g that there were solutions of (1.5) with initial energy, they
showed the blow-up in a finite time. For the same problem (1.5), in [30], Song et al. proved
that there were solutions of (1.5) with positive initial energy that blows up in finite time. In
addition, in [19] the authors showed a blow-up result if p > m and established the global
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existence of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ ∞

0 g(s)�u(t – s) ds – ε1�ut + ε2ut|ut|m–2 = ε3u|u|p–2,

u(x, t) = 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω .

(1.6)

In the case of coupled of equations, in [2], the authors studied the following system of
equations:

⎧
⎨

⎩

utt – �u + ut|ut|m–2 = f1(u, v),

vtt – �v + vt|vt|r–2 = f2(u, v),
(1.7)

with nonlinear functions f1 and f2 satisfying appropriate conditions. Under certain restric-
tions imposed on the parameters and the initial data, they obtained numerous results on
the existence of weak solutions. They also showed that any weak solution with negative
initial energy blows up for a finite period of time by using the same techniques as in [17].

In [6], the authors considered the system:

⎧
⎨

⎩

utt – �u + (a|u|k + b|v|l)ut|ut|m–2 = f1(u, v),

vtt – �v + (a|u|θ + b|v|ϑ )vt|vt|r–2 = f2(u, v),
(1.8)

where they stated and proved the blow-up in finite time of solution under some restric-
tions on the initial data and (with positive initial energy) for some conditions on the func-
tions f1 and f2.

Later, in [23], the authors extended the result of [6], where they considered the following
nonlinear viscoelastic system:

⎧
⎨

⎩

utt – �u +
∫ ∞

0 g(s)�u(t – s) ds + (a|u|k + b|v|l)ut|ut|m–2 = f1(u, v),

vtt – �v +
∫ ∞

0 h(s)�v(t – s) ds + (a|u|θ + b|v|�)vt|vt|r–2 = f2(u, v)
(1.9)

and proved that the solutions of the system of wave equations with viscoelastic term, de-
generate damping, and strong nonlinear sources acting in both equations at the same time
are globally nonexisting provided that the initial data are sufficiently large in a bounded
domain of Ω .

To complement the above works, we are working to prove under appropriate assump-
tions that the solution of problem (1.1) grows exponentially:

lim
t→∞‖ut‖2(p+2)

2(p+2) + ‖∇u‖2(p+2)
2(p+2) goes to ∞. (1.10)

The paper is organized as follows. In Sect. 2, some necessary assumptions related to the
problem are given. Then, in Sect. 3, the main result is proved.

2 Assumptions
We consider the following assumptions:
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(A1) g, h : R+ →R+ are differentiable and decreasing functions such that

⎧
⎨

⎩

g(t) ≥ 0, 1 –
∫ ∞

0 g(s) ds = l1 > 0,

h(t) ≥ 0, 1 –
∫ ∞

0 h(s) ds = l2 > 0.
(2.1)

(A2) There exist constants ξ1, ξ2 > 0 such that

⎧
⎨

⎩

g ′(t) ≤ –ξ1g(t), t ≥ 0,

h′(t) ≤ –ξ2h(t), t ≥ 0.
(2.2)

(A3) μ2,μ4 : [τ1, τ2] → R are L∞ functions so that, for all δ > 1
2 ,

(
2δ – 1

2

)∫ τ2

τ1

∣
∣μ2(�)

∣
∣d� < μ1,

(
2δ – 1

2

)∫ τ2

τ1

∣
∣μ4(�)

∣
∣d� < μ3.

(2.3)

3 Main results
In this section, the blow-up result of solution of problem (1.1) is proved.

First, as in [22], we introduce the new variables:

y(x,ρ,�, t) = ut(x, t – �ρ),

z(x,ρ,�, t) = vt(x, t – �ρ),

then

⎧
⎨

⎩

�yt(x,ρ,�, t) + yρ(x,ρ,�, t) = 0,

y(x, 0,�, t) = ut(x, t),
(3.1)

and

⎧
⎨

⎩

�zt(x,ρ,�, t) + zρ(x,ρ,�, t) = 0,

z(x, 0,�, t) = vt(x, t).
(3.2)

Let us denote

gou =
∫

Ω

∫ t

0
g(t – s)

∣
∣u(t) – u(s)

