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Abstract
We present and analyze a stochastic differential equation (SDE) model for the
population dynamics of a mosquito-borne infectious disease. We prove the solutions
to be almost surely positive and global. We introduce a numerical invariantR of the
model withR < 1 being a condition guaranteeing the almost sure stability of the
disease-free equilibrium. We show that stochastic perturbations enhance the stability
of the disease-free equilibrium of the underlying deterministic model. We illustrate
the main stability theorem through simulations and show how to obtain interval
estimates when making forward projections. We consulted a wide range of literature
to find relevant numerical parameter values.
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1 Introduction
A variety of mosquito-borne infectious diseases are the cause of millions of illnesses and
deaths. In particular, the malaria disease is responsible for millions of fatalities in Africa
each year and is a serious burden of the disease worldwide. The report [27] by South-
ern African Development Community (SADC) gives a summary of malaria statistics in
Southern Africa. A map of the region clearly shows the intensity of the malaria problem
in different areas. In Mozambique, for instance, malaria is the leading cause of death [12],
whereas the biggest part of South Africa is malaria-free [27, Malaria Map]. Mathematical
modeling is useful in the planning of interventions to curb the spread of malaria and other
diseases. Indeed, different models have been proposed for different situations. A popular
type of models is the compartmental model in terms of ODEs. Recent models of this type
include, for instance, [4, 22, 23, 25].

Malaria prevalence numbers have been proved to be influenced by climatic factors; see,
for example, [1, 2, 6, 14, 28]. Malaria population dynamics is also correlated with other
variables such as altitude and topography, land use, land cover, human behavior, and living
conditions. Some regions have partial protection against malaria through indoor residual
spraying or bednets [5]. In some regions, people may use traditional plant remedies that
are effective against malaria; see, for example, [8]. Consequently, modeling malaria pop-

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02803-w
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02803-w&domain=pdf
http://orcid.org/0000-0003-1304-0282
mailto:pwitbooi@uwc.ac.za


Witbooi et al. Advances in Difference Equations        (2020) 2020:347 Page 2 of 15

ulation dynamics can become quite complex, [7]. Over time, many different approaches
and methodologies were introduced into compartmental modeling of disease dynamics,
and these innovations are able to deal with different complexities we experience in real life.
So, for instance, we have seen the use of networks, multigroups, age-structured models,
and stochastic differential equation (SDE) models [13, 15, 17, 31–33]. In a region where
the link between malaria prevalence and the relevant factors is not well understood, it may
be wise to introduce some randomness into an ODE compartmental model to compen-
sate for uncertainty. In this way, we obtain an SDE model. For further motivation for SDE
models, we refer the reader to Higham [11]. Such SDE models have already been proposed
for various diseases, for instance, HIV [24], TB [20], and vector-borne diseases [15]; see
also [16, 18, 21, 37]. In this paper, we propose an SDE model for the population dynamics
of a disease such as malaria or dengue fever. The underlying deterministic model of the
present paper is the same as that in [31] and is also similar to that of [17]. However, the
stochastic perturbation of the present paper differs from those in [31] and [17]. In the cur-
rent paper the stochasticity is similar to perturbation of the force of infection, whereas in
[17] and [31] the mortality rates are perturbed. Also, the methodologies are quite differ-
ent from both mathematical analysis and simulation sides. In particular, we observe that
the stochastic perturbation in our model enhances the stability of the disease-free equi-
librium, similarly as in [10, 18, 34], and a few other cases. Another feature of the model,
simply due to the stochastic perturbations, is that when we make a future projection, we
are able to specify a confidence interval for the estimate.

The remainder of this paper is organized as follows. In Sect. 2, we describe the stochastic
model. In Sect. 3, we show the existence and uniqueness of a global positive solution of
the model. In Sect. 4, we investigate the asymptotic behavior of solutions to the stochastic
model around the trivial equilibrium point. In Sect. 5, we run simulations to make future
projections of the state of the population relatively to the disease and illustrate the long-
time behavior of the model. The parameter values were obtained from a wide range of
literature and are generally applicable to Southern Africa. Finally, in Sect. 6, we provide a
few concluding remarks and suggestions for future research.

2 The stochastic model
In this paper, we let (Ω ,F , {Ft}t≥0, P) be a filtered complete probability space with the
filtration satisfying the usual conditions (i.e., the filtration is right-continuous, and F0

contains all events of zero probability). We consider a pair of independent Wiener pro-
cesses W (t) and Z(t) on this probability space. We use the notation Rn

+ = {x ∈ Rn : xi >
0 for each i} for n ∈ N.

