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1 Introduction

Fractional calculus, as a generalization of classical calculus, is one of those mathematical
topics that received much attention. It has been shown for many years that the using of this
emerging tool in modeling and design helps to improve the efficiency of various sciences.
On the other hand, in recent years the fractional difference equations have been of great
interest, there is much work focused on studying the existence and uniqueness of solutions
[6, 19, 20]. The theory of discrete version of fractional calculus is very similar and parallel
to the theory of continuous case.

Kutter was the first one studied the time differences of fractional order [16]. Diaz and
Osler introduced a discrete fractional difference operator defined as an infinite series [7].
Grey and Zhang developed a fractional calculus for the discrete nabla difference operator
[13]. At the same time, Miller and Ross defined a fractional sum via the solution of a linear
difference equation [17]. Atici and Eloe introduced the Riemann-Liouville like fractional
difference, and developed some of its properties that allow one to obtain solutions of cer-
tain fractional difference equations [5]. Ferreira introduced the concept of left and right
fractional sum/difference and started a fractional discrete-time theory of the calculus of
variations [8, 9]. Holm developed and applied the tools of discrete fractional calculus to
the area of fractional difference equations [14, 15]. Abdeljawad obtained dual identities in
fractional difference calculus which they relate the delta and nabla and the left and right
fractional sums and differences [1-3]. Goodrich and Peterson develop basic theoretical re-
sults in the field of discrete fractional calculus [11]. Moreover, Goodrich studied existence
of positive solutions for discrete fractional systems and geometrical properties [10, 12].
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Our objective is to explore the existence and uniqueness results for the following system

of fractional difference equations:

=Ayit) = Afin(t+a = 1), y2(t + o = 1),...,yu(t + & = 1)),
yila—k)=a?, tela—(k-1),a+ TN erypi= 12,0000, (1)
Ayla+T)= Nya-k)=0, j=2,3,....k—-1,

where a € (k — 1,k] and a? > 0,T > k > 2 are real numbers, A? is the standard Caputo
difference, f; : [0,00) x [0,00) X - - x [0,00) — [0, 00) is continuous.

As we stated in the abstract, our objective is to use fixed point theory in special normed
spaces to achieve an interval for parameter A for which the problem (1) may or may not

have a positive solution.

2 Preliminaries and basic notations
Here, we give some basic definitions and properties of the discrete fractional calculus the-

ory which can be found in [11].

Definition 2.1 LetN, :={a,a+1,...},a € Rand f: N, — R be a real function. The differ-

ence operator A acts on f by

Afx):=fx+1)—f(x), xeN,.
Definition 2.2 The falling fractional power x* is given by

F'x+1)
Fx+1l-a)

x% =

Theorem 2.3 According to the definition of A and the falling fractional power we have

Ax® = a1,

Definition 2.4 The fractional sum of order « for a given function #, for « > 0, is defined
by

X—o

A™h(x) = ﬁ 3 (- o ()= h(i),

forx e {a+a,a+a+1,...}:=N,,, and o (i) = i + 1. The ath fractional difference for o > 0 is
defined by A%h(x) = A" A*"h(x), where x € N,,,,o and n € Nsuchthat0 <n-1<a <n.

Furthermore the Caputo fractional difference for « > 0 is defined by

x—(n—a)
AZh(x) == A0 A" (x) = ﬁ Y (@-o@) A, (2)

i=a

where0<n-1l<ua <n.
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Lemma 2.5 Let « > 0 and h be defined on N,, then

n-1

A ey NLI(%) = () = Y cil — a), 3)

i=0
wherec; €eR,i=0,1,2,..., n-l,andn-1<a <n.

3 Representation of the solution by Green’s function
Now we are ready to represent the solution of the problem (1) by Green’s function.