∣
∣2 ds dx. (3.3)
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Therefore, problem (1.1) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + m1u2 – �u – ω1�ut +
∫ t

0 g(t – s)�u(s) ds

+ μ1ut +
∫ τ2
τ1

|μ2(�)|y(x, 1,�, t) d� = f1(u, v), x ∈ Ω , t ≥ 0,

vtt + m2v2 – �v – ω2�vt +
∫ t

0 h(t – s)�v(s) ds

+ μ3vt +
∫ τ2
τ1

|μ4(�)|z(x, 1,�, t) d� = f2(u, v), x ∈ Ω , t ≥ 0,

�yt(x,ρ,�, t) + yρ(x,ρ,�, t) = 0,

�zt(x,ρ,�, t) + zρ(x,ρ,�, t) = 0

(3.4)

with the initial and boundary condition

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω ,

y(x,ρ,�, 0) = f0(x,�ρ), z(x,ρ,�, 0) = k0(x,�ρ),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

v(x, 0) = v0(x), vt(x, 0) = v1(x),

(3.5)

where

(x,ρ,�, t) ∈ Ω × (0, 1) × (τ1, τ2) × (0,∞).

Theorem 3.1 Assume (2.1), (2.2), and (2.3) hold. Let

⎧
⎨

⎩

–1 < p < 4–n
n–2 , n ≥ 3,

p ≥ –1, n = 1, 2.
(3.6)

Then, for any initial data,

(u0, u1, v0, v1, f0, k0) ∈H,

where

H = H1
0 (Ω) × L2(Ω) × H1

0 (Ω) × L2(Ω) × L2(Ω × (0, 1) × (τ1, τ2)
)

× L2(Ω × (0, 1) × (τ1, τ2)
)
,

problem (3.4) has a unique solution

u ∈ C
(
[0, T];H

)

for some T > 0.

In the next theorem we give the global existence result, its proof is based on the potential
well depth method in which the concept of so-called stable set appears, where we show
that if we restrict our initial data in the stable set, then our local solution obtained is global
in time. We will make use of arguments in [28].



Rahmoune et al. Advances in Difference Equations        (2020) 2020:335 Page 6 of 15

Theorem 3.2 Suppose that (2.1), (2.2), (2.3), and (3.6) hold. If u0, v0 ∈ W , u1, v1 ∈ H1
0 (Ω),

y, z ∈ L2(Ω × (0, 1) × (τ1, τ2)), and

bCp
∗

l

(
2p

(p – 2)l
E(0)

) p–2
2

< 1, (3.7)

where C∗ is the best Poincare constant, then the local solution (u, v, y, z) is global in time.

In order to achieve the main result, the following lemmas are needed.

Lemma 3.1 There exists a function F(u, v) such that

F(u, v) =
1

2(ρ + 2)
[
uf1(u, v) + vf2(u, v)

]

=
1

2(ρ + 2)
[
a1|u + v|2(p+2) + 2b1|uv|p+2] ≥ 0,

where

∂F
∂u

= f1(u, v),
∂F
∂v

= f2(u, v),

taking a1 = b1 = 1 for convenience.

Lemma 3.2 ([23]) There exist two positive constants c0 and c1 such that

c0

2(ρ + 2)
(|u|2(p+2) + |v|2(p+2)) ≤ F(u, v) ≤ c1

2(ρ + 2)
(|u|2(ρ+2) + |v|2(p+2)). (3.8)

Define the energy functional as follows.

Lemma 3.3 Assume that (2.1), (2.2), (2.3), and (3.6) hold, let (u, v, y, z) be a solution of (3.4),
then E(t) is nonincreasing, that is,

E(t) =
1
2
‖ut‖2

2 +
1
2
‖vt‖2

2 +
m1

2
‖u‖2

2 +
m2

2
‖v‖2

2 +
1
2

l1‖∇u‖2
2 +

1
2

l2‖∇v‖2
2

+
1
2

(go∇u) +
1
2

(ho∇v) +
1
2

K(y, z) –
∫

Ω

F(u, v) dx (3.9)

satisfies

E′(t) ≤ –c3

{

‖ut‖2
2 + ‖vt‖2

2 + ‖u‖2
2 + ‖v‖2

2 +
∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx

+
∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 1,�, t) d� dx

}

≤ 0, (3.10)

where

K(y, z) =
∫

Ω

∫ 1

0

∫ τ2

τ1

�
{∣
∣μ2(�)