We consider a stochastic disease model based on the deterministic model in [30]. As in
[30], the host population at time t ≥ 0 is of size N(t) and is subdivided into three com-
partments, and the vector disease population of size M(t) is subdivided into two compart-
ments or classes. We shall ambiguously use the same symbol for a population class and
its magnitude. The first compartment in the human population consists of the individu-
als susceptible to be infected with the pathogen. We denote this class by S(t). The second
class, denoted by I(t), consists of all the individuals infected with the pathogen. The third
class consists of all the human individuals recovered from the infection and having tem-
porary immunity against the pathogen. This class of individuals is denoted by R(t). The
vector compartment is subdivided into two classes, susceptible V and infective J classes.
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Due to the short life-span of vectors, we assume that vectors do not recover from the infec-
tion and their infective period ends with their death [30]. For the total N(t) of the human
population and the total M(t) of the mosquito population, we have the identities

S(t) + I(t) + R(t) = N(t) and V (t) + J(t) = M(t), ∀t ≥ 0.

The human birth rate is denoted by A. There is no vertical transmission, and all the
newborns are susceptible. The per capita death rate (excluding death due to malaria) is
assumed to be the same constant μ for all human compartments, and the rate of mortal-
ities due to malaria is denoted by δ. The mosquito population has B and θ as the natural
birth rate and per capita mortality rate, respectively. The vectors bite humans at rate a.
The fraction of the bites that successfully infect humans is b, whereas c represents the
fraction of bites that infect vectors when they bite infected humans. The rate of infection
of the human host in class S by infected vectors in J depends on the total number of hu-
mans available per infected vector. The per capita rate of transfer from the I-class to the
R-class is k. The human immune individuals lose their immunity at a (per capita) rate h.

There are SDE epidemic models in the literature (e.g., [10]) in which the transmission
parameter is stochastically perturbed. In such cases, transmission is usually from suscep-
tibles S to the infectious class I , with no latent class and without vector. In particular,
it involves a complementary pair of perturbations, which results in the total population
size to be a deterministic function of time. Also, each perturbation in such a pair is pro-
portional to the product SI and can be viewed as perturbations on the class sizes S and
I . In the current model, we introduce such a complementary pair of perturbations, each
proportional to SI , on the class sizes S and I . We place a similar complementary pair of
perturbations on the class sizes V and J .

After introducing stochastic perturbations, with nonnegative constants σ and ζ , we ob-
tain the following system of SDEs:

dS(t) =
[
A – abS(t)J(t) + hR(t) – μS(t)

]
dt – σS(t)I(t) dW (t),

dI(t) =
[
abS(t)J(t) – (μ + k + δ)I(t)

]
dt + σS(t)I(t) dW (t),

dR(t) =
[
kI(t) – (μ + h)R(t)

]
dt,

dV (t) =
[
B – acV (t)I(t) – θV (t)

]
dt – ζV (t)J(t) dZ(t),

dJ(t) =
[
acV (t)I(t) – θ J(t)

]
dt + ζV (t)J(t) dZ(t).

(1)

Note that stochastically perturbing the transmission rate from the S-class to the I-class
would amount to a complementary pair of perturbations proportional to SJ rather than
to SI . The difficulty with perturbations proportional to SJ is that the standard proof of
positivity of solutions does not apply. Nevertheless, in this regard, not all is lost, since in
general there are lagged correlations between J and I due to the incubation periods of the
pathogen in the bodies of the host and vector.

We further find it convenient to use the short-hand notation, introducing the symbol

μ1 = μ + k + δ.
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A solution of this system over a time interval D is the set of points

X(t) =
(
S(t), I(t), R(t), V (t), J(t)

)
, t ∈ D.

The stochastic model has a unique disease-free equilibrium point

X∗ =
(

A
μ

, 0, 0,
B
θ

, 0
)

.

In the particular case σ = ζ = 0, we refer to system (1) as the underlying deterministic
model. The basic reproduction number,

R0 =
a2bcAB
μμ1θ2 ,

of the underlying deterministic model has been calculated in [30] and is an indicator of
local asymptotic stability of the disease-free equilibrium. In this paper, we are interested
in the global asymptotic stability of the disease-free equilibrium of the SDE model. To
this end, in Sect. 4, we introduce an invariant R, which serves as an indicator of global
asymptotic stability of the disease-free equilibrium for the stochastic model.