Lemma 3.1 The discrete fractional boundary value problem

—A%y(t) = Ah(t + o — 1),
Yo — k) = ao, (4)
Ay(@+T)=Nyl@-k)=0, j=2,3,....k—-1,

has a unique solution given by

T+1

y(t) =1 Gt,s)h(s + o 1) + ap, (5)

s=0

where G(t,s) is the Green's function given by

(0=Dt—o+k)(T+a—5s-1)2=2_(t —s—1)2=L,
G(t,S)=m O<s<t-a+l,
(0a-Dt-a+k(T+a-s-1)22, 0<t-a+1<s.

Proof Using Lemma 2.5

t—-a

A
f)=——— Y (t—s-1)%h -1, -1 t+ cot?
¥(t) F(oz);( s—1)* T h(s+a-1ys+a—1)+co+ct+c
+---+ck_1tk;1,

forc;eR,i=0,1,2,...,k-1.

Taking difference operator we find

t+l-o

Ay(t) = “T@ Z (@-1D)(t-s-1)*Zh(s+a-Lys+a—1)) +c1 + 2t
-0

+oe+ (k= l)ck,ltk’—2,

t+2-a
A2y(t)=— Z —1)(a =2)(¢ l)ﬁh(s+(x—1,y(s+a—1)) +2¢y
s=0

+ (k= 1)(k = 2)cp_1 853,

Page 3 of 16



Ghanbari and Haghi Advances in Difference Equations (2020) 2020:247 Page 4 of 16

t+k—1-a

A0 = -1 XO: (@=1)-(@—k+1)(t—s— 1) h(s +a - Ly(s +a - 1))
+(k=1)(k=2)---cr1.

From Ay(a —k) =0,j=2,3,...,k—1,wegetcy=c3=---=ct_; =0, and by Ay(a + T) =
0, y(o — k) = ay, we have

T+1
1= %Z(a—1)(T+a—s—1)ﬁh(s+a—1,y(s+a—1)),
s=0

and ¢g = —(a — k)c1 + ag, then we have

T+1

; MZ(a_1)(T+a-s_1)ﬂh(sw—1,y(5+a—1)) +do.
s=0

“= I'(a)

Therefore, the solution of (1) is

NN e _ ~
y(t)——r(a)g(t s=1Dh(s+a—1,y(s +a - 1))

M%(a—l)(T+a—s—l)ﬁh(s+a—ly(s+a—1))

Ie) ’

A T+1 ,
+m;(a—l)(T+a—s—1)—h(s+a—1,y(s+a—1))+a0

T+1
=A;G(t,s)h(s+o¢—l,y(s+a—1))+a0. .

Lemma 3.2 The Green’s function G given in Lemma 3.1 satisfies in the following condi-
tions:

(i) G(t,8)>0,(ts) €fa—(k-1),a+ T]Na—(k—l) x [0, T + 1]n,-

(i) maxrefa-(-1)0+7hy, ) G6:8) = G(T +,5).

(iii) min te@xT) 3asT)

1 1
, : G(t,s) > 3 MaXefa-(k-1a+ Ty, ;) G(t,s) = ;G(T +a,5).

4 4 ! a—(k-1

Proof The proof is similar to the proof of Lemma 2.4 in [6]. d

4 Existence of positive solutions
In this section, we define the Banach space

&= {yi: [ — ko0 + Ty, = Rlyilee = k) = a?,
Ayi(a +T) = Ny(a-k)=0,j=2,3,....k— 1},

with norm

"yi“fl‘ :maX|yi(t) , te [O[—k,O[+ T]Na,k'
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It is clear that &; is a Banach space. Put £ := & x & x --- x &,. By equipping &£ with the
norm

||(ylry2r .. '»yn)” = max{ ||J’1 ”51’ ||J’2||€2; ceey ||J’n||8,, }»

it follows that (£, || - ||) is a Banach space. It is clear that (y1,%s,...,¥,) is solution of (1) if
and only if y; satisfies

