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1 Introduction
Over the past few decades, the problem of analysis on Ulam type stability (which was first
posed by Ulam in [1]) has already been proved to be an important subject in the area
of stability theory and mathematical modeling. For details, one can refer to [2–8] and the
references therein, where the Ulam type stability of different type equations was discussed
via different approaches, like the Gronwall lemma and the method of Picard operators
[2, 3], the technique of integral factors [4, 5], the Laplace transform approach [6–8].

As we all know, fractional calculus [9, 10] is quite a significant branch of mathematical
area and has been posed almost at the same time as the classical ones. Fractional calculus
has been proved to be a powerful and effective tool for explaining the physical phenom-
ena and has been widely used in fractional modeling which can describe complex systems
more specifically and realistically. Many fractional derivatives have been proposed so far,
they can be roughly classified into two types: local and nonlocal operators. The nonlocal
fractional operators, like the well-known Riemann–Liouville (RL) and Caputo (C) deriva-
tives, the newly defined Atangana–Baleanu–Caputo(ABC) derivative [11] (which gener-
alizes the Caputo–Fabrizio(CF) derivative [12, 13] by using the Mittag-Leffler function as
the kernel which is both nonsingular and nonlocal), the Caputo–Hadamard (CH) deriva-
tive [14, 15], and some generalized nonlocal fractional derivatives [16–19], are very useful
for studying the complex dynamical systems in physical phenomena. The unique prop-
erty that these fractional calculi have in common may be the linearity, while not all these
fractional derivatives obey the classical properties like the product rule, the chain rule,

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02672-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02672-3&domain=pdf
mailto:jiangwei@ahu.edu.cn


Wang et al. Advances in Difference Equations        (2020) 2020:251 Page 2 of 18

etc. In order to overcome these or other difficulties, in [20], the authors introduced a new
simple and well-behaved local derivative called conformable fractional derivative, which
is just defined on a basic limit definition and satisfies almost all the properties that the
classical integer-order derivative owns. In [21], the author developed this new derivative
more specifically and generalized many useful and valuable results. Since then, more and
more attention [22–28] has been paid to this new derivative, and many questions were
solved by using such a definition. Some history about the development of the theory of
conformable derivatives can be found in [29, 30]. In addition, it is worth noting that the
authors in their recent work [31] pointed out that the conformable derivative really results
from the ordinary derivative with the change of variable t → (t – a)α/α.

With the development of fractional calculus, fractional differential equations have been
playing an increasingly important role in the field of differential equations, we refer the
reader to the papers [32–35], where some new existence results and some new methods
of new types of nonlocal fractional operators with nonsingular kernels were discussed.
Particularly, the authors in [36] investigated the Hyers–Ulam stability of linear fractional
differential equations in the frame of the nonlocal ABC fractional derivative by using the
Laplace transform method (via the Wright function) and established generalized Hyers–
Ulam–Rassias stability results for nonlinear problem with the help of Gronwall’s inequal-
ity. The authors in [19] extended the Ulam–Hyers stability and Ulam–Hyers–Rassias sta-
bility theory to differential equations with delay and in the frame of a certain class of gener-
alized Caputo fractional derivatives with dependence on a kernel function, their methods
are based on Gronwall’s inequality in the frame of the generalized nonlocal fractional op-
erators. The authors in [37] studied the existence of solutions and Ulam’s stability for the
conformable fractional differential equations with constant coefficients

⎧
⎨

⎩

Tα
a x(t) = λx(t) + f (t, x(t)), t ∈ (a, b]or(a,∞), 0 < α < 1,

x(a) = xa,

where λ ∈ R/{0}, Tα
a x(t) denotes the conformable fractional derivative (CFD) starting from

a of a function x of order α (which will be given in Definition 2.1) and f ∈ C([a, b] × R, R).
After the explicit representation of solutions had been given, their approaches were based
upon the Picard iterative approach, the fixed point theories, and the integral inequalities.

Considering the availability and practicability of Laplace transform both in the study
of the solutions of integer-order differential equations and fractional-order differential
equations, in this paper, we first utilize the method based on the conformable fractional
Laplace transform technique (which was introduced in [21]) to investigate Ulam’s stability
of the following linear fractional differential equation in the frame of the local conformable
derivative:

⎧
⎨

⎩

Tα
t0 x(t) + βx(t) = f (t), t ∈ (t0, T), t0 < T ≤ +∞,β ∈ R,

x(t0) = x0,
(1)

where t0 is the initial time of the system, f is continuous on [t0, +∞) and conformable
exponentially bounded (see Definition 2.16). According to [37], we can recall that a func-
tion x ∈ C1([t0, T], R) is the solution of (1) if x satisfies Tα

t0 x(t) + βx(t) = f (t), t ∈ (t0, T] and
x(t0) = x0.
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Next, this method is also applied to study the Ulam type stability of linear non-
homogenous conformable fractional differential equations, linear Langevin equations de-
scribed by two same conformable fractional derivatives, and linear conformable integro-
differential equations. Finally, we give an example to illustrate our results.