3 Existence and uniqueness of a positive solution
In this section, we show that the solution of system (1) is almost surely (a.s.) global and
positive. If the coefficients of the equations satisfy the local Lipschitz condition and the
linear growth condition, then the system of equations has a unique global solution (i.e., no
explosion in finite time) for any given initial value (see, e.g., [21]). However, the coefficients
of (1) do not satisfy the linear growth condition. In this section, using Lyapunov analysis
(as mentioned in [21] and popularly applied in the literature), we show that the solution
of (1) is (a.s.) global and positive (Theorem 3.2).

Proposition 3.1 Given any t0 > 0, suppose that X(t) is a local solution for which X(t) ∈ R5
+

for 0 < t < t0.
(a) If N(0) ≤ A

μ
, then N(t) ≤ A

μ
for all 0 < t ≤ t0.

(b) If M(0) ≤ B
θ

, then M(t) ≤ B
θ

for all 0 < t ≤ t0.

Proof Given any local solution with X(t) ∈ R5
+ for 0 < t ≤ t0, we have

d(N(t) – A
μ

)
dt

= A – μN(t) – δI ≤ –μ

[
N(t) –

A
μ

]
.

Therefore N(0) < A
μ

implies that N(t) < A
μ

for all 0 < t ≤ t0. This proves (a). The proof of
(b) is similar. �

Theorem 3.2 For any given initial value X(0) ∈ R5
+, there exists a unique positive solution

X(t) of (1) for t ≥ 0 such that the solution remains in R5
+ with probability 1, that is, X(t) ∈ R5

+

for all t ≥ 0 almost surely.
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Sketch of proof Motivated by the work of Mao et al. [21] and similar proofs in [16, 17, 36],
and elsewhere, we present a sketch of a proof. Note that the coefficients of system (1) are
locally Lipschitz continuous. Thus there exists a unique local solution on t ∈ [0, τen), where
τen is the explosion time. We need to show that this solution is global almost surely, that
is, τen = ∞ (a.s.). This is commonly done using the Lyapunov method. Essentially, we need
a boundedness result, holding for t < τen, which we obtain further.

We denote by L the infinitesimal generator of the stochastic process in Eq. (1). Let us
define the stochastic process Y1 as

Y1
(
X(t)

)
= ln

A
μS(t)

+ ln
A

μI(t)
+ ln

A
μR(t)

+ ln
B

θV (t)
+ ln

B
θ J(t)

.

Note that each of the five terms are nonnegative, when S, I , R, V , and J are strictly positive.
Applying Itô’s formula, we obtain

dY1
(
X(t)

)
= LY1 dt –

1
S(t)

[
–σS(t)I(t)

]
dW (t) –

1
I(t)

[
σS(t)I(t)

]
dW (t)

–
1

V (t)
[
–ζ

(
V (t), J(t)

)]
dZ(t) –

1
J(t)

[
ζV (t)J(t)

]
dZ(t), (2)

where LY1(X(t)) is calculated as

LY1 = –
1

S(t)
[
A – abS(t)J(t) + hR(t) – μS(t)

]
+

1
2
σ 2I2(t)

–
1

I(t)
[
abS(t)J(t) – μ1I(t)

]
+

1
2
σ 2S2(t) –

1
R(t)

[
kI(t) – (μ + h)R(t)

]

–
1

V (t)
[
B – acV (t)I(t) – θV (t)

]
+

ζ 2J2(t)
2

–
1

J(t)
[
acV (t)I(t) – θ J(t)

]

+
ζ 2V 2(t)

2

(recall that μ1 = μ + k + δ). From the latter expression we obtain the following inequality
by removing some of the negative terms on the right-hand side:

LY1 ≤ abJ(t) + μ +
1
2
σ 2I2(t) + μ1 +

1
2
σ 2S2(t) + [μ + h]

+ acI(t) + θ +
1
2
ζ 2J2(t) + θ +

1
2
ζ 2V 2(t).

Therefore we have LY1 ≤ F with

F = ab
B
θ

+ 2μ + h +
σ 2A2

2μ2 + μ1 +
σ 2A2

2μ2 + ac
A
μ

+ 2θ +
ζ 2B2

θ2 .

