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1 Introduction
We know that one approach for generating integrable systems was proposed by Magri [1],
which was called the Lax-pair method [2, 3]. Based on it, Tu [4] proposed a method for
generating integrable Hamiltonian hierarchies, which was called the Tu scheme by Ma [5].
Through making use of the Tu scheme, some integrable systems and the corresponding
Hamiltonian structures as well as other properties were obtained, such as the works in
[6–10]. It is well known that many different methods for generating isospectral integrable
equations have been proposed [11–15]. However, as nonisospectral integrable equations
are concerned, fewer works have been presented, as far as we know. Ma [16, 17] applied
Lax equations to work out some nonisospectral integrable hierarchy under the case of
λt = λn (n > 0). Qiao [18] adopted the Lenard series method to obtain some nonisospectral
integrable hierarchies under the case λt = λm+1M. The aim of this paper is to apply an
efficient scheme to generate nonisospectral integrable hierarchies of evolution equations
under the case where λt =

∑n
j=0 kj(t)λn–j. Obviously, this case is a generalized expression

for the case λt = λn [19, 20]. Under obtaining nonisospectral integrable systems, some of
their properties, including Darboux transformations, exact solutions, and so on, could be
studied [21–26]. We first recall some fundamental facts.

Let G be a finite-dimensional Lie algebra over the complex set C, G̃ = G ⊗ C[λ,λ–1] be
the corresponding loop algebra, where C[λ,λ–1] stands for a set of Laurent polynomials in
the parameter λ. Suppose that {e1, . . . , ep} is a basis of G, then the basis of the loop algebra
G̃ can be chosen as {e1(n), . . . , ep(n)}, where ei(n) = eiλ

Nin, Ni = 1, 2, . . . , n ∈ Z.
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Definition 1 One basis element R ∈ G̃ is called pseudoregular if the following conditions
hold:

(1) G̃ = Ker ad R ⊕ Im ad R,
(2) ker ad R is commutative, where

Ker ad R = {x | x ∈ G̃, [x, R] = 0}, Im ad R = {x | ∃y ∈ G̃, x = [y, R]}.

Definition 2 For any basis element ei(n) (i = 1, 2, . . . , p), we define its gradation by

deg
(
ei(n)

)
= Nin. (1)

Obviously, for ∀g ∈ G̃, g can be expressed by g =
∑

n knei(n) =:
∑

n gn, kn are constants. We
can decompose g into two parts as follows:

g+ =
∑

n≥μ

gn, g– =
∑

n<μ

gn,

and call g+ the positive part of g , μ ∈ Z is some chosen integer.

In the following, the steps for generating nonisospectral integrable hierarchies of evo-
lution equations are presented.

Step 1: By using the loop algebra G̃, we introduce the spectral problems

ψx = Uψ , U = R + u1e1(n) + · · · + uqeq(n), (2)

ψt = Vψ , V = A1e1(n) + · · · + Apep(n), (3)

λt =
∑

i≥0

ki(t)λ–Nii, (4)

where the potential functions u1, . . . , uq ∈ S (the Schwartz space), and R(n), e1(n), . . . ,
ep(n) ∈ G̃ satisfy that

(a) R, e1, . . . , ep are linear independent,
(b) R is pseudoregular,
(c) deg(R(n)) ≥ deg(ei(n)), i = 1, 2, . . . , p.
Step 2: Solving the following stationary zero curvature equation for Ai, i = 1, 2, . . . , p:

Vx =
∂U
∂λ

λt + [U , V ]. (5)

It follows that one can get the compatibility condition of (2) and (3)

∂U
∂u

ut +
∂U
∂λ

λt – Vx + [U , V ] = 0. (6)

Equation (6) can be broken down into

–V (n)
+,x +

∂U
∂λ

λ
(n)
t,+ +

[
U , V (n)

+
]

= V (n)
–,x –

∂U
∂λ

λ
(n)
t,– –

[
U , V (n)

–
]
, (7)

where

λ
(m)
t,+ = λNimλt – λ

(m)
t,– =

m∑

i=μ

ki(t)λNim–Nii+x, x = 0, 1, . . . , Ni – 1; m < n.
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Step 3: Choose �n ∈ G̃ so that

V (n) =
(
λNinV

)
+ + �n =: V (n)

+ + �n,

–V (n)
x +

∂U
∂λ

λ
(n)
t,+ +

[
U , V (n)] = B1e1 + · · · + Bqeq,

where Bi (i = 1, 2, . . . , q) ∈ C.
Step 4: The nonisospectral integrable hierarchies of evolution equations could be de-

duced via the nonisospectral zero curvature equation

∂U
∂u

ut +
∂U
∂λ

λ
(n)
t,+ – V (n)

x +
[
U , V (n)] = 0. (8)

Step 5: The Hamiltonian structures of hierarchies (8) are sought out according to the
trace identity given by Tu [4].