Notations: R+ denotes the set of all real positive numbers, Rn represents an n-
dimensional space, Rn×n denotes the space of all n × n matrices. Let |x|(·) be any vec-
tor norm (e.g., · = 1, 2,∞) and ‖(·)‖ denote the matrix norm induced by this vector.
C([a, b], R) denotes the set of continuous functions from [a, b] into R and Cm([a, b], R) =
{x ∈ C([a, b], R) : x(m) ∈ C([a, b], R}, where x(m) denotes the mth continuously differentiable
function x.

2 Preliminaries
This section collects some basic definitions, notations, remark, and necessary lemmas
which are used throughout this paper.

Definition 2.1 (see [21] Conformable fractional derivative) Let f : [a, +∞) → R be a func-
tion, then the conformable fractional derivative(CFD) starting from a of the function f of
order α, 0 < α ≤ 1, is defined by

Tα
a f (t) = lim

h→0

f (t + h(t – a)1–α) – f (t)
h

for all t > a.

Lemma 2.2 (see [21]) Let α ∈ (0, 1], if f is differentiable, then the following relationship
between the CFD and the classical first-order derivative holds:

Tα
a f (t) = (t – a)1–αf ′(t).

Definition 2.3 ([21] Conformable factional integral) Let f : [a, +∞) → R be a function,
then the conformable fractional integral(CFI) starting from a of the function f of order α,
0 < α ≤ 1, is defined by

Iα
a f (t) =

∫ t

a
f (s) dα(s, a) =

∫ t

a
f (s)(s – a)α–1 ds,

if the Riemann improper integral exists.

Lemma 2.4 (see [21]) Let α ∈ (0, 1], and f be a continuous differentiable function on
[a, +∞), then for all t > a, we have

Iα
a Tα

a f (t) = f (t) – f (a).

Definition 2.5 (see [21] Conformable fractional exponential function) For every t ≥ a,
the conformable fractional exponential function (CFEF) is defined by

Eα(λ, t – a) = exp
(

λ · (t – a)α

α

)

=
∞∑

k=0

λk(t – a)αk

αkk!
, 0 < α ≤ 1,λ ∈ R.
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Remark 2.6 Like the Mittag-Leffler function’s irreplaceable role in the solution of the
classical fractional-order differential equations, the conformable fractional exponential
function plays an analogous effect in the solution of conformable fractional differential
equations.

Lemma 2.7 For any β ∈ R and t ≥ s ≥ a,

Eα(–β , t – a)Eα(β , s – a) ≤ 1.

Definition 2.8 (see [21] Conformable fractional Laplace transform) Let α ∈ (0, 1], f :
[a, +∞) → R be a real-valued function. Then the conformable fractional Laplace trans-
form (CFLT) starting from a of the function f of order α is defined by

Lα

{
f (t)

}
(s) =

∫ +∞

a
Eα(–s, t – a)f (t) dα(t, a) =

∫ +∞

a
Eα(–s, t – a)f (t)(t – a)α–1 dt.

Lemma 2.9 (see [21]) For a constant δ,

Lα{δ}(s) =
δ

s
, s > 0.

Lemma 2.10 (see [21]) Let f : [a, +∞) → R be a differentiable function such that
Lα{f (t)}(s) = Fα(s) exists. Then

Lα

{
Tα

a f (t)
}

(s) = sFα(s) – f (a),

and the relationship between the usual Laplace transform and CFLT can be represented as

Lα

{
f (t)

}
(s) = Fα(s) = L

{
f
(
a + (αt)1/α)}

(s),

where L{f (t)} =
∫ +∞

0 e–stf (t) dt.

Remark 2.11 It is worth mentioning that, unlike the usual Laplace transform, the expres-
sion of CFLT demonstrates that it is closely related with the fractional order α. In other
words, for a function f such that Lα{f (t)}(s) and Lβ{f (t)}(s) exist for 0 < α,β ≤ 1, then

α 	= β ⇒ Lα

{
f (t)

}
(s) 	= Lβ

{
f (t)

}
(s).

Remark 2.12 Without loss of generality, we can denote L–1
α as the inverse of CFLT. For

example,
(i) since Lα{Eα(λ, t – a)} = L{eλt} = 1

s–λ
, s > λ, we have

L–1
α

{
1

s – λ

}

= Eα(λ, t – a);

(ii) due to Lα{1 – Eα(–λ, t – a)} = L{1 – e–λt} = λ
s(s+λ) , s > 0, then

L–1
α

{
λ

s(s + λ)

}

= 1 – Eα(–λ, t – a);
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(iii) since Lα{cosω
(t–a)α

α
} = L{cosωt} = s

ω2+s2 , s > 0, then

L–1
α

{
s

ω2 + s2

}

= cosω
(t – a)α

α
.