The rest of the proof is similar to that in [16, 21, 36], or [17], and we skip the details. �

A stability theorem for the stochastic model is formulated in terms of an indicator R(z),
which is similar to the basic reproduction number R0 of the UDM. In fact, R(z) is of a form
similar to R0, and as the intensities of the perturbations tend to zero, thenR(z) tends to R0.
The difference between R(z) and R0 is determined by the term E0 in Eq. (4). Somehow we
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must find a lower bound for E0. Hence in Item 3.3 further, we briefly derive such a lower
bound. Similar techniques appear in [20, 24], and [35].

Remark 3.3 (A function H(x)) In the stability analysis, we encounter a function for which
we require a lower bound. We introduce the function

H : [0, 1] → R; x 	→ 1
2
[
σ 2S2x2 + ζ 2V 2(1 – x)2].

We find that, indeed, H has such a minimum value at x = x∗ with

x∗ :=
ζ 2V 2

σ 2S2 + ζ 2V 2 , and then H
(
x∗) =

(σSζV )2

2[(σS)2 + (ζV )2]
.

Noting that S ≤ A/μ and V ≤ B/θ for S and V as in the model, we obtain the inequality

H(x) ≥ (SV )2 (σζ )2

2[(σA/μ)2 + (ζB/θ )2]
for all x ∈ [0, 1].

We find it useful to write this inequality in the following form:

H(x) ≥ Pη

with

P =
(

S
A/μ

)2( V
B/θ

)2

and η =
(σζ )2(A/μ)2(B/θ )2

2[(σA/μ)2 + (ζB/θ )2]
.

4 Stability of the disease-free equilibrium
For stochastic systems, there are many different versions of the concept of stability and
very sophisticated methods of stability analysis; see, for example, [26]. In this paper, we
focus on almost sure exponential stability, which is also studied in [26].

The following function R : [0, 1] → [0,∞) will be useful in our stability analysis:

R(z) =
a2bcAB

μθ (μ1 + zη)(θ + zη)
with η =

(σζ )2(A/μ)2(B/θ )2

2[(σA/μ)2 + (ζB/θ )2]
.

In the particular case where zη = 0, R(z) coincides with R0.

Remark 4.1 Let us fix some nonnegative constants q, p1, p2, and p3. We define the follow-
ing stochastic processes u(t) and Y2(t):

u(t) = I(t) + qJ(t) + p1
(
A – μS(t)

)
+ p2R(t) + p3

(
B – θV (t)

)

and

Y2(t) = ln u(t).

Note that Y2(t) is well defined since by Theorem 3.2

u(t) > 0 for all t > 0 a.s.
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We can calculate LY2(t) as

LY2(t) =
1

u(t)
[
abS(t)J(t) – μ1I(t)

]
+

q
u(t)

[
acV (t)I(t) – θ J(t)

]

–
μp1

u(t)
[
A – abS(t)J(t) + hR(t) – μS(t)

]

+
p2

u(t)
[
kI(t) – (μ + h)R(t)

]
–

θp3

u(t)
[
B – acV (t)I(t) – θV (t)

]
– E(t),

where E(t) is given by

E(t) =
(μp1 + 1)2

2u2(t)
(
σS(t)I(t)

)2 +
(θp3 + q)2

2u2(t)
(
ζV (t)J(t)

)2.

This can be expressed as

LY2(t) =
I(t)
u(t)

[
(q + θp3)acV (t) + p2k – μ1

]

+
J(t)
u(t)

[
(1 + μp1)abS(t) – qθ

]
– μp1

(A – μS(t))
u(t)

– θp3
(B – θV (t))

u(t)
–

R(t)
u(t)

[
hμp1 + p2(μ + h)

]
– E(t). (3)

We are interested in lim supt→∞ Y2(t), and we introduce the necessary notation for this
analysis. For a stochastic process ψ(t), we write

〈ψ〉t =
1
t

∫ t

0
ψ(s) ds.

Note that for every w ∈ Ω , there exists an unbounded increasing sequence of positive
numbers (tn) such that limn→∞ Y2(tn) = lim supt→∞ Y2(t) and such that the following se-
quences are convergent: 〈I/u〉tn , 〈J/u〉tn , 〈R/u〉tn , 〈(A – μS)/u〉tn , 〈(B – θV )/u〉tn .

We denote their five limits by i, j, r, s#, v#, respectively, and we write Γ = lim supt→∞〈Y2〉t .
We note that these values depend on the 4-tuple (q, p1, p2, p3).