∣
∣y2(x,ρ,�, t) +

∣
∣μ4(�)

∣
∣z2(x,ρ,�, t)

}
d� dρ dx. (3.11)
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Proof By multiplying the first and the second equation in (3.4) respectively by ut , vt and
integrating over Ω , we get

d
dt

{
1
2
‖ut‖2

2 +
1
2
‖vt‖2

2 +
m1

2
‖u‖2

2 +
m2

2
‖v‖2

2 +
1
2

l1‖∇u‖2
2 +

1
2

l2‖∇v‖2
2 +

1
2

(go∇u)

+
1
2

(ho∇v) –
∫

Ω

F(u, v) dx
}

= –μ1‖ut‖2
2 – m1‖u‖2

2 –
∫

Ω

ut

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y(x, 1,�, t) d� dx

– μ3‖vt‖2
2 – m2‖v‖2

2 –
∫

Ω

vt

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z(x, 1,�, t) d� dx

+
1
2
(
g ′o∇u

)
–

1
2

g(t)‖∇u‖2
2 – ω1‖∇ut‖2

2

+
1
2
(
h′o∇v

)
–

1
2

h(t)‖∇v‖2
2 – ω2‖∇vt‖2

2, (3.12)

and, from the initial and boundary condition in (3.4)

d
dt

1
2

∫

Ω

∫ 1

0

∫ τ2

τ1

�
∣
∣μ2(�)

∣
∣y2(x,ρ,�, t) d� dρ dx

= –
1
2

∫

Ω

∫ 1

0

∫ τ2

τ1

2
∣
∣μ2(�)

∣
∣yyρ d� dρ dx

=
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 0,�, t) d� dx

–
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx

=
1
2

(∫ τ2

τ1

|μ2(�) d�

)

‖ut‖2
2

–
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx (3.13)

and

d
dt

1
2

∫

Ω

∫ 1

0

∫ τ2

τ1

�
∣
∣μ4(�)

∣
∣z2(x,ρ,�, t) d� dρ dx

= –
1
2

∫

Ω

∫ 1

0

∫ τ2

τ1

2
∣
∣μ4(�)

∣
∣zzρ d� dρ dx

=
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 0,�, t) d� dx

–
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 1,�, t) d� dx

=
1
2

(∫ τ2

τ1

|μ4(�) d�

)

‖vt‖2
2

–
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 1,�, t) d� dx, (3.14)



Rahmoune et al. Advances in Difference Equations        (2020) 2020:335 Page 8 of 15

then

d
dt

E(t) = –μ1‖ut‖2
2 – m1‖u‖2

2 –
∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣uty(x, 1,�, t) d� dx +

1
2
(
g ′o∇u

)

–
1
2

g(t)‖∇u‖2
2 – ω1‖∇ut‖2

2 +
1
2

(∫ τ2

τ1

|μ2(�) d�

)

‖ut‖2
2

–
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx

– μ3‖vt‖2
2 – m2‖v‖2

2 –
∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣vtz(x, 1,�, t) d� dx +

1
2
(
h′o∇v

)

–
1
2

h(t)‖∇v‖2
2 – ω2‖∇vt‖2

2 +
1
2

(∫ τ2

τ1

|μ4(�) d�

)

‖vt‖2
2

–
1
2

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 1,�, t) d� dx. (3.15)

By (3.12)–(3.14), we get (3.9). Also, by using Young’s inequality, (2.1), (2.2), and (2.3) in
(3.15), we obtain (3.10). �

Now, we define the functional

H(t) = –E(t) = –
1
2
‖ut‖2

2 –
1
2
‖vt‖2

2 –
m1

2
‖u‖2

2 –
m2

2
‖v‖2

2 –
1
2

l1‖∇u‖2
2

–
1
2

l2‖∇v‖2
2 –

1
2

(go∇u) –
1
2

(ho∇v) –
1
2

K(y, z)

+
1

2(p + 2)
[‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

]
. (3.16)

Theorem 3.3 Assume that (2.1)–(2.3) and (3.6) hold. Assume further that E(0) < 0, then
the solution of problem (3.4) grows exponentially.

