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Abstract
In this paper, we propose an efficient B-spline finite element method for a class of
fourth order nonlinear differential equations with variable coefficient. For the
temporal discretization, we choose the Crank–Nicolson scheme. Boundedness and
error estimates are rigorously derived for both semi-discrete and fully discrete
schemes. A numerical experiment confirms our theoretical analysis.
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1 Introduction
The epitaxial growth of nanoscale thin films has attracted a lot of attention in recent years
[1–6]. The key reason for this concern is that compositions like YBa2Cu3O7–δ (YBCO) are
expected to be high temperature superconducting materials that can be used in semicon-
ductor design. King et al. [1] proved the existence, uniqueness, and regularity of solution
in an appropriate function space for the initial boundary value problem of the epitaxial
thin-film growth. Kohn et al. [3] considered a fourth order parabolic equation, which is
a specific example of energy-driven coarsening in two dimension space, and proved that
the time-averaged energy per unit area decays no faster than t– 1

3 .
The finite element method (FEM) plays an important role in solving differential equa-

tions [7–11]. There are some papers which have already been published to study the FEM
for fourth order nonlinear parabolic equations [12–18]. Liu et al. [12] considered a non-
linear model describing epitaxial thin-film growth with constant coefficient and demon-
strated that the Hermite FEM has the convergence rate of O(�t + h3). Choo [13] con-
structed a finite element scheme for the viscous Cahn–Hilliard equation with a noncon-
stant gradient energy coefficient and obtained the error estimate using the extended Lax–
Richtmyer equivalence theorem. In [18], Qiao et al. presented a mixed FEM for the molec-
ular beam epitaxy mode and showed that the semi-discrete and fully discrete schemes sat-
isfy the nonlinear energy stability property. Moreover, the authors gave the error analysis.
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In 1946, the B-spline method was first introduced by Schoenberg [19]. In 1966, Curry
and Schoenberg [20] presented one element B-spline functions. In 1976, B-splines were
extended to multiple situations [21]. As a class of piecewise polynomials, B-splines are
often used in finite element analysis [22–27]. Erfanian et al. [25] used the linear B-spline
FEM and cubic B-spline FEM for solving linear Volterra integro-differential equation in
the complex plane. Dhawan et al. [26] applied the linear and quadratic B-spline functions
to the advection-diffusion equations.

The main advantages of B-splines are the freedom to choose the order and smooth-
ness, the simple data structure with one parameter in [0, 1], and the exact representation
of boundary conditions. Compared with Lagrange and Hermite type elements, B-spline
shape functions involve only one type of basis function. Thus the scale of matrix from
B-spline FEM is smaller than that from Lagrange and Hermite elements. Moreover, B-
spline shape functions are smoother. It is known that quadratic B-splines, which are in
C1(–∞, +∞), satisfy the weak form of fourth order differential equations. However, to
deal with boundary conditions, the B-spline basis functions need to be modified. In the
present work, we choose the cubic B-spline FEM for a fourth order nonlinear parabolic
equation with variable coefficient. It is proved that the convergence order of the Crank–
Nicolson scheme is higher than that of the backward Euler scheme in [12].

The following sections are organized as follows. In Sect. 2, we introduce the model and
some basic preliminaries. In Sect. 3, we show the boundedness and error estimates for the
semi-discrete scheme. In Sect. 4, a fully discrete scheme based on the Crank–Nicolson
method is studied. In Sect. 5, a numerical experiment is provided to confirm theoretical
results.

In this work, we denote L2, Lk , L∞, Hk norms in I by ‖ · ‖, ‖ · ‖Lk , | · |∞, and ‖ · ‖k ,
respectively.

2 Initial boundary value problem and some preliminaries
In this paper, we consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut + (α(x, t)uxx)xx – (|ux|2ux – ux)x = 0, (x, t) ∈ I × (0, T),

u(x, t) = ux(x, t) = 0, x ∈ ∂I, t ∈ (0, T),

u(x, 0) = u0(x), x ∈ I,

(1)

where I = [0, 1] and ut = ∂u
∂t .

For the variable coefficient, the following assumptions hold:

α(x, t),
∂α

∂t
(x, t) ∈ C

(
I × [0, T]

)
, (2)

0 < s ≤ α(x, t) ≤ S < +∞, ∀x ∈ I, t ∈ [0, T], (3)
∣
∣
∣
∣
∂α

∂t

∣
∣
∣
∣ ≤ M1,

∣
∣
∣
∣
∂2α

∂2t

∣
∣
∣
∣ ≤ M2, ∀x ∈ I, t ∈ [0, T], (4)

where s, S, M1, and M2 are positive constants.
Considering the boundary value conditions, we need the following space:

H2
0 (I) =

{
w; w ∈ H2(I), w(0, t) = w(1, t) = wx(0, t) = wx(1, t) = 0

}
.
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The weak formulation associated with problem (1) is: Find u = u(·, t) ∈ H2
0 (I) (0 ≤ t ≤ T)

such that
⎧
⎨

⎩

(ut , v) + (α(x, t)D2u, D2v) + (|Du|2Du – Du, Dv) = 0, ∀v ∈ H2
0 (I),

u(x, 0) = u0(x), x ∈ I,
(5)

where Du = ∂u
∂x .