T+1
yi(t) = MZ G(t,s)ﬁ(yl(s +a—1),y25+a—1),...,y.(s + o — 1)) + a?.
s=0
Let 7;: £ — &; be the operator defined by
77()’1:)’2, e ;J’n)(t)

T+1

= )‘iz G(t,s)ﬁ(yl(s ta—1),y2(s+a—1),...,y,(s + o — 1)) + a?. (6)
s=0
Define the operator 7 : £ — £ by
T(yl’yZ!'”’yn)(t)
= (ﬂ(yl)y%"'}yn)(t)”]dZ(yI)yZ;H')yn)(t)}'u),]:q(ylrybtH)yn)(t))' (7)

Let P be a cone defined by

. 1 .
73:{(yl,yz,...,yn)eé‘:yi(t)zo, min yiz—”(yl,yz,...,yn) ,z:1,2,...,n}.
t 1

G[%YB(QIT)
Lemma 4.1 Assume that T is the operator defined in (7). Then T : P — P.

Proof By definition of T;, for (y1,y,...,y.) € £, we have
770’1:)/2,“-,%)“)20, i:1,2,.,,,}’l.

We show that

tel azT , 3(0t4+T)

. 1
min 7?(}’1;)’27---7)’;1)(’5) = — || (ylty%--'xyn)Hr
]
for (y1,y2,-..,¥4) € £. By Lemma 3.2(iii), we have

te[azT,l’v(OgT)

min 7;()/1,}’2;"»%1)@)
]

T+1
= min AiZG(t,s)ﬁ(yl(s+oz—1),y2(s+o¢,...,yn(s+oe—1))+a?
s=0

tE[O‘ZT,E‘(aL;T)]

T+1
A
= max ZG(t,s)fi(yl(s+oz—1),y2(s+oz—1),...,y,,(s+oz—1))

te [a—(k—l),a+T]Na_(k_1) 0
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a’ 1
+ ZL = 1||’E()’1,y2,...,yn)||.

This proves that 7 : P — P. O

Theorem 4.2 Let f; : [0,00) X [0,00) X --- X [0,00) — [0,00) be given fori=1,2,...,n. If
1, Y25 -+ Yu) € E is a fixed point of T. Then (y1,¥s,...,Vn) € € is a solution of (1).

Proof Let (y1,¥2;..-,yx) € € be a fixed point of 7, then we have

yi(t)

:77'()/1,3/2,--',%)(5)20, i=12,...,n

where 7 is defined as in (6). It is easy to see that

T 92yl = k) = a

and

AT 6y -y @+ T) =T,y -yl + T+ 1) = iy, y2, - yn) (e + T)

T+1

kiZG(a + T+ l,s)ﬁ(yl(s+a— 1),92(s+a—1),...,9,(s + o — 1)) +a?
s=0

T+1

—kiZG(a + T,s)ﬁ(yl(s+a— 1, y2(s+a—1),...,y,(s + o — 1)) +a?
s=0

T+1
AiZ[G(a +T+1,8) - G(a + T,s)]f,«(yl(s +a-1),..,y(s+a- 1))

s=0

)\i T+1 . B
p(a);[(O‘_l)(“*'T+1—0!+/<)(T+a—s—1)——(oz+T+1—s—1)—

—(a—l)(a+T—a+k)(T+a—s—1)ﬂ+(a+T—s—l)@]

X fi(ni(s+a—1),p5(s + @ = 1),...,yuls + @ — 1))

PURNEL wo [Tla+T=s+1) (a+T-s)
r(a);{(a_l)(“a_s_l)_[ r(T-s+2) _F(T—s+1)“

x filyi(s+a—1),y2(s + = 1),...,y,(s + a = 1))