Proof From (3.9 we have

E(t) ≤ E(0) ≤ 0. (3.17)

Therefore,

H
′(t) = –E′(t)

≥ c3

(

‖ut‖2
2 + ‖u‖2

2 +
∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx

+ ‖vt‖2
2 + ‖v‖2

2 +
∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 1,�, t) d� dx

)

. (3.18)

Hence

H
′(t) ≥ c3

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx ≥ 0,

H
′(t) ≥ c3

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣z2(x, 1,�, t) d� dx ≥ 0,

(3.19)



Rahmoune et al. Advances in Difference Equations        (2020) 2020:335 Page 9 of 15

and

0 ≤ H(0) ≤ H(t) ≤ 1
2(p + 2)

[‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2
]

≤ c1

2(p + 2)
[‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

]
. (3.20)

Setting

K(t) = H + ε

∫

Ω

(uut + vvt) dx +
ε

2

∫

Ω

(
μ1u2 + μ3v2)dx

+
ε

2

∫

Ω

(
ω1(∇u)2 + ω2(∇v)2)dx, (3.21)

where ε > 0 to be assigned later.
By multiplying the first and second equation on (3.4) respectively by u, v and with a

derivative of (3.21), we get

K′(t) = H
′(t) + ε

(‖ut‖2
2 + ‖vt‖2

2 + ‖u‖2
2 + ‖v‖2

2
)

– ε
(‖∇u‖2

2 + ‖∇v‖2
2
)

+ ε

∫

Ω

∇u
∫ t

0
g(t – s)∇u(s) ds dx + ε

∫

Ω

∇v
∫ t

0
h(t – s)∇v(s) ds dx

– ε

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣uy(x, 1,�, t) d� dx – ε

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣vz(x, 1,�, t) d� dx

+ ε
[‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

]
. (3.22)

Using Young’s inequality, we get

ε

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣uy(x, 1,�, t) d� dx

≤ ε

{

δ1

(∫ τ2

τ1

∣
∣μ2(�)

∣
∣d�

)

‖u‖2
2

+
1

4δ1

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx

}

. (3.23)

Thus

ε

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣vz(x, 1,�, t) d� dx

≤ ε

{

δ2

(∫ τ2

τ1

∣
∣μ4(�)

∣
∣d�

)

‖v‖2
2

+
1

4δ2

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 1,�, t) d� dx

}

. (3.24)

Also

ε

∫ t

0
g(t – s) ds

∫

Ω

∇u.∇u(s) dx ds
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= ε

∫ t

0
g(t – s) ds

∫

Ω

∇u.
(∇u(s) – ∇u(t)

)
dx ds

+ ε

∫ t

0
g(s) ds‖∇u‖2

2

≥ ε

2

∫ t

0
g(s) ds‖∇u‖2

2 –
ε

2
(go∇u), (3.25)

so

ε

∫ t

0
h(t – s) ds

∫

Ω

∇v.∇v(s) dx ds

= ε

∫ t

0
h(t – s) ds

∫

Ω

∇v.
(∇v(s) – ∇v(t)

)
dx ds

+ ε

∫ t

0
h(s) ds‖∇v‖2

2

≥ ε

2

∫ t

0
h(s) ds‖∇v‖2

2 –
ε

2
(ho∇v). (3.26)

From (3.22)

K′(t) ≥ H
′(t) + ε

(‖ut‖2
2 + ‖ut‖2

2 + ‖u‖2
2 + ‖v‖2

2
)

– ε

((

1 –
1
2

∫ t

0
g(s) ds

)

‖∇u‖2
2 +

(

1 –
1
2

∫ t

0
h(s) ds

)

‖∇v‖2
2

)

– εδ1

(∫ τ2

τ1

∣
∣μ2(�)

∣
∣d�

)

‖u‖2
2 – εδ2

(∫ τ2

τ1

∣
∣μ4(�)

∣
∣d�

)

‖v‖2
2

–
ε

2
(go∇u) –

ε

4δ1

∫

Ω

∫ τ2

τ1

∣
∣μ2(�)

∣
∣y2(x, 1,�, t) d� dx

–
ε

2
(ho∇v) –

ε

4δ2

∫

Ω

∫ τ2

τ1

∣
∣μ4(�)

