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1 Introduction

The quantum difference operator has been applied in many mathematical areas such as

orthogonal polynomials, combinatorics, and the calculus of variations [1-4]. The research

works related to the quantum difference operator have been published continuously.
q-difference operator is the one type of quantum calculus proposed by Jackson [1] which

is defined by

flad-f©
D f(t):={ @D’ t70,
f/(o)) t= 0’

where g € (0, 1). For fractional g-difference operator, it was proposed by Al-Salam [5] and
Agarwal [6]. Basic knowledge of fractional g-difference calculus can be found in [7] and
[8]. The studies of g-difference operator can be found in [9-33].

Hahn difference operator proposed by Hahn [34] is another tool that can be employed
to study families of orthogonal polynomials and approximation problems (see [35-37])
which is defined by

flgt+o)-f(©)

e 7 @0
Dyuf @)= { e

f (w0)7 t = wy,
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where g € (0,1), w > 0, and wy := ﬁ. The right inverse operator of Hahn’s operator, which
generalizes both the Norlund sum and the Jackson g-integral, was proposed by Aldwoah
[38, 39]. The new extensive results of Hahn difference operator can be seen in [40-47].
Recently, Brikshavana et al. [48] and Wang et al. [49] introduced the fractional Hahn dif-
ference operator. The studies of fractional Hahn difference calculus can be found in [50-
56].

We observe that the study of the boundary value problem of mixed difference opera-
tors had not been studied until the work of Dumrongpokaphan et al. [57]. They studied
sequential fractional g-Hahn-difference equation. In this paper, we propose a sequential
fractional Hahn-g-difference equation where the difference operators are reverse. Our
problem is a nonlocal Robin boundary value problem for sequential fractional Hahn-g-
difference equation of the form

[0,T]
D2, Db u(t) = Ft,u(t), Diu(e), D, u(®)], tell, ,
Mu(n) + 2aDyu(n) = ¢1(w),  n€(0,7), (1.1)
pa(T) + pa D}, u(T) = (),
[0,T]
where 1{,w = U0l s € [0,T) I, = {q"x + wlnl, : n € No} U {wo); No := N U {0);
[nlg:= 0<q<l w>0;T>wyapB,y,0,ve(0,1]; o+ B €(1,2]; A1, Ay, 1, U2 € RY;
F e C([O T] x R x R x R,R) is a given function; and ¢1, ¢, : C([0, T],R) — R are given
functionals.

We organize the paper as follows. In Sect. 2, we provide some basic knowledge. In Sect. 3,
we prove the existence and uniqueness of a solution to problem (1.1) by using the Banach
fixed point theorem. In Sect. 4, we prove the existence of at least one solution to problem
(1.1) by using Schauder’s fixed point theorem. Finally, in the last section, we provide an
example to show applications of our results.

2 Preliminaries
In this section, we recall some notations, definitions, and lemmas used in the main results.
Forg e (0,1), w > 0,n € Ny, and a, b € R, we define the g-analogue of the power function

(a— b)g as
n-1
(@-0)3:=1, (a-b)s:=]](a-bq"),
k=0

and the g, w-analogue of the power function (a — ), as

n-1
(@-03,:=1, (a-b2,=]][a-(bd" +wlkl,)].
k=0
For @ € R, we define
b o _ o 0’
(a- ) =a H . qam a¥
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= 1- (72" «
(a- b)‘;_[,w = (a - wo)* 1_[ W = ((ﬂ —wo) = (b- wo));, a 7 wo.
n=0 =~ \a—wg

In addition, we define a% =a” and (a— a)o)%w = (a—wp)*. For a > 0, welet (O)f;‘ = (a)o)f;‘,w =0.
For k € N, the g-analogue and g, w-analogue of forward jump operator [58] are defined
by

k(g ._ k Ak
of(t):=q"t and o, (1):=q"t + w[k],,

respectively. The g-analogue and g, w-analogue of backward jump operator are defined by

kom . t X _t-owlkl,
Pq(t) = ? and pq,a)(t) = T,

respectively.

Definition 2.1 For g € (0, 1), the g-derivative of a real function f is defined by

_f0-flan

Dyf (1) (1-g)t

and  D,f(0) = f'(0).