Definition 2.13 (see [25] Conformable convolution of two functions) Let f , g : [a, +∞) →
R be two real-valued functions such that f is the function of (t – a)α for 0 < α ≤ 1, then
the conformable convolution of these two functions is defined by

(f ∗ g)(t) =
∫ t

a
f
(
(t – a)α – (θ – a)α

)
g(θ )(θ – a)α–1 dθ .

Lemma 2.14 (see [25] Conformable convolution theorem) Under the above conformable
convolution definition, if Lα{f }(s) and Lα{g}(s) exist, then

Lα{f ∗ g} = Lα{f } · Lα{g}.

Remark 2.15 In view of the definition of CFI and conformable convolution, it follows that

Iα
a f (t) =

∫ t

a
f (s)(s – a)α–1 ds = 1 ∗ f (t),

and hence,

L–1
α

{
Iα

a f (t)
}

= L–1
α

{
1 ∗ f (t)

}
=

Lα{f }
s

, s > 0.

Definition 2.16 (see [22] Conformable exponential bounded function) For a function f
defined on [a, +∞) → R, if there exist positive real constants M, c, and 0 < α ≤ 1 such that

∣
∣f (t)

∣
∣ ≤ MEα(c, t – a)

holds for all sufficiently large t, then we call f conformable exponential bounded.

Remark 2.17 Considering Eq. (1) and referring to [18], for a continuous function f de-
fined on [t0, +∞) → R, if f is conformable exponential bounded, then x(t) and Tα

t0 x(t) are
both conformable exponential bounded, and thus, Lα{x(t)}(s) and Lα{Tα

t0 x(t)}(s) all exist.

Lemma 2.18 (see [21]) Assume that f ∈ C2([a, +∞), R) and 0 < α ≤ 1
2 , then

Tα
a Tα

a f (x) =

⎧
⎨

⎩

(1 – α)(x – a)1–2αf ′(x) + (x – a)2–2αf ′′(x), x > a,

0, x = a.

3 Main results
In this section, we utilize the technique of CFLT to investigate the Ulam type stability of
the linear conformable fractional differential equation (1).
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Definition 3.1 Eq. (1) is said to be Ulam–Hyers stable if there exists a constant γ > 0 such
that, for each ε > 0 and for each solution y of the inequality

∣
∣Tα

t0 y(t) + βy(t) – f (t)
∣
∣ ≤ ε, t ∈ J := [t0, T), (2)

there exists a solution x of Eq. (1) with

∣
∣y(t) – x(t)

∣
∣ ≤ γ ε, t ∈ J . (3)

Remark 3.2 The existence and uniqueness results of the solutions for initial value prob-
lem (1) have been studied in considerable detail (see [23, 37]). In addition, it can be derived
from [21, 23, 25] that the general solution of (1) is given by

x(t) = Eα(–β , t – t0)x0 +
∫ t

t0

Eα(–β , t – t0)Eα(β , τ – t0)(τ – t0)α–1f (τ ) dτ . (4)

Theorem 3.3 If a function y : J → R satisfies inequality (2) and for some ε > 0, then there
exists a solution x of Eq. (1) such that

∣
∣y(t) – x(t)

∣
∣ ≤ (t – t0)α

α
ε, ∀t ∈ J .

Proof Let

z(t) = Tα
t0 y(t) + βy(t) – f (t), t ∈ J . (5)

By taking CFLT of (5), it can be deduced that

Lα{z} = sLα{y} – y(t0) + βLα{y} – Lα{f }.

Further, it follows that

Lα{y} =
y(t0) + Lα{f }

s + β
+

Lα{z}
s + β

. (6)

If we set

x(t) = Eα(–β , t – t0)y(t0) + Eα(–β , t – t0) ∗ f (t), (7)

then, clearly, x(t) is differentiable on (t0, T), and

x(t0) = y(t0) = x0.

Taking CFLT on both sides of (7) yields

Lα{x} =
y(t0) + Lα{f }

s + β
, (8)



Wang et al. Advances in Difference Equations        (2020) 2020:251 Page 7 of 18

which is equivalent to

sLα{x} – x(t0) + βLα{x} = Lα

{
Tα

t0 x + βx
}

= Lα{f }. (9)

The one-to-one property of the operator Lα guarantees that

Tα
t0 x(t) + βx(t) = f (t).

Thus, the function x is a solution of Eq. (1). Combining (6) and (8) and noting that

Lα

{
Eα(–β , t – t0) ∗ z

}
= Lα

{
Eα(–β , t – t0)

} · Lα

{
z(t)

}
=

Lα{z}
s + β

,

we get

Lα{y} – Lα{x} =
Lα{z}
s + β

= Lα

{
Eα(–β , t – t0) ∗ z

}
,

which shows that

y(t) – x(t) = Eα(–β , t – t0) ∗ z(t), t ∈ J .