∣
∣z2(x, 1,�, t) d� dx

+ ε
[‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

]
. (3.27)

Therefore, using (3.19) and by setting δ1, δ1 so that 1
4δ1c3

= κ
2 and 1

4δ2c3
= κ

2 , substituting in
(3.27), we get

K′(t) ≥ [1 – εκ]H′(t) + ε
(‖ut‖2

2 + ‖vt‖2
2 + ‖u‖2

2 + ‖v‖2
2
)

– ε

[(

1 –
1
2

∫ t

0
g(s) ds

)]

‖∇u‖2
2 – ε

[(

1 –
1
2

∫ t

0
h(s) ds

)]

‖∇v‖2
2

– ε
1

2c3κ

(∫ τ2

τ1

∣
∣μ2(�)

∣
∣d�

)

‖u‖2
2 –

ε

2
(go∇u)

– ε
1

2c3κ

(∫ τ2

τ1

∣
∣μ4(�)

∣
∣d�

)

‖v‖2
2 –

ε

2
(ho∇v)

+ ε
[‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

]
. (3.28)
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For 0 < a < 1, from (3.16)

ε
[‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

]
= εa

[‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2
]

+ ε2(p + 2)(1 – a)H(t)

+ ε(p + 2)(1 – a)
(‖ut‖2

2 + ‖vt‖2
2
)

+ ε(p + 2)(1 – a)
(

1 –
∫ t

0
g(s) ds

)

‖∇u‖2
2

+ ε(p + 2)(1 – a)
(

1 –
∫ t

0
h(s) ds

)

‖∇v‖2
2

– ε(p + 2)(1 – a)(go∇u)

– ε(p + 2)(1 – a)(ho∇v)

+ ε(p + 2)(1 – a)K(y, z). (3.29)

Substituting in (3.28), we get

K′(t) ≥ [1 – εκ]H′(t) + ε
[
(p + 2)(1 – a) + 1

](‖ut‖2
2 + ‖vt‖2

2 + ‖u‖2
2 + ‖v‖2

2
)

+ ε

[

(p + 2)(1 – a)
(

1 –
∫ t

0
g(s) ds

)

–
(

1 –
1
2

∫ t

0
g(s) ds

)]

‖∇u‖2
2

+ ε

[

(p + 2)(1 – a)
(

1 –
∫ t

0
h(s) ds

)

–
(

1 –
1
2

∫ t

0
h(s) ds

)]

‖∇v‖2
2

– ε
1

2c3κ

(∫ τ2

τ1

∣
∣μ2(�)

∣
∣d�

)

‖u‖2
2 – ε

1
2c3κ

(∫ τ2

τ1

∣
∣μ4(�)

∣
∣d�

)

‖v‖2
2

+ ε(p + 2)(1 – a)K(y, z) + ε

[

(p + 2)(1 – a) –
1
2

]

(go∇u + ho∇v)

+ εa
[‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

]
+ ε2(p + 2)(1 – a)H(t). (3.30)

Using Poincare’s inequality, we obtain

K′(t) ≥ [1 – εκ]H′(t) + ε
[
(p + 2)(1 – a) + 1

](‖ut‖2
2 + ‖vt‖2

2 + ‖u‖2
2 + ‖v‖2

2
)

+ ε

{
[
(p + 2)(1 – a) – 1

]
–

(∫ t

0
g(s) ds

)[

(p + 2)(1 – a) –
1
2

]

–
c

2κ

(∫ τ2

τ1

∣
∣μ2(s)

∣
∣ds

)}

‖∇u‖2
2

+ ε

{
[
(p + 2)(1 – a) – 1

]
–

(∫ t

0
h(s) ds

)[

(p + 2)(1 – a) –
1
2

]

–
c

2κ

(∫ τ2

τ1

∣
∣μ4(s)

∣
∣ds

)}

‖∇v‖2
2

+ ε(p + 2)(1 – a)K(y, z) + ε

[

(p + 2)(1 – a) –
1
2

]

(go∇u + ho∇v)

+ εc0a
[‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

]

+ ε2(p + 2)(1 – a)H(t). (3.31)
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In this stage, we take a > 0 small enough so that

α1 = (p + 2)(1 – a) – 1 > 0,

and we assume

max

{∫ ∞

0
g(s) ds,

∫ ∞

0
h(s) ds

}

<
(p + 2)(1 – a) – 1

((p + 2)(1 – a) – 1
2 )