T+1

A w2 (+T-s)'a+T-s) I'(a¢+T-5s)
(@) ;{(O‘_l)(““_s_l) - |:(T—s+1)F(T—s+1) - F(T—s+1)i|}

xfilyi(s+a—1),y2(s +a—1),...,yu(s +a — 1))
T+1

Ai w2 Flao+T-s){a+T-s
I () Z{(a—l)(T+a—s—1) - |:F(T—s+1) (T—s+1 _1)]}

s=0

xfilyi(s+a—1),y2(s+a—1),...,yu(s + & — 1))

T+1

Ai o
e g):[(oz—l)(Tﬂx—s—l)—2

(- (a+T-s)
_(T—s+1)F(T—s+1)]

Page 6 of 16



Ghanbari and Haghi Advances in Difference Equations (2020) 2020:247 Page 7 of 16

xfilyr(s+a—1),y2(s +a —1),...,yu(s + o — 1))

T+1

N ﬁ_(oc—l)l"(oz+T—s)
—F(a);[(a—l)(T+a—s—1) T =512 ]

X filyr(s+ o= 1),y2(s + = 1),...,yu(s +a = 1))

T+1
)\',

:F() [(a (T +a-s-1)%2— (@ - 1)(T +a — s - 1)2]

xﬁ(yl(s+a —1)pa(s+a—1),...,yu(s +a = 1)) =0.

Finally, whenO<t-a+1<s<T+1,

G(t,s)=(a - 1)t —o + k(T + ¢ —s — 1)%2,
then

NG(t,s)=0, j=2,....k-1.
Therefore, we conclude

NT LYoy @—-k) =0, j=2,...,k-1,
which completes the proof. d
Theorem 4.3 ([20]) Let £ be a Banach space, and let P C € be a cone in E. Assume §21, §2,

are open subsets of E with 0 € 2, C 21 C 2, and let S : P — P be a completely continuous
operator such that either

(AL ITwl < lwll,we P Nnos2y, ITwll > lwll,w e P N2, or

(A2) I Twl = lwll,wePNos2y, ITwll < llwll,w e PNas2,.

Then T has a fixed point in P N (25 \ 21).

Now we find the parameter interval for which (1) has a positive solution. We use the

following notations:

F?:limsupfi(yl’yz’ '
yi—0* Yi

F>* = limsupﬁ—(yl’ybm’yn),
Yi—>+00 Vi

£ —hmlnff—()/hyz’ I
yi—>0* Vi

£~ limingh01Y2 0 dn),
yi—>+00 Yi

2= {12y €€ | G1y2 9| <7}
K =max G(t,s), for(t,s)e [a —(k=-1), 0+ T]N e X [0, T +1],
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<S(a+T) ) <a+T >
l= —a+1)+1-———-a+1).
4 4

In this section without loss of generality, we consider the operator 7;, without a?.

Theorem 4.4 If -f;°Kl > F)K(T +1),f°KI # 0 hold, then for each

-1
e ((%ff"l(l) , (FOK(T + 1))‘1> ®)

the problem (1) has at least one positive solution. Note that we assume (f°KI)™ =0 if
[ = +00 and (F)K(T + 1)) = +00 if Y = 0.

Proof If A; satisfies in (8) and ¢ > 0 is given such that
1 00 - 0 -1
16 (fl - e)Kl <M< ((Fl- + 8)1((T + 1)) , 9)

then, using the notation with F?, there exists r; > 0 such that for (y1,%3,...,¥x) € §2,
[i01,02 - 9m) < (B + )i (10)
Soif (y1,¥2, .-, ¥x) € 3P with [|(y1,¥2,...,¥x)|l = r1 then, by (9) and (10), we have
| Ti01 520090 | g, < 24 (D + &) [ 192 9) [K(T + 1) < 11 = [ 1,929 |-
Hence for (y1,¥2,...,¥n) € PN 382y,
| T w200 = max{ [ Tiy1, 520 o9 [ o} < [ G132, 9) |- (11)