In view of (2), it holds that |z(t)| ≤ ε, t ∈ J . Therefore,

∣
∣y(t) – x(t)

∣
∣ =

∣
∣Eα(–β , t – t0) ∗ z(t)

∣
∣

=
∣
∣
∣
∣

∫ t

t0

Eα(–β , t – t0)Eα(β , τ – t0)(τ – t0)α–1z(τ ) dτ

∣
∣
∣
∣

≤
∫ t

t0

(τ – t0)α–1∣∣Eα(–β , t – t0)Eα(β , τ – t0)z(τ )
∣
∣dτ

≤ ε

∫ t

t0

(τ – t0)α–1∣∣Eα(–β , t – t0)Eα(β , τ – t0)
∣
∣dτ

≤ ε
(t – t0)α

α
,

where Lemma 2.7 is used. Hence the proof is completed. �

Remark 3.4 According to Theorem 3.3, we note that if T < +∞, then (1) is Ulam–Hyers
stable on J with γ = (T–t0)α

α
. If T = +∞, then (1) is not Ulam–Hyers stable.

Definition 3.5 Eq. (1) is said to be Ulam–Hyers–Rassias stable if there exists a constant
γ ∗ > 0 such that, for each ε > 0 and for each solution y of the inequality

∣
∣Tα

t0 y(t) + βy(t) – f (t)
∣
∣ ≤ εh(t), t ∈ J , (10)

there exists a solution x of Eq. (1) with

∣
∣y(t) – x(t)

∣
∣ ≤ γ ∗εh(t), t ∈ J , (11)

where h ∈ C(J , R+) is a positive function.
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Next, proceeding as in the proof of Theorem 3.3, we give the following result.

Theorem 3.6 If the function y : J → R satisfies inequality (10) and for some ε > 0, then
Eq. (1) is Ulam–Hyers–Rassias stable provided that

∫ t

t0

(τ – a)α–1h(τ ) dτ = Iα
t0 h(t) ≤ chh(t), ch ∈ R+. (12)

Proof The proof is completely similar to Theorem 3.3, we only need to note that, under
assumption (12), it can follow that

∣
∣y(t) – x(t)

∣
∣ =

∣
∣Eα(–β , t – t0) ∗ z(t)

∣
∣

≤
∫ t

t0

(τ – t0)α–1∣∣Eα(–β , t – t0)Eα(β , τ – t0)z(τ )
∣
∣dτ

≤ ε

∫ t

t0

(τ – t0)α–1∣∣Eα(–β , t – t0)Eα(β , τ – t0)
∣
∣h(τ ) dτ

≤ ε

∫ t

t0

(τ – t0)α–1h(τ ) dτ = εIα
t0 h(t) ≤ εchh(t),

thus, (11) is satisfied, and Eq. (1) is Ulam–Hyers–Rassias stable with γ ∗ = ch. �

4 Further outstretched results
In this section, by using the methods in the above section, we further investigate Ulam’s
stability of the following three different type linear differential equations involving CFD.

(i) Linear non-homogenous conformable fractional differential equation
⎧
⎨

⎩

Tα
t0 x(t) + Ax(t) = f (t), t ∈ (t0, T], T < +∞,

x(t0) = x0,
(13)

where f ∈ C([t0, +∞), Rn) is conformable exponential bounded, A ∈ Rn×n.
By applying the CFLT, the solution of (13) is given by (see [28])

x(t) = Eα(–A, t – t0)x0 +
∫ t

t0

Eα(–A, t – t0)Eα(A, τ – t0)(τ – t0)α–1f (τ ) dτ . (14)

Let J := [t0, T], ε > 0, and h ∈ C(J , R+). Consider Eq. (13) and the inequalities

∥
∥Tα

t0 x(t) + Ax(t) – f (t)
∥
∥ ≤ ε, t ∈ J , (15)

and

∥
∥Tα

t0 x(t) + Ax(t) – f (t)
∥
∥ ≤ εh(t), t ∈ J . (16)

Definition 4.1 Eq. (13) is said to be Ulam–Hyers stable if there exists a constant σ > 0
such that, for each ε > 0 and for each solution y ∈ C(J , Rn) of inequality (15), there exists a
solution x ∈ C1(J , Rn) of Eq. (13) with

∥
∥y(t) – x(t)

∥
∥ ≤ σε, t ∈ J . (17)
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Definition 4.2 Eq. (13) is said to be Ulam–Hyers–Rassias stable if there exists a constant
σ ∗ > 0 such that, for each ε > 0 and for each solution y ∈ C(J , Rn) of inequality (16), there
exists a solution x ∈ C1(J , Rn) of Eq. (13) with

∥
∥y(t) – x(t)

∥
∥ ≤ σ ∗εh(t), t ∈ J . (18)

Lemma 4.3 For a matrix A ∈ Rn×n, t0 ≤ s ≤ t ≤ T < +∞, we have

∥
∥Eα(–A, t – t0)

∥
∥ ≤ Eα

(‖ – A‖, t – t0
)

and

∥
∥Eα(–A, t – t0) · Eα(A, s – t0)

∥
∥ ≤ ∥

∥Eα(–A, t – t0)
∥
∥ · ∥∥Eα(A, s – t0)

∥
∥.

