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Abstract
A Lotka–Volterra predator–prey system incorporating fear effect of the prey and the
predator has other food resource is proposed and studied in this paper. It is shown
that the trivial equilibrium and the predator free equilibrium are both unstable, and
depending on some inequalities, the system may have a globally asymptotically
stable prey free equilibrium or positive equilibrium. Our study shows the fear effect is
one of the most important factors that lead to the extinction of the prey species. Such
a finding is quite different from the known result. Numeric simulations are carried out
to show the feasibility of the main results.
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1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following Lotka–
Volterra predator–prey system incorporating fear effect of the prey and the predator hav-
ing other food resource:

du
dt

=
r0u

1 + kv
– du – au2 – puv,

dv
dt

= cpuv + mv – d1v2,
(1.1)

where u and v are the density of prey species and the predator species at time t, respec-
tively. r0 is the birth rate of the prey species, d is the death rate of the prey species, a is the
intraspecific competition of the prey species, m is the intrinsic grow rate of the predator
species; p denotes the strength of interspecific between prey and predator; c is the con-
version efficiency of ingested prey into new predators; d1 is the intraspecific competition
of the predator species; k is the level of fear, which is due to anti-predator behaviors of the
prey. Here we make the assumption that without the prey species, the predator species
satisfies the logistic equation

dv
dt

= mv – d1v2. (1.2)
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It is well known that the logistic equation admits a unique positive equilibrium which
is globally attractive. Therefore, here we assume that the predator species could be per-
manent without the affordable of the prey species. Such an assumption means that the
predator species takes other species as food resources.

The predator–prey relationship has been highly valued by scholars because of its
widespread existence [1–24]. Wang, Zanette and Zou [1] proposed the following Lotka–
Volterra predator–prey system incorporating the fear effect of the prey:

du
dt

= r0uf (k, v) – du – au2 – puv,

dv
dt

= cpuv – mv.
(1.3)

The system admits three nonnegative equilibria, E0(0, 0), E1( r0–d
a , 0) and E2(u, v), where

u = m
cp , and v satisfies

r0f (k, v) – d – au – pv = 0. (1.4)

Concerned with the dynamic behaviors of the system (1.3), the authors obtained the fol-
lowing result (see Theorems 3.1 and 3.2 in [1]).

Theorem A Assume that r0 < d, then E0 is globally asymptotically stable; The boundary
equilibrium E1 is globally asymptotically stable if r0 ∈ (d, d + am

cp ), and the unique positive
equilibrium E2 is globally asymptotically stable if r0 > d + am

cp .

One could easily see that in Theorem A, all the conditions are independent of k, which
means that the fear effect of the prey species has no influence to the dynamic behaviors
of the system. It brings to our attention that in system (1.3), without the prey species, the
predator species satisfies the equation

dv
dt

= –mv. (1.5)

Hence,

v(t) = v(0) exp{–mt} → 0 as t → +∞. (1.6)

This indicates that in system (1.3), the predator species has prey as its unique food re-
source. Now, it is well known that in the nature, predator species often take many species
as its food resource, such that if one resource is scarce, it could take other food resource
to maintain its life. This leads us to propose the system (1.1).

The aim of this paper is to investigate the dynamic behaviors of the system (1.1), and to
find the influence of the fear effect on the prey species.

The rest of the paper is arranged as follows. We will investigate the local and global
stability property of the equilibria of the system (1.1) in Sects. 2 and 3, respectively, and
then discuss the influence of fear effect in Sect. 4. Numeric simulations are presented in
Sect. 5 to show the feasibility of the main results. We end this paper with a brief discussion.
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2 The existence and local stability of the equilibria of system (1.1)
Concerned with the existence of the equilibria of system (1.1), we have the following re-
sults.