The g-integral of a function f defined on the interval [0, T] is defined by

/() = /0 F6)dgs = (1=t Y/ (a"2),
n=0

where the infinite series is convergent.

Definition 2.2 For g € (0,1), ® >0, and f defined on an interval / C R containing w, :=
1%, the Hahn difference of f is defined by

D, f(t) = % for t # wo,

and D, ,f (wo) = f'(wo) whenever f is differentiable at wy.

Fora,bel CR,a<wy<b,and [k],; = %, k € Ny := NU {0}, we define the g, w-interval
by

[a,b),, = {q"a + w[kl;:k € No} U {g"b + w[k],; : k € No} U {wo}
= [LZ, a)O]q,w U [a)Orb]q,w

= ((L b)q,w U {drb} = [a’b)q,w U {b} = (d’ b]q,w U {d}

For each s € [a, b], ., the sequence {a;w(s)},fio ={4's + w[k]g}72, is uniformly convergent

to wy.
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Definition 2.3 Let / be any closed interval of R containing a, b, and wp, and f : I — R is
a given function. We define g, w-integral of f from a to b by

b b a
/f(t)dq,wtzz FOdgot— | F©)dyot,

where f:fof(t) Ayt = [x(1 - q) — 0] Y 1o0 ¢ f (g + w[k],), x € I, and the series converges
at x = a and x = b. The sum to the right-hand side of the above equation is called the
Jackson—Noérlund sum.

We note that the actual domain of function f is [a, bl C I.
In what follows, we define fractional g-integral, fractional Hahn integral, fractional g-
difference, and fractional Hahn difference of Riemann-Liouville type.

Definition 2.4 For o > 0 and f defined on [0, T, the fractional g-integral of Riemann—
Liouville type is defined by

o 1 ! a—
TNO= 7 /0 (t - a5 (0 dys

t(l_q) - n n+l\2=1 n
W;q (t-q t)q f(a"t)

_t (1 q Z ) f(q ),
=0

and (Z0f)() = £ (x).

Definition 2.5 For o,w > 0, g € (0,1), and f defined on [wy, T],,., the fractional Hahn
integral is defined by

Igmf(t):: /t(t O'qa,(S)) f(s)dqws

0

1
Fq(a)

[t (1- q) ] Z n+1 t) a— lf( ;w(t))

n=0

_ (A=)t —wo)* = )
= 1"(05) XO: f(cr (t))

and (Zp,f)(6) = f (0.

Definition 2.6 For N € N, o > 0, where N — 1 <o < N, and f defined on [0, T], the frac-
tional q-derivative of the Riemann-Liouville type of order « is defined by

(D) (@) := (DYTIf)(2)

F( a)_/ t aq(s) f(s)dqs,

and (DY) = f ).
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Definition 2.7 For N e N, > 0, where N - 1<a <N, g€ (0,1), w > 0, and f defined on
[wo, T4,0, the fractional Hahn difference of Riemann-Liouville type of order « is defined
by

Dg f(8) := (DY, ZNf) @)

g0

1 ¢ .
T Ty(=a) Juy (£ = 040 (8)) 1y S (5) dgs,

and ngwf(t) =f().
Lemma 2.1 ([17]) For N e N, a >0, where N-1<a <N, q € (0,1), omdf:[qT — R,
TeDSf () =f(£) + Crt“™ 4 oo+ O™

forsome C; eR,i=1{1,2,...,N}.

Lemma 2.2 ([48]) For N eN,« >0,where N-1<a <N,q€(0,1), w >0, andf:]tfw —
R,

15,05,/ @) =f(&) + Ci(t - @0)* -+ Oyt — wo)* ™

forsome C; e R,i={1,2,...,N}.

The g-gamma and g-beta functions are defined by

() = (-5 R\ {0,-1,-2
q(x).—m, X € \{ y—4,— ;-“}’
v . Iy(x)Ty(s) .
By(x,s) ::/0‘ t 1(1—qt)q71dqt=%, respectively.

Next, we aim to find a solution of the linear variant of mixed problem (1.1) where the

following auxiliary lemmas will be used for simplifying calculations.
Lemma 2.3 ([21]) Let«, > 0 and 0 < p,q < 1. Then the following formulas hold:

n
f (n- qt);‘—_ltﬂ dgt = n“*""Bq(ﬂ +1,a),
0

n ps B a+p
fo /0 (n - ps)s=H(s —qt)ﬁ*ldqtdps = '[’ﬂ—]qu(ﬁ +1,0).