2 A nonisospectral integrable hierarchy of evolution equations
A basis of the Lie algebras gl(3) is given by

gl(3) = span{h, e, f }

with

h =

⎛

⎜
⎝

0 0 –1
0 0 0
1 0 0

⎞

⎟
⎠ , e =

⎛

⎜
⎝

0 0 0
0 0 –1
0 1 0

⎞

⎟
⎠ , f =

⎛

⎜
⎝

0 –1 0
1 0 0
0 0 0

⎞

⎟
⎠ .

And the corresponding loop algebra is taken by

g̃l(3) = span
{

h(n), e(n), f (n)
}

,

where h(n) = hλ2n, e(n) = eλ2n–1, f (n) = f λ2n–1.
After simple calculations, one can find

[
h(n), e(m)

]
= f λ2n+2m–1 = f (m + n),

[
h(n), f (m)

]
= –e(m + n),

[
e(n), f (m)

]
= h(m + n – 1), m, n ∈ Z,

where the gradations of h(n), e(n), and f (n) are given by

deg h(n) = 2n, deg e(n) = 2n – 1, deg f (n) = 2n – 1, n ∈ Z.

We consider the following nonisospectral problems based on g̃l(3):

ψx = Uψ , U = –ih(1) + qe(1) + rf (1) =

⎛

⎜
⎝

0 –rλ iλ2

rλ 0 –qλ

–iλ2 qλ 0

⎞

⎟
⎠ , (9)
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ψt = Vψ , V = ah(0) + be(1) + cf (1) =

⎛

⎜
⎝

0 –cλ –a
cλ 0 –bλ

a bλ 0

⎞

⎟
⎠ , (10)

where i2 = –1, a =
∑

i≥0 aiλ
–2i, b =

∑
i≥0 biλ

–2i, c =
∑

i≥0 ciλ
–2i.

It follows that we obtain

∂U
∂λ

λt =

⎛

⎜
⎝

0 –r –2iλ
r 0 –q

–2iλ q 0

⎞

⎟
⎠
∑

i≥0

ki(t)λ–2i+1

=
∑

i≥0

ki(t)
[
–2ih(1 – i) + qe(1 – i) + rf (1 – i)

]
.

Furthermore, the following equation can be derived by taking λt =
∑

i≥0 ki(t)λ1–2i with
Eq. (6):

⎧
⎪⎪⎨

⎪⎪⎩

aix = qci+1 – rbi+1 – 2iki+1(t),

bix = ici+1 + rai + ki(t)q,

cix = –ibi+1 – qai + ki(t)r,

(11)

that is,

⎧
⎪⎪⎨

⎪⎪⎩

aix = –i(qbix + rcix – q2ki(t) – r2ki(t) + 2ki+1(t)),

ci+1 = i(–bix + rai + qki(t)),

bi+1 = i(cix + qai – rki(t)).

(12)

In terms of Eq. (12), we take the initial values

b0 = k0∂
–1q, c0 = k0∂

–1r,

and then one has

a0 = –2ik1(t)x + β0(t),

where β0(t) = 0 is an integral constant. From (12), we deduce that

b1 = 2k1(t)qx, c1 = 2k1(t)rx,

a1 = –ik1(t)x
(
q2 + r2) – 2ik2(t)x + β1(t),

b2 = ik1(t)(r + 2xrx) + qx
(
k1(t)q2 + k1(t)r2 + 2k2(t)

)
,

c2 = –ik1(t)(q + 2xqx) + rx
(
k1(t)q2 + k1(t)r2 + 2k2(t)

)
,

· · · ,

where β1(t) = 0 is an integral constant. Denote that

V (n)
+ =

n∑

i=0

(
aih(n – i) + bie(n + 1 – i) + cif (n + 1 – i)

)
,
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V (n)
– =

∞∑

i=n+1

(
aih(n – i) + bie(n + 1 – i) + cif (n + 1 – i)

)
,

λ
(n)
t,+ =

n∑

i=0

Ki(t)λ2n–2i+1, λ
(n)
t,– =

∞∑

i=n+1

Ki(t)λ2n–2i+1.