Remark 4.2 The following stochastic processes are encountered in the proof of the main
result. Let

M1(t) =
∫ t

0

σS(y)I(y)
u(y)

dW (y) and M2(t) =
∫ t

0

ζV (y)J(y)
u(y)

dZ(y).

Then we define M(t) = (1 +μp1)M1(t) + (q + θp3)M2(t). Note that 0 < I(t) + qJ(t) ≤ u(t) and
μS(t) < A. Therefore, regarding the quadratic variations of the stochastic integrals M1(t)
and M2(t), we have

∫ t

0

(
σS(y)I(y)

u(y)

)2

dy ≤ σ 2A2t
μ2 and

∫ t

0

(
ζV (y)J(y)

u(y)

)2

dy ≤ ζ 2B2t
q2θ2 (a.s.).
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Consequently, by the strong law of large numbers for local martingales (see, e.g., [21])
we can deduce that

lim
t→∞

1
t

M(t) = 0 (a.s.).

Further, note that

1
t

Y2(t) –
1
t

Y2(0) = 〈LY2〉t +
1
t

M(t).

This means that

lim sup
t→∞

1
t

Y2(t) = lim sup
t→∞

〈
LY2(t)

〉
t (a.s.).

The main stability theorem focuses on the convergence of I(t) and J(t). For the particular
case p1 = p2 = p3 = 0, we can calculate LY2(t) as follows, where we denote Y2 by Y0:

LY0(t) =
1

u(t)
[
abS(t)J(t) – μ1I(t)

]
+

q
u(t)

[
acV (t)I(t) – θ J(t)

]
– E0(t),

where E0(t) is given by

E0(t) =
1

2u2(t)
(
σS(t)I(t)

)2 +
q2

2u2(t)
(
ζV (t)J(t)

)2.

This can be expressed as

LY0(t) =
I(t)
u(t)

[
qacV (t) – μ1

]
+

J(t)
u(t)

[
abS(t) – qθ

]
– E0(t).

We require a suitable lower bound for E0. In particular, we further use the identity

I(t)
u(t)

+ q
J(t)
u(t)

= 1, i.e., q
J(t)
u(t)

= 1 –
I(t)
u(t)

.

Thus we proceed as follows:

E0(t) =
1

2u2(t)
(
σS(t)I(t)

)2 +
q2

2u2(t)
(
ζV (t)J(t)

)2)

=
1
2

[
(
σS(t)

)2
(

I(t)
u(t)

)2

+
(
ζV (t)

)2
(

q
J(t)
u(t)

)2]

=
1
2

[
(
σS(t)

)2
(

I(t)
u(t)

)2

+
(
ζV (t)

)2
(

1 –
I(t)
u(t)

)2]

= H
(

I(t)
u(t)

)

with H(x) as in Remark 3.3. Therefore, noting the lower bound for H(x) established in
Remark 3.3, we can deduce the inequality

E0(t) ≥ P(t)η.
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Again, using the identity I/u + qJ/u = 1, we obtain

E0(t) ≥ P(t)η
[

I(t)
u(t)

+ q
J(t)
u(t)

]
.

Now we can deduce the following inequality:

LY0(t) ≤ I(t)
u(t)

(
qacV (t) – μ1 – P(t)η

)
+

J(t)
u(t)

(
abS(t) – qθ – qP(t)η

)
. (4)

Theorem 4.3 Suppose that for some z ∈ [0, 1], we have

lim inf
t→∞

(
S

A/μ

)2( V
B/θ

)2

≥ z (a.s.).

If R(z) < 1, then I(t) and J(t) converge exponentially to 0 (a.s.).

Proof Let R(z) < 1, which is equivalent to the inequality

abA
μ(θ + zη)

(
acB
θ

)
– (μ1 + zη) < 0.

We can find a number 0 < ε < 1 such that
(

abA
μ(θ + zη)

+ ε

)(
acB
θ

)
– (μ1 + zη) < 0. (5)

Now let

q =
abA

μ(θ + zη)
+ ε.

For the given value of q, we now consider Y0. To prove our theorem, it suffices to prove
that u(t) converges exponentially to zero (a.s.). The proof is concluded by showing that
the Lyapunov exponent limt→∞ 1

t Y0(t) of u(t) is negative almost surely. It suffices to prove
that (see Remark 4.2)

Γ = lim sup
t→∞

1
t

[∫ t

0
LY0(g) dg

]
< 0 (a.s.).