Let r3 > 0 be such that for y; > r3

[i01Y2090) = (7 =€)y (12)
If (y1,92,+..,9s) € 0P and ||(y1, 2, ...,¥n)|l = r» = max{2ry, r3} then using (9) and (12) im-
plies
T+1
| T 52009 g, 2 T 520 90) = 2i ) GES)i 01,901 9)
s=0
(LO’IT) —a+1)
> )»,»(ffo - 8) Z G(t,s)yi(s +a —1)
s:(#—o&l)
- T =Ly vl lKl
= (f° - e)KI 4

|| (yl’yz’ . 'ﬁyn)”.
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Then for (y1,¥2,...,y,) € PN 382,

”T(ylryZ; o ’yn) ” = max{ ” 77()’1,)/2, o )yn) ||gl_} 2 ” ()’1,)/2, oo 1yn) ” . (13)
Now, from (11), (13), and Theorem 4.3, we see that 7 has a fixed point (y1,¥2,...,¥,) €

PN (.Q_,2 \ £2,,), where r1 < |[(y1,%2,...,¥4)|| < ra, and clearly (y1,%2,...,¥,) is a positive
solution of the problem (1). O

Theorem 4.5 If --f Kl > F°K(T +1),f°KI # 0 hold, then for each

-1
A€ ((1—16ﬁ°Kl) (FPK(T + 1))‘1) (14)

the problem (1) has at least one positive solution. Note that we assume (f°KI)™ =0 if f° =
+00 and (FPK(T +1))™! = +00 if F° = 0.

Proof Suppose A; satisfies in (14) and ¢ > 0 is such that
1 0 - 00 -1
6 (FP-e)Kl) =<rxi<((F*+e)K(T+1) . (15)

By using the notation of £°, there exists r; > 0 such that for (y1,y2,...,¥x) € 2y,

S0uy2 o) = (2 - €)yi (16)

So if (y1,%2,.--,y4) € 3P with ||(y1,¥2,...,¥,)|l = r1 then analogous to Theorem 4.4, we de-
duce

|01 92,- 090 6, = | 01520090 -
Hence, for (y1,y2,...,yx) € PN 32,
1T 0wy 9| = [ 015209 |- (17)
Next, we may choose R, > 0 such that for ; > R,
[0y 90) < (F° + )y (18)
Case 1. If f; is bounded, then, for some N; > 0, we have
fiv,y2,..,90) <N;  for y; € [0,+00).

Now let r3 = max{2r, AN;K(T + 1)} and (y1,¥2,...,¥s) € P with ||(y1,¥2,...,¥4)|l = 13, thus

T+1

”7;()/11}’2,“.,)%)”& S )"i Z G((X + T»S)_fi()/h)’z;uqyn)

s=0
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T+1
<AiN; Y Glo+T,s) = LK(T + 1)N; <3
s=0

= || (ylryZ; .. )_yn)”

Hence, for (y1,2,...,Yu) € 0825,

||T(ylry2:"'ryn)” ”()’1:)’2, 3 Yn ” (19)

Case 2. If f; is not bounded. Then for some r, > max{2r;, R;} we have

S0y Yn) = filray ray .. ra)  for (71,92, .5 V) € 25,

If (y1,92,---,9n) € P with ||(y1,¥2,-..,¥n)|l = ra, then, by (15) and (18), we have
T+1

1 7:615 52 .. ,yn)||g Ai ZG(a+ T,8)(F° +¢&)yi(s+a—1)

<M(EX +6)|0y2s- o) |[K(T + 1)
= MK(T + 1D)(F + )| 01,92, 9) |
= H(yI’er"-’yn)”'

Thus (19) holds.
For (y1,%2,...,y4) € PN 0£2,,, we have

||T(y11y2;~~ryn)|| ||()/1,y2, ryrl || (20)

Theorem 4.3 implies that 7 has a fixed point (y1,¥2,...,¥,) € P N (£2,, \ £2,,), where r; <
11,92, -, ¥u)ll < re, and easily (y1,¥2,...,¥,) is a positive solution of (1). O

Theorem 4.6 Suppose there exist ry > ry > 0 such that, for A; > 0,

ry "
oir;lax SiLy2 0y < MK(T + 1)’ 0<y1£1 [0 9m) 2 IA Kl

Then (1) has a positive solution (y1,¥2,...,Ys) € P, where r1 < ||(y1, Y25« Yu)| < 1.