Proof The proof can be easily derived from the basic facts in matrix theory that

∥
∥eA∥

∥ ≤ e‖A‖

and

‖AB‖ ≤ ‖A‖‖B‖,

respectively, where B ∈ Rn×n. �

Remark 4.4 Denote the matrix function as E1(t) := Eα(–A, t – t0), E2(t) := Eα(A, t – t0), and
M := supt0≤t≤T ‖E1(t)‖, N := supt0≤t≤T ‖E2(t)‖. Then

∥
∥E1(t)

∥
∥ ≤ M,

∥
∥E2(t)

∥
∥ ≤ N

and

∥
∥Eα(–A, t – t0) · Eα(A, s – t0)

∥
∥ ≤ MN .

Theorem 4.5 If a function y : J → Rn satisfies inequality (15) and for some ε > 0, then
Eq. (13) is Ulam–Hyers stable with σ = MN(T–t0)α

α
.

Proof Due to the similarity to the proof of Theorem 3.3, we only build the framework here.
Let

z(t) = Tα
t0 y(t) + Ay(t) – f (t), t ∈ J .

Then it follows that ‖z(t)‖ ≤ ε owing to (15). We can obtain

∥
∥y(t) – x(t)

∥
∥ =

∥
∥Eα(–A, t – t0) ∗ z(t)

∥
∥

≤
∫ t

t0

(τ – t0)α–1∥∥Eα(–A, t – t0)Eα(A, τ – t0)z(τ )
∥
∥dτ
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≤ ε

∫ t

t0

(τ – t0)α–1∥∥Eα(–A, t – t0)Eα(A, τ – t0)
∥
∥dτ

≤ ε
MN(t – t0)α

α
≤ ε

MN(T – t0)α

α
,

where Lemma 4.3 and Remark 4.4 are utilized and x(t) = Eα(–A, t – t0)y(t0) + Eα(–A, t –
t0) ∗ f (t). That is to say, there exists a solution x ∈ C1([t0, T], Rn) of Eq. (13) such that (17)
holds with σ = MN(T–t0)α

α
. �

Theorem 4.6 Consider Eq. (13) and the inequality

∥
∥Tα

t0 y(t) + Ay(t) – f (t)
∥
∥ ≤ εh(t), t ∈ J .

Then Eq. (13) is Ulam–Hyers–Rassias stable if (12) holds true, that is,

∥
∥y(t) – x(t)

∥
∥ ≤ εσ ∗h(t), t ∈ J ,

here σ ∗ = chMN , ch > 0.
(ii) Linear Langevin equations with two same conformable fractional derivatives

⎧
⎨

⎩

Tα
t0 (Tα

t0 + λ)x(t) = f (t), t ∈ (t0, T], T < +∞,λ > 0,

x(t0) = x0,
(19)

where 0 < α ≤ 1
2 , f is continuous on [t0, +∞) and conformable exponentially bounded. In

view of Lemma 2.18, we give the concept of a solution for (19).

Definition 4.7 A function x ∈ C2([t0, T], R) is a solution of Eq. (19) if x satisfies Tα
t0 (Tα

t0 +
λ)x(t) = f (t), t ∈ (t0, T] and x(t0) = x0.

We first derive the representation of the solution of Eq. (19). According to Remark 3.2,
we know that the solution of the equation

(
Tα

t0 + λ
)
x(t) = g(t), t ∈ (t0, T], x(t0) = x0,λ > 0,

can be expressed as

x(t) = Eα(–λ, t – t0)x0 +
∫ t

t0

Eα(–λ, t – t0)Eα(λ, τ – t0)(τ – t0)α–1g(τ ) dτ . (20)

Taking the integral operator Iα
t0 on Eq. (19) from t0 to t and using Lemma 2.4, we have

(
Tα

t0 + λ
)
x(t) –

(
Tα

t0 + λ
)
x(t0) = Iα

t0 f (t) =
∫ t

t0

(s – t0)α–1f (s) ds. (21)

Noticing that the CFD of a constant is zero (see [20, 21]), hence Tα
t0 [x(t0)] = 0, then (21)

becomes

(
Tα

t0 + λ
)
x(t) = λx0 +

∫ τ

t0

(s – t0)α–1f (s) ds. (22)
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In addition, note that

(τ – t0)α–1Eα(–λ, t – t0)Eα(λ, τ – t0) =
d

dτ

[
1
λ

Eα(–λ, t – t0)Eα(λ, τ – t0)
]