In what follows, the gradations of the left-hand side of (7) can be obtained by using (1),
(9), and (10)

deg V (n)
+ =: (0, 1, 1) ≥ 0, deg

∂U
∂λ

λ
(n)
t,+ =: (2, 1, 1) ≥ 1,

deg
([

U , V (n)
+
])

=: (2, 1, 1; 0, 1, 1) ≥ 1,

which indicates that the minimum gradation of the left-hand side of (7) is zero. Addition-
ally, we also obtain the gradations of the right-hand side of (7) as follows:

deg V (n)
– =: (–2, –1, –1) ≤ –1, deg

∂U
∂λ

λ
(n)
t,– =: (0, –1, –1) ≤ 0,

deg
([

U , V (n)
–
])

=: (2, 1, 1; –2, –1, –1) ≤ 1,

which means the maximum gradation of the right-hand side of (7) is 1. Thus, we further
infer the following equation by taking these terms which have the gradations 0 and 1:

V (n)
–,x –

∂U
∂λ

λ
(n)
t,– –

[
U , V (n)

–
]

= ibn+1f (1) – icn+1e(1) – qcn+1h(0) + rbn+1h(0) + 2iKn+1(t)h(0),

that is,

– V (n)
+,x +

∂U
∂λ

λ
(n)
t,+ +

[
U , V (n)

+
]

= ibn+1f (1) – icn+1e(1) – qcn+1h(0) + rbn+1h(0) + 2iKn+1(t)h(0). (13)

In order to obtain the nonisospectral integrable hierarchies, we take the modified term
�n = –anh(0) so that for V (n) = V (n)

+ – anh(0), we have from (13) that

–V (n)
x +

∂U
∂λ

λ
(n)
t,+ +

[
U , V (n)] = (–icn+1 – ran)e(1) + (ibn+1 + qan)f (1).

Therefore, the nonisospectral integrable hierarchy is derived by Eq. (8) as follows:

utn =

(
q
r

)

tn

=

(
–icn+1 – ran

ibn+1 + qan

)

=

(
bnx – Kn(t)q
cnx – Kn(t)r

)

=

(
0 ∂

∂ 0

)(
cn

bn

)

– Kn(t)

(
q
r

)

=: J1

(
cn

bn

)

– Kn(t)

(
q
r

)

, (14)
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or

utn =

(
q
r

)

tn

=

(
–r∂–1rbn+1 + (i + r∂–1q)cn+1 – 2irKn+1(t)x

–q∂–1qcn+1 + (–i + q∂–1r)bn+1 + 2iqKn+1(t)x

)

=

(
i + r∂–1q –r∂–1r
–q∂–1q –i + q∂–1r

)(
cn+1

bn+1

)

+ 2iKn+1(t)x

(
–r
q

)

=: J2

(
cn+1

bn+1

)

+ 2iKn+1(t)x

(
–r
q

)

, (15)

where

J1 =

(
0 ∂

∂ 0

)

, J2 =

(
i + r∂–1q –r∂–1r
–q∂–1q –i + q∂–1r

)

.

Based on (12), one has

(
cn+1

bn+1

)

=

(
r∂–1r∂ –i∂ + r∂–1q∂

i∂ + q∂–1r∂ q∂–1q∂

)(
cn

bn

)

+ Kn(t)

(
–r∂–1(q2 + r2) + iq
–q∂–1(q2 + r2) – ir

)

+ 2Kn+1(t)x

(
r
q

)

=: L

(
cn

bn

)

+ Kn(t)Q + 2Kn+1(t)xR, (16)

where

L =

(
r∂–1r∂ –i∂ + r∂–1q∂

i∂ + q∂–1r∂ q∂–1q∂

)

, Q =

(
–r∂–1(q2 + r2) + iq
–q∂–1(q2 + r2) – ir

)

, R =

(
r
q

)

.