Proof If (y1,¥2,...,¥n) € PN 382,,, we have

T+1
||7;()/1;y2, e ryn) ||5i = 7?()’1;)’2, e )yn) = )\'i Z G(t;s)ﬁ()/hyz, e ryn)
s=0
(M—aﬂ)
>k Y. Gla+T,s) O?yligrlﬁ(yl,yz,...,yn)
s=(¥—a+l)
)\. I(l = ||(y17y2:~~ryn)”'

Y4y, 11(1
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That is, for (y1,¥2,...,¥,) € PN 382,

||T(ylry2;-~~ryn)|| ||()/1,y2, ryn ||

Also, for (y1,%2,...,¥,) € P N 352,,, we have

T+1
[7e0m 5203, = 24 D_ Gl + Tos) max fion,p,-0090)
s=0
<MK(T + 1) —2—— =1y = |01, y20- 30|

MK(T + 1)

That is, for (y1,¥2,...,¥:) € PN 382,,,

||T(ylry2;-~~ryn)|| ||()/1,y2, ryn ||

Thus, by Theorem 4.3, the problem (1) has a positive solution (y1,y3,...,¥,) € P, where
7'1§||0/1;y2;~-,yn)||§7’2. O

5 Nonexistence results
In order to find some nonexistence results for problem (1), we consider the following con-
dition:

(H) sup,,ominy, e, fi(y1,925-.»¥n) > 0.

Theorem 5.1 Assume the condition (H) is true. Ifl-"i0 < +00 and F{° < +00, then there is a
positive real number A > 0 such that for 0 < 1; < 1 the problem (1) does not have a positive

solution.

Proof Since F?, F are finite, we can find positive real numbers [}, 12,71, 75, where 1 < 1,

and

f LY yn) <lyi,  fory; €[0,n],

f()’l,yz, ;yn = l Yis fO[' Yi S [7‘2, +OO).
Let L; = max{[},/?, max,, <y, <, {W}}. Then we have
Si1y2 - 9m) < Liyi,  for y; € [0, +00).

Assume (w1, wa, ..., w,)(t) is a positive solution of (1). We find a contradiction for 0 < 4; <
A9 := (LiK(T +1))7L. Since T (w1, wa, ..., w,)(£) = (W1, Wa,...,w,)(t) for t € [@ —k, o + Tz, 4

||(w1,wz,...,w,,)|| = ||T(w1,W2,...,w,,)(t) || = max{||7,7(w1,wz,...,w,,)||gi}

< MK(T +1)L; ||(w1,wz,...,w,,)|| < H(wl,wz,...,w,,)H,

which is a contradiction. g

Page 11 of 16
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Theorem 5.2 Suppose (H) holds. If f° > 0 and f° > 0, then there is a real number 10 > 0
such that for 1; > 1) the problem (1) does not have a positive solution.

Proof Since f2, £ are positive, there exist y;!, % r1,r5 >0, where r < 3, and

f;’(yl:y%---;yn) = yilyiﬁ fOf)’i € [0,7’1],

F LY 90) = vy for y; € [ry, +00).

Let y; = min{y}!, 2, min,, <y, <, {W}} > 0. Then we get

fi()’l,yz,m,yn) = YiYis fOI‘J’i € [O» +OO)~

Assume (wy, ws,...,w,) is a positive solution of (1). We find a contradiction for A; > A? =
(£y:KD)™. Since T (w1, wa,..., wa)(t) = (W1, wa, ..., w,)(¢) for t € [a — k, o0 + Tz,

a—k?