=
2α1

2α1 + 1
. (3.32)

Then we choose κ so large that

α2 =
{

(p + 2)(1 – a) – 1) –
∫ t

0
g(s) ds

(

(p + 2)(1 – a) –
1
2

)

–
c

2κ

(∫ τ2

τ1

∣
∣μ2(s)

∣
∣ds

)}

> 0,

α3 =
{

(p + 2)(1 – a) – 1) –
∫ t

0
h(s) ds

(

(p + 2)(1 – a) –
1
2

)

–
c

2κ

(∫ τ2

τ1

∣
∣μ4(s)

∣
∣ds

)}

> 0.

We fixed κ and a, we appoint ε small enough so that

α4 = 1 – εκ > 0,

and from (3.21) we get

K(t) ≤ 1
2(p + 2)

[‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2
]

≤ c1

2(p + 2)
[‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

]
. (3.33)

Thus, for some β > 0, estimate (3.31) becomes

K′(t) ≥ β
{
H(t) + ‖ut‖2

2 + ‖vt‖2
2 + ‖u‖2

2 + ‖v‖2
2 + ‖∇u‖2

2 + ‖∇v‖2
2

+ (go∇u) + (ho∇v) + K(y, z)

+
[‖u‖2(p+2)

2(p+2) + ‖u‖2(p+2)
2(p+2)

]}
. (3.34)

By (3.8), for some β1 > 0,

K′(t) ≥ β1
{
H(t) + ‖ut‖2

2 + ‖vt‖2
2 + ‖u‖2

2 + ‖v‖2
2 + ‖∇u‖2

2 + ‖∇v‖2
2

+ (go∇u) + (ho∇v) + K(y, z)

+
[‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

]}
(3.35)

and

K(t) ≥K(0) > 0, t > 0. (3.36)
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Next, using Young’s and Poincare’s inequalities ([12]), thus from (3.21), we have

K(t) =
(

H
1–α + ε

∫

Ω

(uut + vvt) dx +
ε

2

∫

Ω

(
μ1u2 + μ3v2)dx

+
ε

2

∫

Ω

(
ω1∇u2 + ω2∇v2)dx

)

≤ c
{

H(t) +
∣
∣
∣
∣

∫

Ω

(uut + vvt) dx
∣
∣
∣
∣ + ‖u‖2 + ‖∇u‖2

+ ‖v‖2 + ‖∇v‖2

}

≤ c[H(t) + ‖ut‖2
2 + ‖vt‖2

2 + ‖u‖2
2 + ‖v‖2

2 + ‖∇u‖2
2 + ‖∇v‖2

2

≤ c
[
H(t) + ‖ut‖2

2 + ‖vt‖2
2 + ‖u‖2

2 + ‖v‖2
2 + ‖∇u‖2

2 + ‖∇v‖2
2 + (go∇u)

+ (ho∇v) + ‖u‖2(p+2)
2(p+2) + ‖v‖2(p+2)

2(p+2)
]

(3.37)

for some c > 0. From inequalities (3.34) and (3.37) we obtain the differential inequality

K′(t) ≥ λK(t), (3.38)

where λ > 0, depending only on β and c.
A simple integration of (3.38) gives

K(t) ≥K(0)e(λt) for any t > 0. (3.39)

From (3.21) and (3.33), then

K(t) ≤ c1

2(p + 2)
[‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

]
. (3.40)

By (3.39) and (3.40) we have

‖u‖2(p+2)
2(p+2) + ‖v‖2(p+2)

2(p+2) ≥ Ce(λt), ∀t > 0.

Therefore, we conclude that the solution grows exponentially. This completes the proof. �

4 Conclusion
In this work, the growth of solutions for a coupled nonlinear Klein–Gordon system with
strong damping, source, and distributed delay terms was studied. Next, motivated by last
works in [1, 3, 5, 8–10, 13–15, 20, 21, 24–27, 31], and [16], we obtained the growth and
blow-up for the studied problem (1.1) by constructing a type of cross-constrained varia-
tional problem and establishing so-called cross-invariant manifolds of the evolution flow.
Then, the result of how small the initial data for which the solution exists globally was
proved by using the scaling argument.
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