Hence, (14) can be written as

utn =

(
q
r

)

tn

= J1Ln

(
K0∂

–1r
K0∂

–1q

)

+ J1

n–1∑

i=0

(
LiKn–1–i(t)Q

)
+ 2J1

n–1∑

i=0

LiKn–i(t)xR – Kn(t)

(
q
r

)

= ΦnK0

(
q
r

)

+
n–1∑

i=0

Φ iJ1Kn–1–i(t)Q + 2
n–1∑

i=0

Kn–i(t)Φ i∂

(
xq
xr

)

– Kn(t)

(
q
r

)

, (17)

where

Φ = J1LJ–1
1 =

(
qx∂

–1q + q2 i∂ + qx∂
–1r + qr

–i∂ + rx∂
–1q + qr rx∂

–1r + r2

)

. (18)
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When n = 1, the nonisospectral integrable hierarchy (17) becomes
⎧
⎨

⎩

qt = 2K1(qx)x + K1q,

rt = 2K1(rx)x + K1r.
(19)

When n = 2, the nonisospectral integrable hierarchy (17) reduces to
⎧
⎨

⎩

qt = K1(q3x + qr2x + ir + 2irxx)x + 2K2(qx)x – K2q,

rt = K1(r3x + rq2x – iq – 2iqxx)x + 2K2(rx)x – K2r.
(20)

Additionally, we focus on a format of Hamiltonian construction of hierarchy (17) via
the trace identity proposed by Tu [4]. Denote the trace of the square matrices A and B by
〈A, B〉 = tr(AB).

Equation (9) and Eq. (10) admit that

〈

V ,
∂U
∂q

〉

= –2bλ2,
〈

V ,
∂U
∂r

〉

= –2cλ2,
〈

V ,
∂U
∂λ

〉

= –2crλ + 4iaλ – 2bqλ,

which can be substituted into the trace identity to get

δ

δu

(〈

V ,
∂U
∂λ

〉)

= λ–γ ∂

∂λ
λγ

(
〈V , ∂U

∂q 〉
〈V , ∂U

∂r 〉

)

,

δ

δu
(–2crλ + 4iaλ – 2bqλ) = λ–γ ∂

∂λ

(
–2bλ2+γ

–2cλ2+γ

)

.

(21)

It follows that one can get the following equation by comparing the two sides of the above
formula:

δ

δu
(4ian – 2qbn – 2rcn) = –2(2 – 2n + γ )

(
bn

cn

)

. (22)

One can find γ = 0 via substituting the initial values of (12) into (22), and then we obtain

(
bn

cn

)

=
δHn

δu
=

(
0 1
1 0

)(
cn

bn

)

=: M1

(
cn

bn

)

,

where

Hn =
2ian – qbn – rcn

2n – 2
, M–1

1 = M1 =

(
0 1
1 0

)

.

Hence, hierarchies (14) and (15) can be written as

utn =

(
q
r

)

tn

= J1M1
δHn

δu
– Kn(t)

(
q
r

)

= J2M1
δHn+1

δu
+ 2iKn+1(t)x

(
–r
q

)

. (23)

It is remarkable that when Kn(t) = Kn+1(t) = 0, (23) is the Hamiltonian structure of the
corresponding isospectral integrable hierarchy of (17).
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3 Discussion on symmetries and conserved quantities
In [8], the authors applied the isospectral and nonisospectral integrable AKNS hierarchy
to construct K symmetries and τ symmetries, which constitute an infinite-dimensional
Lie algebra. Thus, we also study the K symmetries and τ symmetries of hierarchy (17) in
this section. Moreover, some conserved qualities of hierarchy (17) can be found based on
the obtained symmetries. After simple calculations, one can find that Φ presented in (18)
satisfies

Φ ′[Φf ]g – Φ ′[Φg]f = Φ
{
Φ ′[f ]g – Φ ′[g]f

}

for ∀f , g ∈ S. Thus, Φ is the hereditary symmetry of (17). In what follows we can also prove
that the following relation holds.

Proposition 1

Φ ′[K0] =
[
K ′

0,Φ
]
, (24)

where K0 =
( qx

rx

)
= ut0 .