Lemma 2.4 ([48]) Fora,B >0, p,q < (0,1), and w >0,

[ (t= 000925 0 s = (¢ 00 B8 + L,

0
t X a— _ (t _ )ot+ﬂ
/;)0 \/0)0 (t - O'P:w(x))lrwl(x - Uq,w(s))%dq,ws dp,wx = [6;73;34(/3 + 1,0{).
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Lemma 2.5 Let o, 8,y € (0,1, 0 + B €(1,2]; 0<g<1; w>0; T > wp; A1, A2, U1, 42 € RY;

h € C([0, T], R) be a given function; ¢1, ¢, : C([0, T],R) — R be given functionals. Then the

linear variant of problem (1.1) given by

D DPu(t)=h(t), tell, ,

[0,T]

g0 q

Mu(n) + 22Dy u(n) = ¢1(w), n€(0,7),

pai(T) + Dl u(T) = (1)

has the unique solution, which is in a form

1 t X _ w—
0= i o e ) dysy

+ {Ar,[61(0), 1] - A, Dr[a(u), 1]} ﬁ /0 (- 0y(6)E M5 - 00" dys
q

— {Br®, 1), ] - B, ®r[go(a0), ]}

p-1
2

fort € [0, T], and the functionals @,[¢:1 (1), h], @r(p2(u), h] are defined by

N px
@, [¢1(u), 1] = 1 (w) - 1"(01))\7}(/3/ / (n —qu(x))flﬂ

D[ pa(u), h] := o

x (x— O'qa,(S)) h(s)dqwsdqx

F(a)F(ﬁ / / /wo” @)

h(s) oS dgxdgr,

x (r Uq(x)) (x Uqw(s))

Iy(e)I5(B) Jo

x (x— crqw(s)) h(s)dqwsdqx

F(a)F(ﬁ)F( y)/wO/ /wo (T =040l

x (r- oq(x)) H(x - 000(8)) Y1(S) s Ay dyg o,

and the constants Ay, Ar, By, Br, and $2 are defined by

A,] = )\.17’]‘9

AT =

B, :=

Fq(_y) 0
A n _
Fq(lﬂ) /0 (1= 049)2 — w00) dys

ﬂ)F V)f/ "ol

a,re (7 -1 p-
+Fq(—y)/0 (n—aq(s))q s

T
- W2 -v-1 g
M1 T+ / (T - Uq,w(s))qy P! dq,wsr

1 dys,

(x aq(s))sf

T px
(1) - — L / (T - 0y

1(s — o)t dgsdgx,

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

Page 6 of 17
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T o1
Br:= ) / (T - aq(s))q—(s —wo)* dys
W / f T Oy, w(x)) (x O'q(S)) (S - C()())a 1 qu dq X (2 8)
2= A7B, - A,Br #0. (2.9)

Proof We first take fractional Hahn integral of order « for (2.1). Then the problem be-

comes fractional g-difference equation as follows:

a1, (L=g)(£— @) el
Dfue) = Colt — )™ + ‘Ir(a =0 kZ ) h(ok, ()
= Colt —wo)* t + t(t - aqw(s))ﬂh(x) Ay,wS (2.10)
Ty(e) J o, T ae ’

forte I{[IO'T] =={q"s:5¢€[0,T],n € Ng} U{0}.
After taking fractional g-integral of order B for (2.10), we get the solution which is in

the form
u(t) = Cltﬂ_l (,3 k+1 B- 1(0 ) - CUO) a-1
1 [o¢] (o @] ~
T (A=) (t-w)? hik (1 _ 1)L
" Tere 0 ;;q (=g,
x (1=q"); ™ (07,0) (o, (07 ®)))
-Gyt r((,)a ; / (t - 04(9)Es - w0)* dys
F(a)F(ﬁ)/ / t 9q x)) (x qu(s))zwlh(s)dq,wsdqx (2.11)
fort [0, T].