,

which implies that

∫ t

t0

(τ – t0)α–1Eα(–λ, t – t0)Eα(λ, τ – t0) dτ =
1
λ

(
1 – Eα(–λ, t – t0)

)
. (23)

Combining (20), (22) with (23), then the final formula of the solution of (19) should be

x(t) = Eα(–λ, t – t0)x0 +
∫ t

t0

Eα(–λ, t – t0)Eα(λ, τ – t0)(τ – t0)α–1

×
[

λx0 +
∫ τ

t0

(s – t0)α–1f (s) ds
]

dτ

= Eα(–λ, t – t0)x0 + λx0 · 1
λ

(
1 – Eα(–λ, t – t0)

)

+
∫ t

t0

∫ τ

t0

(s – t0)α–1(τ – t0)α–1Eα(–λ, t – t0)Eα(λ, τ – t0)f (s) ds dτ

= x0 +
∫ t

t0

∫ τ

t0

(s – t0)α–1(τ – t0)α–1Eα(–λ, t – t0)Eα(λ, τ – t0)f (s) ds dτ

= x0 +
∫ t

t0

∫ t

s
(s – t0)α–1(τ – t0)α–1Eα(–λ, t – t0)Eα(λ, τ – t0)f (s) dτ ds

= x0 +
∫ t

t0

(s – t0)α–1(1 – Eα(–λ, t – t0)Eα(λ, s – t0)
)
f (s) ds

= x0 +
1
λ

(
1 – Eα(–λ, t – t0)

) ∗ f (t).

Next, we consider Eq. (19) and the inequalities

∣
∣Tα

t0

(
Tα

t0 + λ
)
x(t) – f (t)

∣
∣ ≤ ε, t ∈ J (24)

and

∣
∣Tα

t0

(
Tα

t0 + λ
)
x(t) – f (t)

∣
∣ ≤ εh(t), t ∈ J , h ∈ C

(
J , R+)

. (25)

Definition 4.8 Eq. (19) is said to be Ulam–Hyers stable if there exists a constant κ > 0
such that, for each ε > 0 and for each solution y of inequality (24), there exists a solution x
of Eq. (19) with

∣
∣y(t) – x(t)

∣
∣ ≤ κε, t ∈ J . (26)

Definition 4.9 Eq. (19) is said to be Ulam–Hyers–Rassias stable if there exists a constant
κ∗ > 0 such that, for each ε > 0 and for each solution y of inequality (25), there exists a
solution x of Eq. (19) with

∣
∣y(t) – x(t)

∣
∣ ≤ κ∗εh(t), t ∈ J . (27)
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Theorem 4.10 If a function y : J → R satisfies inequality (24) and for some ε > 0, then
Eq. (19) is Ulam–Hyers stable with κ = (T–t0)α

λα
.

Proof Let

z(t) = Tα
t0

(
Tα

t0 + λ
)
y(t) – f (t), t ∈ J .

Taking the CFLT on the above equation, we have

Lα{z} =
(
s2 + λs

)
Lα{y} – (s + λ)y(t0) – Lα{f }.

Then

Lα{y} =
y(t0)

s
+

Lα{f }
s(s + λ)

+
Lα{z}

s(s + λ)
. (28)

Define the function x as

x(t) = y(t0) +
1
λ

(
1 – Eα(–λ, t – t0)

) ∗ f (t), (29)

then x(t) is secondly differentiable on (t0, T] and

x(t0) = y(t0) = x0.

An application of CFLT to (29) yields that

Lα{x} = Lα

{
y(t0)

}
+ Lα

{
1
λ

(
1 – Eα(–λ, t – t0)

) ∗ f (t)
}

=
x(t0)

s
+

Lα{f }
s(s + λ)

, (30)

which implies that

s(s + λ)Lα{x} – (s + λ)x(t0) = Lα

{
Tα

t0

(
Tα

t0 + λ
)
x
}

= Lα{f }.

Since Lα is one-to-one, it follows that

Tα
t0

(
Tα

t0 + λ
)
x(t) = f (t),

namely, x is a solution of Eq. (19). Noting that

Lα

{
1
λ

(
1 – Eα(–λ, t – t0)

) ∗ z
}

= Lα

{
1
λ

(
1 – Eα(–λ, t – t0)

)
}

· Lα{z} =
Lα{z}

s(s + λ)
,

and combining (28) with (30), we obtain

Lα{y} – Lα{x} =
Lα{z}

s(s + λ)
= Lα

{
1
λ

(
1 – Eα(–λ, t – t0)

) ∗ z
}

,

hence

y(t) – x(t) =
1
λ

(
1 – Eα(–λ, t – t0)

) ∗ z(t), t ∈ J .
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According to (24), it holds that |z(t)| ≤ ε, t ∈ J . Therefore,