Theorem 2.1 System (1.1) always admits the trivial boundary equilibrium E0(0, 0) and
prey free equilibrium E1(0, m

d1
), if r0 > d holds, then the predator free equilibrium E2( r0–d

a , 0)
exists. Also, there exists a unique positive equilibrium E3(u∗, v∗), if

r0 > d +
dd1km + km2p + d1mp

d2
1

(2.1)

holds, where v∗ = m+cpu∗
d1

and u∗ is the unique positive solution of the equation

A1u2 + A2u + A3 = 0, (2.2)

where

A1 = c2kp3 + acd1kp,

A2 = cdd1kp + 2ckmp2 + ad1km + cd1p2 + ad2
1,

A3 = dd1km + km2p + dd2
1 – d2

1r0 + d1mp.

(2.3)

Proof The equilibrium of system (1.1) satisfies the equation

r0u
1 + kv

– du – au2 – puv = 0,

cpuv + mv – d1v2 = 0.
(2.4)

From the second equation of (2.4), one has v = 0 or v = cpu+m
d1

. Substituting v = 0 to the first
equation of (2.4) leads to

r0u – du – au2 = 0. (2.5)

Equation (2.5) has solutions u1 = 0 and u2 = r0–d
a . Hence, system (1.1) admits the trivial

equilibrium E0(0, 0), and if r0 > d holds, the predator free equilibrium E2( r0–d
a , 0) exists.

Next, substituting v = cpu+m
d1

to the first equation of (2.4) and simplify, then we obtain

A1u2 + A2u + A3 = 0, (2.6)

Under the assumption of (2.1), one could easily see that A3 < 0, hence, (2.6) admits a
unique positive solution u∗, consequently, system (1.1) admits a unique positive equilib-
rium E3(u∗, v∗).

The first equation of (2.4) has solution u = 0, substituting this to second equation of (2.4)
leads to

mv – d1v2 = 0. (2.7)

Hence, system (1.1) admits the prey free equilibrium E2(0, m
d1

).
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This ends the proof of Theorem 2.1. �

Remark 2.1 One may curiously, whether the system could exist two, one or none positive
equilibrium, since this may lead to the saddle-node bifurcation, however, this is impossi-
ble. Indeed, if A3 ≥ 0, let us consider the function

F(u) = A1u2 + A2u + A3, (2.8)

since the symmetry axis of quadratic function F(u) is u = – A2
2A1

< 0, F(u) should inter-
sect with the negative half part of the u-axis, which means that the other one solution of
Eq. (2.6) should be negative. Therefore, it is enough for us to consider the situation of (2.1)
and need not to investigate the case

r0 < d +
dd1km + km2p + d1mp

d2
1

. (2.9)

Theorem 2.2 The trivial equilibrium E0(0, 0) is unstable, if

r0 > d (2.10)

holds, the predator free equilibrium E2( r0–d
a , 0) is unstable, and the prey free equilibrium

E1(0, m
d1

) is locally asymptotically stable if

r0 < d +
dd1km + km2p + d1mp

d2
1

(2.11)

holds; the positive equilibrium E3(u∗, v∗) is locally asymptotically stable if

r0 > d +
dd1km + km2p + d1mp

d2
1

(2.12)

holds, i.e., the positive equilibrium is locally asymptotically stable as long as it exists.

Proof The Jacobian matrix of the system (1.1) is calculated as

J =

(
J11 J12

J21 J22

)
, (2.13)

where

J11 =
r0

kv + 1
– d – 2au – pv,

J12 = –
r0uk

(kv + 1)2 – pu,

J21 = cpv,

J22 = cpu + m – 2d1v.

(2.14)
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Then the Jacobian matrix of the system (1.1) about the trivial equilibrium E0(0, 0) is

J
(
E0(0, 0)

)
=

(
r0 – d 0

0 m

)
. (2.15)

The eigenvalues of J(E0) are λ1 = r0 – d, λ2 = m > 0. Thus, the trivial equilibrium E0(0, 0)
is unstable since one of the eigenvalues is positive.