”(Wl: WZ;-urwn)” = ||T(W1) WZrH';Wn)(t) ” = max{ ||77(W17 WZ;-urWn)”g’,}

1 1
= hivig [owr, wa, ..., w)| 2> lowr, wa, ... wi) |,

which is a contradiction. O

6 Uniqueness
Theorem 6.1 Assume that the Banach space £ := £ x Ey X - -+ x &, is endowed with the

norm

”()/10’2» .. ryn)” = maX{ ||)’1 ”51’ ||)’2||£2: e ||)/n||£,, }r

and f; satisfying the Lipschitz condition

” (ﬁ(yl:er’ . wyn) _ﬁ(wlr Wa,.. 'rwn)) ” =< Ll” (yl:yZ! .. -7yn) - (erWZN e Wn) ) (21)

where y;, w; € E;,L; > 0. Then the problem (1) has exactly one positive solution provided
L(T + DK | (A, ..o )| < L,

where L = max{L;,i = 0,1,2,...,n}, K = maxG(t,s) and |(A1,...,A,)| = max{|Ar;],i =
0,1,2,...,n).

Proof For any (y1,¥2,--.,¥n), (W1, Wy, ..., w,) € &, using the assumption (21), we have

|| (77(3’1»3/2» .. ~:yn) - 7;(W1, Wos.oes Wn)) Hgt,
T+1

<Y Gla+T,9)| (052 0) = fiwi, w,...,w) |

5=0
< LT + DK |51, 92, 9n) = (Wi, wa, .., ) |

< L(T + 1)1(”()"1) '~1)\'n) || ||()’17y2; .. 'y_yn) - (er Wa,.. ~1Wn)

’
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i=1,2,...,n Thatis,

T 15200 m) = Twi, wa, . )|
= [(Ti00 Y209 TaG1 92,5 90))
—(Tiwi, Wy, W)y oo, Tu(wi, wa, o) |
= [(TiG 52 90) = Tiwi, way ., W), -
(T2 -3 9) = TaWr, wa, ..., wy)) |
= max{ |[(Tiy1,y2 - ¥n) = Ti(wi, wa, ..., wy)) H&,i =0,1,...,n}

=< L(T + 1)1<||()"11 . '-’)"}’1) || ||(y17y21 .. ')yn) - (Wh Wa, .. -;Wn) ”

Since L = max{L;,i=0,1,2,...,n}and ||(A1,...,A,)| = max{|A;],i=0,1,2,...,n},for L(T +
1K|[(X1,...,An)|l < 1, the operator T is the contraction mapping. Therefore, the problem

(1) has exactly one positive solution. O

7 Example
Example 7.1 Suppose that @ =1.8, T = 10,1, >0, and @) > 0 is an integer and

Ay () + 2fiy1,92) = 0, 71(=0.2) = af, Ay1(11.8) =0, (22)
A%y, (t) + Aafo(y1,92) =0, ¥2(~0.2) = a9, Ay,(11.8) =0,

where

(7 + 93 +y1) (& + cos(y192))

Sibuy) = 300y + 127, +1

Hnys) = O3 +y3 +y2)(4 + sin(y172))
20172 20y, +2007, +1

Clearly fi(y1,y2) : R* x R* — R* is continuous. Moreover, it is easy to prove that

) 1 . , 1
F® = hmsuPﬁ(yl »2) =—, F3° =11msupfz—(y1 72) =,
y1—>00 1 60 Jp—ro0 ¥a 40

y1—>0*

£ timintA0222) 4 o 2002
71 y2—>0* )2

Therefore, from Theorem 4.5, for each
A1 € (0.366,3.4441), Ay € (0.366,2.2961),

the boundary value problem (22) has at least one positive solution.
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Example 7.2 In this example we focus on the linearized system as follows:

t)+ 10(1)03’1 =0, 91(=0.02) = a?,
0.02) = Ay, (12.98) = 0,

7(
y1(-

A7 yZ(t) 1000)’2 =0, Y2 ( 002) ﬂz,
y2(=

0.02) = Ay,(12.98) = 0, (23)