∣
∣y(t) – x(t)

∣
∣ =

1
λ

∣
∣
(
1 – Eα(–λ, t – t0)

) ∗ z(t)
∣
∣

=
1
λ

∣
∣
∣
∣

∫ t

t0

[
1 – e–λ( (t–t0)α

α – (s–t0)α
α )](s – t0)α–1z(s) ds

∣
∣
∣
∣

≤ ε
(t – t0)α

λα
≤ ε

(T – t0)α

λα
,

where the basic fact that |1 – e–λ( (t–t0)α
α – (s–t0)α

α )| < 1 is considered. Then we conclude that
there exists a solution x ∈ C2([t0, T], R) of Eq. (19) such that (26) holds with κ = (T–t0)α

λα
.

Hence the proof is completed. �

Theorem 4.11 Consider Eq. (19) and the inequality

∣
∣Tα

t0

(
Tα

t0 + λ
)
y(t) – f (t)

∣
∣ ≤ εh(t), t ∈ J .

Then Eq. (19) is Ulam–Hyers–Rassias stable with κ∗ = ch
λ

provided that (12) holds, that is,

∣
∣y(t) – x(t)

∣
∣ ≤ ε

ch

λ
h(t), t ∈ J .

(iii) Linear conformable integro-differential equation

⎧
⎨

⎩

Tα
t0 x(t) + Iα

t0 x(t) = f (t), t ∈ J ′ := (t0, T], T < +∞,

x(t0) = x0,
(31)

where 0 < α ≤ 1, J := [t0, T], the function f : J → R is continuous, conformable exponentially
bounded and satisfies f (t0) ≡ 0. Clearly, a function x ∈ C1(J , R) is called the solution of (31)
if and only if x satisfies Tα

t0 x(t) + Iα
t0 x(t) = f (t), t ∈ J ′ with the initial condition x(t0) = x0. We

first apply CFLT to seek the solution of Eq. (31).
Taking the CFLT on both sides of Eq. (31) yields that

sLα{x} – x0 +
1
s

Lα{x} = Lα{f },

which is equivalent to

Lα{x} =
s

s2 + 1
x0 +

s
s2 + 1

Lα{f }.

Using the inverse CFLT and noting Remark 2.15, we obtain the solution

x(t) = cos
(t – t0)α

α
x0 + cos

(t – t0)α

α
∗ f (t). (32)

Now, we utilize the same method to investigate Ulam type stability of Eq. (31). Consider the
inequalities

∣
∣Tα

t0 x(t) + Iα
t0 x(t) – f (t)

∣
∣ ≤ ε, t ∈ J , (33)
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and

∣
∣Tα

t0 x(t) + Iα
t0 x(t) – f (t)

∣
∣ ≤ εh(t), t ∈ J , h ∈ C(J , R). (34)

Definition 4.12 Eq. (31) is said to be Ulam–Hyers stable if there exists a constant ρ > 0
such that, for each ε > 0 and for each solution y of inequality (33), there exists a solution x
of Eq. (31) with

∣
∣y(t) – x(t)

∣
∣ ≤ ρε, t ∈ J . (35)

Definition 4.13 Eq. (31) is said to be Ulam–Hyers–Rassias stable if there exists a constant
ρ∗ > 0 such that, for each ε > 0 and for each solution y of inequality (34), there exists a
solution x of Eq. (31) with

∣
∣y(t) – x(t)

∣
∣ ≤ ρ∗εh(t), t ∈ J . (36)

Theorem 4.14 If a function y : J → R satisfies inequality (33) and for some ε > 0, then
Eq. (31) is Ulam–Hyers stable with ρ = (T–t0)α

α
.

Proof Let

z(t) = Tα
t0 y(t) + Iα

t0 y(t) – f (t), t ∈ J . (37)

An application of CFLT to (37) yields that

Lα{z} =
(

s +
1
s

)

Lα{y} – y(t0) – Lα{f },

which indicates that

Lα{y} =
s

s2 + 1
y(t0) +

s
s2 + 1

Lα{f } +
s

s2 + 1
Lα{z}. (38)

Set the function x as

x(t) = cos
(t – t0)α

α
y(t0) + cos

(t – t0)α

α
∗ f (t), (39)

then x(t) is differentiable on (t0, T] with x(t0) = y(t0) = x0. Taking CFLT on (39), we have

Lα{x} =
s

s2 + 1
y(t0) +

s
s2 + 1

Lα{f }, (40)

which is equivalent to

(

s +
1
s

)

Lα{x} – x(t0) = Lα

{
Tα

t0 x(t) + Iα
t0 x(t)

}
= Lα{f }. (41)

Therefore, Tα
t0 x(t) + Iα

t0 x(t) = f (t) holds for (t0, T] with x(t0) = x0, namely, such a function x
is a solution of Eq. (31). In addition, let us combine (38) with (40) and note that

Lα

{

cos
(t – t0)α

α
∗ z

}

=
s

s2 + 1
Lα{z},
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it can be easily deduced that

Lα{y} – Lα{x} =
s

s2 + 1
Lα{z} = Lα

{

cos
(t – t0)α

α
∗ z

}

,

this implies that

y(t) – x(t) = cos
(t – t0)α

α
∗ z(t).