It follows from (2.3) that the Jacobian matrix of the system (1.1) about the predator free
equilibrium E2(u, 0), where u = r0–d

a , is

J
(
E2(u, 0)

)
=

(
r0 – d – 2au –r0uk – pu

0 cpu + m

)
. (2.16)

Under the assumption (2.11) holds, the eigenvalues of J(E2) are λ1 = r0 – d – 2au, λ2 =
cpu + m > 0. Thus, E2(u, 0) is unstable if (2.11) holds, since λ2 > 0.

The Jacobian matrix of the system (1.1) about the equilibrium E1(0, m
d1

) is

J
(

E1

(
0,

m
d1

))

=

(
– dd1km+km2p+dd12–r0d12+d1mp

(km+d1)d1
0

mcp
d1

–m

)
. (2.17)

Then we have

λ1 = –m < 0

and

λ2 = –
dd1km + km2p + dd1

2 – r0d1
2 + d1mp

(km + d1)d1
< 0

if (2.11) holds, consequently, E1(0, m
d1

) is locally asymptotically stable. Also, E1 is unstable
if (2.12) holds, since in this case λ2 > 0.

Noting that (u∗, v∗) satisfies the equation

r0

1 + kv∗ – d – au∗ – pv∗ = 0,

cpu∗ + m – d1v∗ = 0.
(2.18)

Then the Jacobian matrix of the system (1.1) about the positive equilibrium E3(u∗, v∗) is

J
(
E3

(
u∗, v∗))

=

(
r0

kv∗+1 – d – 2au∗ – pv∗ – r0u∗k
(kv∗+1)2 – pu∗

cpv∗ cpu∗ + m – 2d1v∗

)

=

(
–au∗ – r0u∗k

(kv∗+1)2 – pu∗

cpv∗ –d1v∗

)
. (2.19)
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Then we have

DetJ
(
E3

(
u∗, v∗)) = ad1u∗v∗ – cpv∗u∗

(
–

r0k
(kv∗ + 1)2 – p

)
> 0

and

TrJ
(
E3

(
u∗, v∗)) = –au∗ – d1v∗ < 0.

So both eigenvalues of J(E3(u∗, v∗)) have negative real parts, consequently, E3(u∗, v∗) is
locally asymptotically stable.

This ends the proof of Theorem 2.2. �

Remark 2.2 Theorem A shows that under some suitable assumption, the trivial equilib-
rium E0 and the predator free equilibrium E1 of system (1.3) are globally asymptotically
stable, however, Theorem 2.2 shows that E0 and E1 of system (1.1) are unstable. Thus, the
dynamic behaviors of system (1.3) are quite different to system (1.1). Also, system (1.3) has
no prey free equilibrium, while under some assumption, system (1.1) admits a prey free
equilibrium, which is locally asymptotically stable.

3 Global asymptotical stability
The aim of this section is to investigate the global stability property of the prey free equi-
librium E2(0, m

d1
) and the positive equilibrium E3(u∗, v∗) of system (1.1). Indeed, we have

the following result.

Theorem 3.1
(i) The prey free equilibrium E1(0, m

d1
) is globally asymptotically stable if

r0 < d +
dd1km + km2p + d1mp

d2
1

(3.1)

holds;
(ii) the positive equilibrium E3(u∗, v∗) of system (1.1) is globally asymptotically stable if

r0 > d +
dd1km + km2p + d1mp

d2
1

(3.2)

holds, i.e., the positive equilibrium is globally asymptotically stable as long as it exists.

Proof (i) We will prove (i) by constructing some suitable Lyapunov function.
Let us define a Lyapunov function

V1(u, v) = cu + v – v – v ln
v
v

, (3.3)

where v = m
d1

.
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Then the time derivative of V1 along the trajectories of (1.1) is

D+V1(t) = c
(

r0u
1 + kv

– du – au2 – puv
)

+ (v – v)(cpu + m – d1v)

= c
(

r0u
1 + kv

– du – au2 – puv
)

+ (v – v)
(
cpu + d1v∗ – d1v

)
≤ c(r0 – d)u – cau2 – cpvu – d1

(
v – v∗)2

< 0. (3.4)

Thus, V1(x, y) satisfies the Lyapunov asymptotic stability theorem, and the boundary equi-
librium E1(0, m

d1
) of system (1.1) is globally asymptotically stable.