In order to find the unknown constants C; and Cy that appeared in (2.11), we first take

fractional g-difference and fractional Hahn difference of order y for (2.11) to get

G ¢ —y-1 g
Dl u(t) = 7 (—)/)/o (t—oq(s))q”—sﬁ Yd,s

q

F(ﬁ // t oq(x (x oq(s))f(s—wo)“ dgsdgx

F(a)r(ﬁ)r( y)///wot a4(n) ;" = (r - Gq(x))

X (x— aq,w(s))‘;;wlh(s) dysdgxdy,r (2.12)
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for t € [0, T], and

t
—y-1 g_
D}I"wu(t)z / (t—zrq,,w(s)),1;)75’S ldq,ws

C t X o B
+ Fq(TOq(—V) /wo /0 (t - aq,w(x))q’};)il(x - aq(s))s—l(s — o)t dysdgwx

! [ oyl B-1
" @B // / (=040 ()g(r = oq),

X (1= 040 (5)) s 1(5) g5 gy (2.13)

for t € [wy, T], respectively.
Substitute ¢ = 1 into (2.11) and (2.12) and use the first condition of (2.1). Then we get

A,]C1 + BnC() = @n [d)l,h] (214-)

Similarly, substitute ¢ = T into (2.11) and (2.13) and employ the second condition of (2.1).
We have

ATC1 + BTCQ = ¢T[¢2:h]~ (2.15)

We can solve the linear system for (2.14)—(2.15), and we find that

_ By @rlgo(u), h] - Br P, (1 (w), 4]

Ci 5

and

_Ar®y[h1(), h] - Ay Prlgo(u), h]
2

CO ’
where @, [¢1(u), h], @1[¢p2(u), h], A,), Ar, By, By, 2 are defined by (2.3)—(2.9), respectively.
Solution (2.2) can be exposed after substituting C; and Cy into (2.11). |

3 Existence and uniqueness result

In this section, we employ the Banach fixed point theorems to consider the existence and
uniqueness result for problem (1.1). Let C = C([0, T, R) be a Banach space of all function
u with the norm defined by

’

lulle = llull + [ Do + | DL,u

where

9 1 _ 9
o [Dhul = max |Dguc@)

’

|l#]| = max |u(t)
te(0,T]

and

|Dgon] = max D7 ,u(@®)]-
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We define an operator F : C — C by

a-1
(]:M)(t)' m/ AO t Uq x O'qw(s))q‘w

X F[s, u(s),un(s),D;]wu(s)] Ag0S dgx

1

AT (0100 E] - A 0r (0200, B} s
q

X /0 (t - aq(s))s;l(s — )t dys

p-1
— {B7®,[¢1(w), F.] - B§¢T[¢2(u),l-"u]}%,

where

)\’ n
O[0F] =10 - s /0 / 1= 02 (- 000 9)

Az
Fq(a)Fq(ﬁ)Fq(_y)

b / (1= 04) = = 0g@) = (6= 000 );.,

X F[s,u(s),Deu(s),D” u(s)] dgwsdgxdgr,

[¢2() ] #2 (1) Ml / / T O—q (x Uqw(s))

0 v _ H2
F[s, u(s),un(s),Dq,wu(s)] A0S dgx T Ty BT (=)

/ //{;0 (T —oy(r (r aq(x))si(x_aqw( ))Zwl

X F[s, u(s), DZu(s), D;,wu(s)] dgosdgxdgr,

X F[s, u(s), DZu(s),D;Ywu(s)] Ag,wS dgx —

and the constants A,, Ar, B, Br, £2 are defined by (2.5)—(2.9), respectively.

(3.1)

(3.2)

(3.3)

If one can prove that F has a fixed point, we can conclude that problem (1.1) has a

solution.

Theorem 3.1 Let F:[0,T] X R x R x R — R be a continuous function, and assume that

the following conditions hold:

(H1) There exist constants £1,£9,€£3 > 0 such that, for each t € [0,T] and u;,v; € R, i =

1,2,3,

|Flt, w1, 2, u3] = F[t,v1,v2,v3]| < €1luy = vi| + €aluz — va| + £3]uz — v3].

(H2) There exist constants &1,&, > 0 such that, for each u,v € C,
[$1() =1 (V)| <Eillu—vlc and  |pa(u) - $o (V)| < &allu—vic.