In fact,

Φ ′[K0] = ∂

(
qx∂

–1q + q∂–1qx qx∂
–1r + q∂–1rx

rx∂
–1q + r∂–1qx rx∂

–1r + r∂–1rx

)

,

for ∀f = (f1, f2)T ∈ S, we have

Φ ′[K0]f =

(
qxx∂

–1qf1 + (q2)xf1 + qx∂
–1qxf1 + qxx∂

–1rf2 + (qr)xf2 + qx∂
–1rxf2

rxx∂
–1qf1 + (qr)xf1 + rx∂

–1qxf1 + rxx∂
–1rf2 + (r2)xf2 + rx∂

–1rxf2

)

,

[
K ′

0,Φ
]
(

f1

f2

)

= K ′
0Φ

(
f1

f2

)

– ΦK ′
0

(
f1

f2

)

=

(
∂ 0
0 ∂

)

∂

(
q∂–1q i + q∂–1r

–i + r∂–1q r∂–1r

)(
f1

f2

)

– Φ

(
f1x

f2x

)

=

(
qxx∂

–1qf1 + 3qqxf1 – qx∂
–1q∂f1 + qxx∂

–1rf2 + qxrf2 + (qr)xf2 – qx∂
–1rf2x

rxx∂
–1qf1 + rxqf1 + qxrf1 – rx∂

–1q∂f1 + qrxf1 + rxx∂
–1rf2 + 3rrxf2 – rx∂

–1rf2x

)

.

We therefore verified that (24) is correct. It follows that we can get the following equation
because Φ is a hereditary symmetry:

Φ ′[Km] =
[
K ′

m,Φ
]
,

which means that Φ is a strong symmetry, where Km = Φm( qx
rx

)
.
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Proposition 2

Φ ′[xu] + Φ(xu)′ – (xu)′Φ = HI, (25)

where u =
( qx

rx

)
, H =

( 0 i∂
–i∂ 0

)
, and I is an identity matrix.

In fact,

Φ ′[xu] =

(
A B
C D

)

,

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A = qx∂
–1q + xqxx∂

–1q + 2xqxq + qx∂
–1xqx,

B = qx∂
–1r + xqxx∂

–1r + xqxr + xqrx + qx∂
–1xrx,

C = rx∂
–1q + xrxx∂

–1q + xrxq + xrqx + rx∂
–1xqx,

D = rx∂
–1r + xrxx∂

–1r + 2xrxr + rx∂
–1xrx.

Φ(xu)′ =
(

xq2∂ + xqqx – qx∂
–1(q + xqx) xqr∂ + i∂ + ix∂2 + xrqx – qx∂

–1(r + xrx)
xqr∂ – i∂ – ix∂2 + xqrx – rx∂

–1(q + xqx) xr2∂ + xrrx – rx∂
–1(r + xrx)

)

,

(xu)′Φ =
(

xqxx∂
–1q + 3xqqx + xq2∂ ix∂2 + xqxx∂

–1r + 2xrqx + xqrx + xqr∂
–ix∂2 + xrxx∂

–1q + 2xqrx + xrqx + xqr∂ xrxx∂
–1r + 3xrrx + xr2∂

)

,

where

(xu)′[σ ] =
d

dε

∣
∣
∣
∣
ε=0

(
x(q + εσ1)x

x(q + εσ2)x

)

= x∂

(
σ1

σ2

)

�⇒ (xu)′ =

(
x∂ 0
0 x∂

)

.

We therefore verified that (25) is correct.

Proposition 3

[K1, xu] = [Φu, xu] = Hu + K1, (26)

where u =
( qx

rx

)
, H =

( 0 i∂
–i∂ 0

)
, and K1 = Φu.

In fact,

Φu =

(
irxx + 1

2 qx(q2 + r2) + qrrx + q2qx

–iqxx + 1
2 rx(q2 + r2) + qrqx + r2rx

)

,

(Φu)′ =

(
1
2 (q2 + r2)∂ + 3qqx + q2∂ + rrx i∂2 + qr∂ + (qr)x

–i∂2 + qr∂ + (qr)x
1
2 (q2 + r2)∂ + 3rrx + r2∂ + qqx

)

,

(Φu)′
(

xqx

xrx

)

=

(
1
2 (q2 + r2)∂(xqx) + 3xqq2

x + q2∂(xqx) + xrrxqx + i∂2(xrx) + qr∂(xrx) + xrx(qr)x

–i∂2(xqx) + qr∂(xqx) + xqx(qr)x + 1
2 (q2 + r2)∂(xrx) + 3xrr2

x + r2∂(xrx) + xrxqqx

)

.
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Then we have

(xu)′[Φu] =

(
x∂(irxx + 1

2 qx(q2 + r2) + qrrx + q2qx)
x∂(–iqxx + 1

2 rx(q2 + r2) + qrqx + r2rx)

)

,

[Φu, xu] = (Φu)′[xu] – (xu)′[Φu] =

(
0 i∂

–i∂ 0

)(
qx

rx

)

+ K1 = Hu + K1.