(ii) Under the assumption of (3.2), it follows from Theorem 2.2 that system (1.1) admits a
unique positive equilibrium, which is locally asymptotically stable, and the prey free equi-
librium is unstable. To show that E3(u∗, v∗) is globally asymptotically stable, it is enough
to show that the system admits no limit cycle in the first quadrant (see [25–34]). Let us
consider the Dulac function B(u, v) = 1

uv , then

∂(PB)
∂u

+
∂(QB)

∂v

=
1

uv

(
r0

kv + 1
– d – 2au – pv

)

–
1

u2v

(
r0u

kv + 1
– du – au2 – puv

)

+
cpu – 2d1v + m

uv
–

cpuv – d1v2 + mv
uv2

= –
au + d1v

uv
< 0, (3.5)

where

P(u, v) =
r0u

1 + kv
– du – au2 – puv,

Q(u, v) = cpuv + mv – d1v2.
(3.6)

By the Dulac theorem [34], there is no closed orbit in the first quadrant. Consequently,
E3(u∗, v∗) is globally asymptotically stable.

The proof of Theorem 3.1 is finished. �

4 The influence of fear effect
In the following we will discuss the effect of the fear effect.

Denote

F
(
u∗, v∗, k

)
=

r0

1 + kv∗ – d – au∗ – pv∗,

G
(
u∗, v∗, k

)
= cpu∗ + m – d1v∗.

(4.1)
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Then the positive equilibrium E3(u∗, v∗) satisfies

⎧⎨
⎩F(u∗, v∗, k) = 0,

G(u∗, v∗, k) = 0.
(4.2)

By simple computation, we have

J =
D(F , G)

D(u∗, v∗)

=

∣∣∣∣∣Fu∗ Fv∗

Gu∗ Gv∗

∣∣∣∣∣
=

∣∣∣∣∣–a – r0k
(1+kv∗)2 – p

cp –d1

∣∣∣∣∣
= ad1 + cp

(
r0k

(1 + kv∗)2 + p
)

> 0

for all u∗ > 0, v∗ > 0, k > 0. Thus, Eqs. (4.2) satisfy the conditions of the existence theorem
for implicit functions, then Eqs. (4.2) determine the two implicit functions of

u∗ = u∗(k), v∗ = v∗(k)

for all k > 0. Also,

du∗

dk
= –

1
J

D(F , G)
D(k, v∗)

,
dv∗

dk
= –

1
J

D(F , G)
D(u∗, k)

.

By computation, we have

D(F , G)
D(k, v∗)

=

∣∣∣∣∣–
r0v∗

(1+kv∗)2 – r0k
(1+kv∗)2 – p

0 –d1

∣∣∣∣∣ =
r0d1v∗

(1 + kv∗)2 > 0,

D(F , G)
D(u∗, k)

=

∣∣∣∣∣–a – r0v∗
(1+kv∗)2

cp 0

∣∣∣∣∣ =
cpr0v∗

(1 + kv∗)2 > 0,

and so du∗
dk < 0, dv∗

dk < 0, that is, both the prey and predator density are a decreasing function
of k.