(H3) X:=(l1+L+£3)0 + 6, 1+ 6T, <3,

Page 9 of 17



Dumrongpokaphan et al. Advances in Difference Equations (2020) 2020:294

where
(T~ wo)*T" O1Tr+O,7T,
= + + ,
Tla+)(B+1) 17720
0, e (1= @00’ e
YT e 0=
O, e (T - wo)*T? paT —wo)™”
2= - )
Fq(l -v)
1 (T — wo)* ' TF _
Tr:= = L BAITFY,
T |_Q|{| 7l B+ 1) +|Br|
1 (T — wo)* 1 T# B
T, = {| Al— 4 B,|T* 1}.
|$2] I,(B+1)

Then problem (1.1) has a unique solution.

(3.4)

(3.5)

(3.6)

Proof Let Hlu — v|(¢) := |F[t, u,DZu,D;‘wu] - Flt, V,DZV, Dy ,vll. For each ¢ € [0, T] and

u,v € C, from (3.2), we see that

| [p1(w), F] — D} [¢1(w), F]|

<|b1@) - ()] +

n X
s , [0 o)

A2
x Hu—v|(s) dgws dgx — T () T, (B) T (=)

0 0
<é&llu—vllc+ (€rlu—v|+ €| Dju—D)v| + 5D} ,u—D; v

ri(n — wo)*n? Aa(n — wo) 0P

[ [ fo-son

x (r- crq(x)) (x crqws)) ’H|u—v|(s)dqwsdqxdr

T+ D),B+1) Tla+)IL,B+1)I,0-y)

0 0 v v
<&llu—-v|c+ (€1|u v+ €2|un - qu| + £3’Dq,wu _Dq,a)v

< [+ 1+ L+ £3)O1][lu = Vllc.

Similarly, we see from (3.3) that

| @5 [p2(w), Fu] — D3 [o(w), ]| < [62 + (€1 + L2+ £3)Os ]l —vlc.

Consider

|[(Fu)(®) - (Fv)(@)]

< ;/T/x(T—o (x))E(x—a (s))u’}-l|u—v|(s)d sdx
T L) (B) Jo Juwg " T g 0>

+ {|AT||®}[$1(w), F,] - D[ (), E ]| + 1A, || @F[$a(w), F] — D5 [¢2(w), F] |}

(T - )T
RIT,B+1)

Page 10 of 17
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+{IBr||®}[¢1(w), F,] - D[ (), F, ]| + By || @5 [ha(w), F, | — 5[ ba(w), F]|}
1
2
|:(51 + Lo+ )T —wo)* TP [+ (€1 + £ +£3)O]
<llu-vlc +
Fq(a+1)Fq(ﬂ+l) | 82|

(T — wo)* ' TP

IyB+1)
(&2 + (€1 + £ + £3) O] {|A |(T—w0)a_1Tﬂ +|B |Tﬁ1}:|

[£2] LB +1)

<[+ L+ )0 + 5T+ £, |lu-vie

X

x {|AT| + IBTIT‘H}

= Xlu-vlc. (3.9)

Taking fractional fractional g-difference of order 6 and fractional Hahn difference of

order v for (3.1), we get

DZu(t)— e F(,B 9)/ // (t-oy r) (r aq(x))

X (x - Uq,w(s))a;F[s, u(s),Deu(s), D wu(s)] dgsdgxdg,r

q,w
(AL0, 61 (u )F]—A*¢T[¢2 )EJ)
! T, )T, ff (-0l

X (x - Jq(s))s;l(s - a)o)‘)‘_1 dgsdgx,

_ {B;"¢n [¢1(u)’Fu] - B2¢T[¢2(u):Fu]}

=0-1 g-1
2,0 s)) P dys (3.10)

for t € [0, T], and

) ~ 1 t r x 1 E
Dyt)= prrirea | ) [ 6 o) - )

X (x—oq,w(s))z;w1 [S, u(s), Deu(s) D" u(s)] AgwSAgx dgur

. {A7P[91(w), Fu] — A} P12 (u), Ful }/ /
214 (B) (=) 0o

X (x— oq(s))ﬂ;l(s — w0)* Vdysdy,x,

{B*‘D [¢1(u0), Fu] = By Prldpa(u), Ful}

/(t Uqw(s)) /“dqws (3.11)

I,(-v)
for t € [wo, T, respectively.
Similarly, we have
’(DZfM)(t) - (DZ}'V)(t)| <X|u-v|ec, (3.12)

(D), Fu)(t) - (D), Fv)(®)] < Xllu—vllc. (3.13)

Page 11 of 17
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From (3.9), (3.12), and (3.13), it implies that

| Fu—Fvlc = | Fu- Fv| + |D)Fu-D)Fv| +|D, ,Fu-D, ,Fv|

<3X|u-vlc.