Recall inequality (4). Now performing the operation 〈–〉t and taking limits, we obtain

Γ ≤ iC1 + jC2

with

C1 = qac
B
θ

– μ1 – zη and C2 = ab
A
μ

– qθ – qzη.

A routine calculation reveals that

C2 = ab
A
μ

– qθ – qzη = –ε(θ + zη) < 0.
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If we substitute the value of q into the expression for C1, then from inequality (5) it follows
that C2 < 0. The coefficients of i and j on the right-hand side of the inequality are negative
and constant. Note that

i + qj = 1.

Therefore at least one of the quantities i or j must be nonzero. Thus

lim sup
t→∞

< LY0 >t< 0 (a.s.),

and the proof is complete. �

Remark 4.4 (a) As a particular case of Theorem 4.3, we have that if R(0) < 1, then I(t)
and J(t) converge exponentially to 0 (a.s.). So if R(0) < 1, then starting from any initial
value, the solutions of the stochastic system (1) almost surely converges to the disease-
free equilibrium.

(b) The theorem gives a version of local asymptotic stability. It can be interpreted as
follows: if R(z) < 1 for some z > 0, then (a.s.) either the equilibrium X∗ is exponentially
stable, or

lim inf
t→∞

(
S

A/μ

)2( V
B/θ

)2

≥ z.

Therefore the theorem shows that for parameter values with R0 slightly greater than 1,
the stability of the disease-free equilibrium (i.e., extinction of the disease) is enhanced by
stochastic perturbations.

Theorem 4.5 If I(t) and J(t) converge exponentially to 0 (a.s.), then the disease-free equi-
librium X∗ is almost surely exponentially stable.

Proof In defining u(t), let us choose q = p1 = p2 = p3 = 1. Suppose on the contrary that
the stochastic process u(t) does not exponentially converge to zero. Then i = j = 0. Conse-
quently, from Eq. (3) we can deduce the inequality

Γ ≤ –μs# – θv# – (hμ + μ + h)r < 0 (a.s.).

This is a contradiction, which completes the proof. �

5 Numerical simulations
We apply our model to malaria disease over a suitable region in Southern Africa. For
sample simulations, we find numerical values for parameters from the literature. Such
parameter values depend on the particular situation or region of application. There are
parameters affected by human lifestyle, and others vary according to the different species
of vector or species of the pathogen. We do not pick a specific small region of application,
but our choice of parameters is relevant to malaria disease in Southern Africa. Our values
are taken from the given sources either directly or possibly adjusted. The values of the
perturbation parameters σ and ζ are declared for each simulation. The parameter values
as per Table 1 yield R0 = 1.201.
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Table 1 Numerical values of parameters

Parameter Description Numerical value Reference/comment

μ Mortality rate for humans, not including
death directly due to malaria

0.017
365 per day [2]

δ The rate of human deaths due to malaria 0.042
180 per day [23, 25]

θ Mortality rate for (vector) mosquitos 0.04 per day [3, 5, 19]
A Total human birth rate 10,000μ Depends on the region. We

assume a population of size
10,000 when disease-free.

B Total birth rate of vector mosquitos 240,000θ Depends on the region. We
assume a population of size
0.03 million.

a The probability of a specific human
getting bitten by a mosquito during a
one-day period

6.417× 10–6 Chosen (this also depends on
the region)

b The probability that a bite by an infected
mosquito will lead to a (new) human
infection

0.075 [23, 25]

c The probability that a bite on an infected
human will lead to a (new) mosquito
infection

0.0375 cf. [23, 25]

k Transfer rate from I-class to R-class
(recovery rate)

1
180 per day [5, 9, 25]

h Transfer rate from R-class to S-class (rate
of loss of temporary immunity)

1
2×365 per day [5, 9, 25]

5.1 The long-run mean
The initial values for our first simulation are

S(0) = 4900, I(0) = 95, R(0) = 5000, V (0) = 238,800, J(0) = 1200.

Figure 1 shows how the long-run mean Imn of the stochastic I-values over 4000 sample
paths of the stochastic model is lower than the equilibrium value I∗ of the underlying
deterministic model. For instance, at time t1 = 1300 days the computed values are Idet(t1) =
75.0 and Imn(t1) = 70.0.