5 Numeric simulations
We will introduce two examples to show the feasibility of the main results.

Example 5.1 Let us consider the following model:

du
dt

=
2u

1 + v
u – u2 – uv,

dv
dt

=
1
2

uv + v – v2.
(5.1)
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Figure 1 Dynamic behaviors of the system (5.1), the initial condition (u(0), v(0)) = (2, 2), (2, 1), (2, 0.2) and
(2, 0.5), respectively

Here, corresponding to system (1.1), we take r0 = 2, d = k = a = p = m = d1 = 1, c = 0.5.
then one could see that

r0 = 2 < 4 = d +
dd1km + km2p + d1mp

d2
1

. (5.2)

Hence, it follows from Theorem 3.1 that the prey free equilibrium E2(0, 1) of system (5.1)
is globally asymptotically stable. Numeric simulation (Fig. 1) also supports this assertion.

Example 5.2 Let us consider the following model:

du
dt

=
5u

1 + v
u – u2 – uv,

dv
dt

=
1
2

uv + v – v2.
(5.3)

Here, corresponding to system (1.1), we take r0 = 5, d = 1, k = a = p = q1 = m = q2 = 1,
c = 0.5, then one could see that

r0 = 5 > 4 = d +
dd1km + km2p + d1mp

d2
1

. (5.4)

Hence, it follows from Theorem 3.1 that system (5.3) admits a unique positive equilibrium
which is globally asymptotically stable. Numeric simulations (Figs. 2 and 3) also support
this assertion.
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Figure 2 Dynamic behaviors of the prey species in system (5.3), the initial condition (u(0), v(0)) = (0.1, 0.5),
(0.6, 2), (0.5, 0.2) and (1.2, 2), respectively

Figure 3 Dynamic behaviors of the predator species in system (5.3), the initial condition (u(0), v(0)) = (0.1, 0.5),
(0.6, 2), (0.5, 0.2) and (1.2, 2), respectively

Now, based on system (5.3), let us furthermore consider the system

du
dt

=
5u

1 + kv
u – u2 – uv,

dv
dt

=
1
2

uv + v – v2.
(5.5)
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Figure 4 Relationship of u∗ and k

Obviously, the positive equilibrium E3(u∗, v∗) satisfies the equation

5
1 + kv∗ – 1 – u∗ – v∗ = 0,

1
2

u∗ + 1 – v∗ = 0.
(5.6)

Solving (5.6) we obtain

u∗ =
–5k – 3 +

√
k2 + 66k + 9

3k
, v∗ =

1
2

u∗ + 1. (5.7)

From Fig. 4, one could see that u∗ is the decreasing function of k. This is in coincidence
with the analysis result of the previous section. Also, from the relationship of v∗ and u∗,
one could easily see that v∗ is a decreasing function of k.

6 Conclusion
Wang, Zanette and Zou [6] proposed a Lotka–Volterra predator–prey system incorporat-
ing the fear effect of prey species, i.e., system (1.3). Their result (Theorem A) indicates
that the fear effect has no influence to the existence and stability of the equilibria. That
is, if for the system without fear effect there exists a positive equilibrium, then the system
with fear effect also admits a unique positive equilibrium, which is globally asymptotically
stable. Hence, the fear effect of prey species has no influence on the persistent property of
the system.

Stimulated by the fact that the predator species generally speaking is omnivorous, and if
a particular kind of food source die out, they will feed on other food resources, we propose
the system (1.1). One may conjecture that system (1.1) has similar dynamic behaviors to
that of system (1.3). However, our study shows that the trivial equilibrium and the preda-
tor free equilibrium are both unstable, while the prey free equilibrium may be globally
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asymptotically stable. This affirms the fact that the predator species may still be perma-
nent, despite the extinction of the prey species.

There are also some similarities between the system (1.1) and (1.3), indeed, if the positive
equilibrium of system (1.1) exists, it is globally asymptotically stable, this is similar to the
property of system (1.1).

From the numeric simulation (Fig. 4) of Example 5.2, one could see that with increasing
fear effect, the final density of the prey species may approach zero, which means that the
prey species will finally be driven to extinction. That is, the fear phenomenon has a neg-
ative effect on the survival of the prey species, it may be one of the essential factor that
leads to the extinction of prey species. Such a finding is quite different from the result of
Wang, Zanette and Zou [6].
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