Therefore, F is a contraction by (H3). Thus, F has a fixed point, which is a unique solution
of problem (1.1) by using the Banach fixed point theorem. d

4 Existence of at least one solution
In this section, we also prove the existence of at least one solution of (1.1) by using
Schauder’s fixed point theorem. Firstly, we provide some basic knowledge that is used

in this section as follows.

Lemma 4.1 ([59] (Arzeld—Ascoli theorem)) A set of functions in Cla, b] with the sup norm
is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b].

Lemma 4.2 ([59]) Ifa set is closed and relatively compact, then it is compact.

Lemma 4.3 ([60] (Schauder’s fixed point theorem)) Let (D, d) be a complete metric space,
U be a closed convex subset of D, and T : D — D be the map such that the set Tu :u € U is
relatively compact in D. Then the operator T has at least one fixed point u* € U: Tu* = u*.

Based on the above lemmas, we prove the existence of at least one solution of (1.1) as
shown in the following theorem.

Theorem 4.1 Suppose that (Hy) and (H3) hold. Then problem (1.1) has at least one solu-
tion.

Proof The proof is divided into three steps as follows.

Step 1. We verify that 7 maps bounded sets into bounded setsin Bg = {u € C : |lu|lc <R}.
We let max;ejo,77|E(£,0,0,0)| = M, sup,cc |¢1(u)] = Ni,sup,c |¢2(u)] = Ny and choose a
constant

_ MO+ NI+ N,
- %—(51+£2+€3)@ '

(4.1)
We denote that

|S(¢,u,0)| = |F[t,u, Dju, D}, ,u] - F[£,0,0,0]| + |F[t,0,0,0]|.
For each ¢t € [0, T] and u € Bg, we have

EHCACRA]

M o p-1 a-1
EN]+’W/(; /wo('?—%(x))q (%= 050(9),,,

)\2 n r X L—l ﬁ;l ) i
_ Fq(a)Fq(ﬁ)Fq(—V)fo /0 /wo (1= 04(n) 7= (r = 04(®);— (¥ = 040(9),,,,

S(s,u,0)| dgwsdyx
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x |S(s,1,0)| dysdgx dgr

SN+ [(01 + €3+ £3)[|ullc + MO

<Nj+ [(£1+€2+€3)R+M]01. (42)
Similarly, we find that
| @5 [¢2(w), Fu ]| < Na + [ (€1 + €5 + €3)R + M]O,. (4.3)

From (4.2)—(4.3), we find that

(Fu)®)| < O[(t1 + £+ €3)R+ M| + N1 Tr + No 1) < § (4.4)
and
0 R ) R
|(Dq]:u)(t)| <3 and |(quw]-"u)(t)| <3 (4.5)
Hence,
R R R
| Fulle = | Full + ”DZ}'MH + HD(‘;wJ’:uH <3tzty =R,

which implies that F is uniformly bounded.
Step II. It is obvious that the operator F is continuous on By due to the continuity of F.
Step III. We prove that F is equicontinuous on Bg. For any ¢;,t; € I, gw with # < £, we
find that

IFII(T = wo)*
Tyla+ D)I,(B+1)