Figure 1 The mean I-path of 4000 runs [σ = ζ = 5× 10–6] compared with the deterministic I-path
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Figure 2 The mean I-path of 4000 runs, the first and ninth deciles [σ = ζ = 5× 10–6]

5.2 Projections with percentiles
In Fig. 2, we present some graphs obtained in a sample simulation. The initial values are
chosen as

S(0) = 4900, I(0) = 95, R(0) = 5000, V (0) = 238,800, J(0) = 1200.

The parameter values that we use here are strictly as in Table 1. The intensities of the
perturbations are declared with the graph. We present the mean values of I(t) over n =
4000 sample paths together with, for every t value in the discretization, the first and the
ninth deciles (respectively, denoted by Iten and Inty) of I(t) for this collection of sample
paths. The deciles form, for each t, an approximation of an 80% confidence interval. This
interval estimation of future projection is an advantage of SDE modeling compared to
ODE modeling. The graphs show, in particular, the behavior of the deciles in the long
term.

5.3 Illustrating the stability theorem
We present numerical simulations to illustrate the results of Theorem 4.3 with parameter
values given in Table 1. The initial values are

S(0) = 4953, I(0) = 45, R(0) = 5000, V (0) = 239,040, J(0) = 960.

In order to showcase the stability theorem, we need to compare different situations of the
model, having different values of the basic reproduction number. It has been found in [29]
that the presence of livestock living near humans is correlated with a lower prevalence
of malaria in humans. An explanation for this may be that the biting rate of mosquitos
per human individual decreases. In the following simulations, we utilize the parameter
values of Table 1, except that we replace the value of the parameter a with a smaller value,
5.866×10–6 (as compared to the value 6.417×10–6 calculated from Table 1), which arises
from the assumption that the population now has livestock, kept in such a way as to reduce



Witbooi et al. Advances in Difference Equations        (2020) 2020:347 Page 13 of 15

Figure 3 The mean of the (stochastic) I-paths over 8000 runs, compared with the deterministic I-path
[σ = 0.0002, ζ = 0.05]. The graph illustrates the stability theorem, Theorem 4.3: Although R0 = 1.0202 > 1
means that the deterministic model yields the instability of the disease-free equilibrium and stochastic
perturbations cause the convergence (almost surely) to disease-free equilibrium

the biting rate of vectors on humans. This leads to the situation R0 = 1.002. Since R0 > 1, for
the underlying deterministic model, the disease-free equilibrium is not stable. However,
for the stochastic model, in Fig. 3, we observe that the mean of I(t) seems to converge. This
agrees with Theorem 4.3. Let us agree that R0 is relatively close to 1. Then we expect for the
deterministic case that the limiting value S∗ of S(t) will be very close to A/μ, and likewise,
V ∗ should be relatively close to B/θ . Let us make quite a conservative guess that for the
stochastic case, lim inf(μS/A) × (θV /B) will be above the value (0.95) × (0.95). This choice
yields R(0.8145) = 0.998 < 1, for σ = ζ = 0.02. Indeed, then we do expect the convergence
that we observe.

6 Conclusion
We have presented an SDE model for the population dynamics of a mosquito-borne dis-
ease, which has solutions that are almost surely positive and global. We have introduced an
invariant R which is not higher than R0, with R0 < 1 being a condition that guarantees the
global stability of the disease-free equilibrium in the underlying deterministic model. With
almost sure exponential stability holding for R < 1 (together with other requirements), it
follows that the stochastic perturbation enhances the stability of the disease-free equilib-
rium. Simulations suggest (as expected) that, in general, the expectation of I(t)-values in
the stochastic model is lower than its counterpart in the underlying deterministic model.
Furthermore, we can make point estimates of forward projections of the compartment
sizes, and also we can give estimates of confidence intervals (i.e., percentiles for a large
number of simulations). We have consulted a variety of literature to find relevant numer-
ical parameter values.

We mentioned in Remark 4.4 that for parameter values that yield R0 slightly greater than
1, extinction of the disease is enhanced by the stochastic perturbations. Understanding
of the asymptotic probability distributions of S and V will improve the applicability of
Theorems 4.3 and 4.5. This is a problem that can be pursued in the future. As a next
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step, it will be interesting to study a similar model, but with perturbation on the force of
infection, that is, with SI and VJ replaced by SJ and VI , respectively. Also, future work
toward improving the model could address, in particular, the inclusion of classes of latent
infection or time delays to account for incubation of the pathogen both in the host and in
the vector.
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