We therefore verified that (26) is correct.

Proposition 4

[Km, Kn] = 0, m, n = 0, 1, 2, . . . , (27)

where Km = Φmu, Kn = Φnu.

Proposition 5

[
Φmxu, xu

]
= mΦm–1(xu).

The proofs of Proposition 4 and Proposition 5 were presented in [20].
From the above results we can get

[
Φmxu,Φnxu

]
= (m – n)Φm+n–1(xu), m = 0, 1, 2, . . . ; n = 0, 1, 2, . . . .

From (26), one can find that {Φnu,Φmxu} cannot constitute a Lie algebra. However,
{Φnu, n = 0, 1, 2, . . .} and {Φnxu, n = 0, 1, 2, . . .} constitute the infinite-dimensional Lie al-
gebra, respectively based on the above analysis.

Next we derive some conserved qualities of Tu isospectral hierarchy

utn =

(
q
r

)

tn

= Φn

(
qx

rx

)

. (28)

Definition 3 ([11, 12, 14]) If we have known the integrable hierarchy ut = Kn(u), then v
satisfying the following equation

dv
dt

+ K ′∗v = 0 (29)

is called the conserved covariance, where K ′ is the linearized operator of K , and K ′∗ de-
notes a conjugate operator of K ′.

Proposition 6 ([14]) If σ is a symmetry of Eq. ut = Kn(u), v is its conserved covariance,
then we have

∫ ∞

–∞
vσ dx = 〈v,σ 〉,

which is independent of time t, that is, d
dt 〈v,σ 〉 = 0.
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Definition 4 ([11, 12, 14]) If F ′f = 〈v, f 〉 for ∀f ∈ S, then v is called the gradient of the
functional F , which is denoted by v = δF

δu .

Proposition 7 ([14]) If v′ = v′∗, then v is the gradient of the following functional:

F =
∫ 1

0

〈
v(λu), u

〉
dλ. (30)

According to the symbols above, we can deduce the following.

Proposition 8 ([11, 12]) If I is a conserved quality of the hierarchy ut = Kn(u), and the
conserved covariance v satisfies

I ′Kn = 〈v, Kn〉,

then one obtains

∂I
∂t

+ 〈v, Kn〉 = 0,

that is,

∂v
∂t

+ K ′∗
n v + v′Kn = 0.

Hence, we derive the following conserved qualities related to the integrable hierarchy
ut = Kn(u):

Im =
∫ 1

0

〈
∂–1

x Km(λu), u
〉
dλ. (31)

In addition, a few conserved qualities are also derived for the integrable hierarchy (28) as
follows:

I0 =
∫ 1

0

〈
∂–1

x K0(λu), u
〉
dλ =

∫ 1

0

〈[(
0 –1
1 0

)(
qxλ

rxλ

)]T

,

(
q
r

)〉

dλ =
∫ ∞

–∞
(qxr – rxq) dx,

where

K0 = Φ0u =

(
qx

rx

)

=

(
0 1

–1 0

)(
–rx

qx

)

.

Moreover, we have

K1 = Φu =

(
irxx + 1

2 qx(q2 + r2) + qrrx + q2qx

–iqxx + 1
2 rx(q2 + r2) + qrqx + r2rx

)

=

(
0 1

–1 0

)(
iqxx – 1

2 rx(q2 + r2) – qrqx – r2rx

irxx + 1
2 qx(q2 + r2) + qrrx + q2qx

)

,
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I1 =
∫ 1

0

〈[(
0 –1
1 0

)(
irxxλ + 1

2 qx(q2 + r2)λ3 + qrrxλ
3 + q2qxλ

3

–iqxxλ + 1
2 rx(q2 + r2)λ3 + qrqxλ

3 + r2rxλ
3

)]T

,

(
q
r

)〉

dλ

=
∫ ∞

–∞

[
i
2

(qqxx + rrxx) +
1
8
(
q2 + r2)(qxr – rxq)

]

dx,

...

Ik =
∫ ∞

–∞

〈(
0 –1
1 0

)

Kk(λu),

(
q
r

)〉

dλ.
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