(Fu)(ta) - (Fu)(ty)| < &) ]|

(T - wo)* '8} - 17

{IAT||@;[¢1, F]| + |A,] |95 (¢, F1|}

[2|T,(B +1)
|t§_1 _tlﬂ_ll * *
vt LI CACRS YA AT (T D
|(DZ]:”)(752) - (Dg}'u)(tl)|
IFI(T — wo)* T? -
T e+ DO B+)L,A-0)"
T - a-17B =0 _ 40
(|Q|IC’D‘:()ﬂ + 1)|p:(1 _91) | {IA7]|@}[¢1, F]| + |A, || @5 (o, F1|}
TA-140 _ -0
M“BT”@:[(M,F]’ + B, ||@%[¢s, F1}, 47)

|2|I(1-0)
and

| (D;,w]:"‘) (&) - (D;,w]-'u) (t)|

IFII(T — wo)* T?
T e+ DIL,B+DL,(0-v)

|(t2 —wo)”" = (t1 wo)_‘)’
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(T = o) TP|(t2 — w0)™ = (11 —
|.Q|Fq(,3 + I)Fq(l —)

TP (ty — wo)™ — (t1 — wo) ™
[£2]T5(1-v)

O A @2 161, 1| + 1A, | 03062, F1]}

B[ 07160, F)| + 1Byl 05000, P} (48)

When |, — t;| — 0, we find that the right-hand side of (4.6)—(4.8) tends to be zero. Hence,
F is relatively compact on By and the set F(Bg) is an equicontinuous set. From Steps
I to III and the Arzeld—Ascoli theorem, we can conclude that F : C — C is completely
continuous. Therefore, problem (1.1) has at least one solution by Schauder’s fixed point
theorem. O

5 Example
Consider the nonlocal Robin boundary value problems for sequential fractional Hahn-g-
difference equation as given by

1 3 1 e g 2 1
D3 D*u(r) = e 3 (42 1 2ul) + e (2 T D2y (4
33 % ©) (1000n2+t3)(1+|u(t)|)[ ( ) | 3 ol
1[010]
L 2
+eCHTDE uw)|], tel?,
23 273
: 5.1)
1 1 Cilu(t)| 1\ (
—u5+—D5 5=y U —10(= ),
®) 207 3 ®) Xo:l+|u(tl~)| ! 2

1 1 1 >, Dilu(t)] 1\' 2
—u(10) + —D3 , u(10) = 0V g =10( =) + 2[4,
20010+ 75D} 5u(10) §l+|u(t,-)| : (2) 3l

1 [ee]
—L_<¥yY®p <
where C;, D; are given constants with 200062 <35 Ci < 500 and o003 < 2icoDi <
1
100072 *

_1lp_3,_1pg_1,_2,_1 ,_2 - _4 1
Weletoz—g,,B 4,]/—5,9—2,11—5,6[—2,0)—3,(1)0—l_q—sT 10,n = 5k1—10€

_ 1
A2 = 3000 20e’ M2 = 107

1
(100072 + £3)(1 + |u(z)|)

F[t,u(t), Dyu(t), D}, ,u(t)] = [e75) (u? + 2|u))

2
+ e—(%+cosznt) |D? u(t)| + e—(2+sin2nt) |D§ ) M(t)”
2 23

We find that

IA,)[=0308,  |A7|~0.0207,  |B,|~0.0723,  |By|~0.0308,
and

12| ~ 0.00799.
Forall £ € [0,10] and u,v € R, we find that

0
|F[t, u, Dyu, Dy, ,u u] - F[t,v,D v,quv]‘
1

< —u-vl+ | —D2v|+

e| —Dv 1%
1000723 100072 e

1 )
1000728 P

Thus, (H;) holds with ¢; = 0.0000409, ¢, = 0.0000211, and ¢35 = 0.0000137.
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Forall u,veC,

1
|p1() — 1 (v)| < mHU— vile,

1
|2 (1) — o (v)| < 10002 le —vllc.

Thus, (H,) holds with & = 0.000184 and &, = 0.000101.
From

0, =0.2778, 0, =0.2898, 11 =2.2278, 7> =0.5169,
and

® =1.0549,
we find that (3) holds with

1
X ~0.000542 < 3
Hence, by Theorem 3.1 problem (5.1) has a unique solution.

6 Conclusion

A nonlocal Robin boundary value problem for fractional sequential fractional Hahn-g-
equation (1.1) is studied. Our problem contains both fractional Hahn and fractional g-
difference operators, which is a new idea. We establish the conditions for the existence
and uniqueness of solution for problem (1.1) by using the Banach fixed point theorem,
and the conditions of at least one solution by using Schauder’s fixed point theorem.
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