Agys(t) + m)’fﬂ =0,
y3(=0.02) =ad,  A2y3(-0.02) = Ay;(12.98) = 0,

A%ya(t) + 2594 =0,
y4(=0.02) =ad,  A2y,(~0.02) = Ay,(12.98) = 0,

where o =2.98, T =10,1; >0, and a? > 0 is an integer and

](1()’1:)/2,}’3;)’4) y f2(y1,)/2,y3,y4) y

1000 1000

)3 ,ﬂL(yl:yZ:_ySryAL) =

,ﬁi(yl;yZ;yS’y‘L)

1
1000 10007

Clearly fi(y1,52,73,74) : R* x R* x R* x R* — R* is continuous. Take [} = I? = [} = I} = 0.
It is easy to prove that

) ’ ) 1 . ) ) ) 1
F® = lim Supfl O1y2,93,94) _ , E°-lim supr(yl Y293 Y4) ’
y1—>00 it 1000 Yo —>00 y2 1000
) ’ ) 1 . ) ’ ) 1
F° = limsupf?’(y1 ¥2:93:34) = , F = hmsupf40q Y2:93:Y4) _ ,
y3—>00 y3 1000 Y4—>00 Ya 1000
) ’ ) 1 . ’ ) ’ 1
FO ~ lim sup HO1y2,93.94) _ FO = limsup S92, 93:9) _
1 —)0* J/l 1000 y2—>0+ yz 1000
) ’ ) 1 . ) ) ’ 1
F) = limsupfg'(y1 Y2:93:94) = , FO- llmsupﬁl(yl ¥2:Y3:Y4) _ ,
y3—0* Y3 1000 ya—0* Ya 1000
’ ’ ’ 1
L= max| 2,2, 8, max Ti0072723) 29~ 0.6078.
r1<y<r Vi 1000

Thus, the conditions of Theorem 5.1 are satisfied. Therefore the problem (23) does not
have a positive solution for 0 < A; < A?. Moreover, we have

) b b 1 . . 7 ) b 1
fo - 1iminffl(y1 V2,93, ¥4) _ e hmmffz(yl Y2, Y35 Y4) _ ’
y1—>00 Y1 1000 y2—>00 ¥ 1000
2’ ’ b 1 . . 7 7 b 1
f3° = liminffs(y1 V293 ¥4) = , = 11m1nff4(y1 V2,93 74) = ,
¥3—>00 s 1000 Y00 Vi 1000
1y Y2,)3 1 3»Y2,Y3, 1
ff’:liminfﬁ(yl Yayuye) L £9 = limin AT
y1—>0* Y1 1000 yp—0* Y2 1000
1y )V2,)3 1 V2,73, 1
fsozliminff?’(h Ypyuye) L 0 _ limin NAVIDENC TN
y3—>0* ¥3 1000 y3—0* Ya 1000
Silt, 51,92, Y3, ¥a) 1
=64, mins y;, v, v,y , min = s
Yi= i [Vz yz yz yl 1<yl<r2 Vi 1000
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1) A~ 16.4842.

Thus, the conditions of Theorem 5.2 are satisfied. Therefore the problem (23) does not

have a positive solution for A; > 17.

8 Conclusion

In this research we consider a typical system of Caputo fractional difference equations
of the form (1). Using the Guo—Krasnosel’skii fixed point theorem, we find a parameter
interval for existence and nonexistence of positive solutions dependent on the parameter
A and two examples are given to illustrate the main results.

In this paper we used Caputo discrete fractional operators on the time scale Z. It could
be interesting to extend this work to the time scale 4Z. Working on 4Z,0 < h < 1 rather
than on Z makes it possible to guarantee the convergence of solutions for a larger class of
fractional difference initial value problems [4, 18].
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