Consider (33), it satisfies |z(t)| ≤ ε, t ∈ J . Thus,

∣
∣y(t) – x(t)

∣
∣ =

∣
∣
∣
∣cos

(t – t0)α

α
∗ z(t)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t

t0

(s – t0)α–1 cos
(t – t0)α – (s – t0)α

α
z(s) ds

∣
∣
∣
∣

≤ ε

∫ t

t0

(s – t0)α–1
∣
∣
∣
∣cos

(t – t0)α – (s – t0)α

α

∣
∣
∣
∣ds

≤ ε
(T – t0)α

α
.

Hence, there exists a solution x of Eq. (31) such that (35) holds with ρ = (T–t0)α
α

. �

Theorem 4.15 Consider Eq. (31) and the inequality

∣
∣Tα

t0 y(t) + Iα
t0 y(t) – f (t)

∣
∣ ≤ εh(t), t ∈ J .

Then Eq. (31) is Ulam–Hyers–Rassias stable with ρ∗ = ch provided that (12) holds, that is,

∣
∣y(t) – x(t)

∣
∣ ≤ εchh(t), t ∈ J .

5 An illustrative example
In this section, an example is given to demonstrate our results.

Let α = β = 1
2 , t0 = 0, T = 1, f (t) =

√
te–

√
t , x(0) = 1, then γ = (T–t0)α

α
= 2, and Eq. (1)

becomes
⎧
⎨

⎩

T
1
2

0 x(t) + 1
2 x(t) =

√
te–

√
t , t ∈ (0, 1],

x(0) = 1.
(42)

Consider
∣
∣
∣
∣T

1
2

0 x(t) +
1
2

x(t) –
√

te–
√

t
∣
∣
∣
∣ ≤ ε, t ∈ [0, 1], (43)

and
∣
∣
∣
∣T

1
2

0 x(t) +
1
2

x(t) –
√

te–
√

t
∣
∣
∣
∣ ≤ εh(t), t ∈ [0, 1]. (44)
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According to Definition 3.1 and Theorem 3.3, for some given ε > 0 and corresponding
solution y such that inequality (43) holds, if we find a solution x of (42) such that |y(t) –
x(t)| ≤ 2ε holds for all t ∈ [0, 1], then (42) is Ulam–Hyers stable on the interval [0, 1].

Choose ε =
√

3 and set the function y as

y(t) = (2
√

t + 1)e–
√

t ,

then y(0) = x(0) = 1, and elementary computation yields that

∣
∣
∣
∣T

1
2

0 y(t) +
1
2

y(t) –
√

te–
√

t
∣
∣
∣
∣ =

∣
∣(1 –

√
t)e–

√
t∣∣ ≤ max

t∈[0,1]

∣
∣(1 –

√
t)e–

√
t∣∣ = 1 <

√
3,

hence, (43) holds. In addition, following the proof of Theorem 3.3, we can set the function
x as

x(t) = E 1
2

(

–
1
2

, t
)

× 1 + E 1
2

(

–
1
2

, t
)

∗ (√
te–

√
t) = (t + 1)e–

√
t .

One can easily note that such an x is a solution of (42), and

∣
∣y(t) – x(t)

∣
∣ =

∣
∣(2

√
t – t)e–

√
t∣∣ ≤ max

t∈[0,1]

∣
∣(2

√
t – t)e–

√
t∣∣ ≈ 0.466 < 2

√
3.

Moreover, set the function h as h(t) =
√

tet + 1 and let γ ∗ = ch = π + 1, then we obtain

Iα
t0 h(t) = et + 2

√
t – 1 ≤ e + 1 ≤ (π + 1)

(√
tet + 1

)
= chh(t),

which implies that (12) holds. Further, obviously,

∣
∣
∣
∣T

1
2

0 y(t) +
1
2

y(t) –
√

te–
√

t
∣
∣
∣
∣ =

∣
∣(1 –

√
t)e–

√
t∣∣ ≤ 1 ≤ √

3
(√

tet + 1
)

= εh(t), t ∈ [0, 1],

and

∣
∣y(t) – x(t)

∣
∣ =

∣
∣(2

√
t – t)e–

√
t∣∣ < 0.5 ≤ √

3(π + 1)
(√

tet + 1
)

= γ ∗εh(t).

From the above discussion, we can conclude that Eq. (42) is Ulam–Hyers stable with γ = 2
and Ulam–Hyers–Rassias stable with γ ∗ = π + 1.
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