According to [12], the solution of problem (1) exists.

Theorem 2.1 Suppose that u0 ∈ H2
0 (I)∩W 1,4(I), then there exists a unique global solution

u(x, t) for problem (1) such that

u ∈ C0([0, T]; L2(I)
) ∩ L∞(

[0, T]; W 1,4
0 (I)

) ∩ L2([0, T]; H4(I)
)
.

3 Semi-discrete finite element scheme
Let L be a positive integer. Define a uniform partition Ih : 0 = x0 < x1 < · · · < xL = 1, h =
xi – xi–1 = 1

L , Ii = [xi–1, xi]. To deal with boundary value conditions, we define six additional
knots x–3 = –3h, x–2 = –2h, x–1 = –h, xL+1 = 1 + h, xL+2 = 1 + 2h, xL+3 = 1 + 3h.

The cubic B-spline function with integer knots can be defined as follows:

N(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 x3, x ∈ [0, 1],

– 1
2 x3 + 2x2 – 2x + 2

3 , x ∈ [1, 2],
1
2 x3 – 4x2 + 10x – 22

3 , x ∈ [2, 3],

– 1
6 (x – 4)3, x ∈ [3, 4],

0, else,

then it is easy to get the cubic B-spline in the interval [xi, xi+4] which is

φi(x) = N
(

x – xi

h

)

.

The modified basis functions are defined as follows [28]:

{

6φ–3(x),φ–2(x) – 4φ–3(x),φ–1(x) –
1
2
φ–2(x) + φ–3(x),φ0(x), . . . ,

φL–4(x),φL–3(x) –
1
2
φL–2(x) + φL–1(x),φL–2(x) – 4φL–1(x), 6φL–1(x)

}

.

For the sake of convenience, we denote the modified basis functions with respect to {xi}
by {ϕi(x)}, which satisfies the following properties:

ϕ–3(0) = 1, ϕi(0) = 0 (i �= –3), ϕ′
i(0) = 0 (i �= –3, –2),

ϕL–1(1) = 1, ϕi(1) = 0 (i �= L – 1), ϕ′
i(1) = 0 (i �= L – 1, L – 2).

The modified basis functions can deal with homogeneous as well as non-homogeneous
boundary conditions.
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Let Uh be the cubic B-spline space. One can see that the cubic B-spline space is in
C2(–∞,∞), thus Uh ⊂ H2

0 . The approximation solution uh(x, t) ∈ Uh satisfies

uh(x, t) =
L–3∑

i=–1

δi(t)ϕi(x),

where δi(t) are time-dependent quantities.
The semi-discrete finite element scheme based on B-splines for problem (5) is: Find

uh = uh(·, t) ∈ Uh (0 < t ≤ T) such that

⎧
⎨

⎩

(uh,t , vh) + (α(x, t)D2uh, D2vh) + (|Duh|2Duh – Duh, Dvh) = 0, ∀vh ∈ Uh,

(uh(0) – u(0), vh) = 0, ∀vh ∈ Uh.
(6)

The bandwidth of stiffness matrix is 7, and the matrix order is L – 1, which is only half
of the Lagrange and Hermite finite element scheme.

In order to estimate the errors of the B-spline FEM, we introduce the elliptic projection
Rhu:

a(u – Rhu, vh) ≡ (
α(x, t)D2(u – Rhu), D2vh

)
= 0, ∀vh ∈ Uh, (7)

then Rhu is uniquely defined, and

a(u, u) ≥ C0‖u‖2
2, ∀u ∈ H2

0 (I), (8)

where C0 is a positive constant depending on α(x, t). Hence, a(u, v) is a symmetrical posi-
tive definite bilinear form and (see [12])

‖u – Rhu‖i ≤ Ch4–i‖u‖4, i = 0, 1, 2. (9)

We shall discuss the boundedness of the semi-discrete scheme, which is important for
error analysis.

Theorem 3.1 Let uh(0) ∈ H2
0 (I) ∩ W 1,4(I), then there exists a unique solution uh(t) ∈ Uh

for problem (6) such that

∥
∥uh(t)

∥
∥

2 ≤ C
∥
∥uh(0)

∥
∥

2, 0 ≤ t ≤ T , (10)

where C is a positive constant depending on α(x, t) and T , independent of mesh size h.

Proof According to ordinary differential equation theory, there exists a unique local solu-
tion to problem (5) in the interval [0, tn). If we have (10), then according to the extension
theorem, we can also obtain the existence of unique global solution. So, we only need to
prove (10).

Taking vh = uh in (6), based on (3), we get

1
2

d
dt

‖uh‖2 + s
∥
∥D2uh

∥
∥2 + ‖Duh‖4

L4 ≤ ‖Duh‖2.
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By the interpolation inequality, we have

1
2

d
dt

‖uh‖2 + s
∥
∥D2uh

∥
∥2 + ‖Duh‖4

L4 ≤ s
2
∥
∥D2uh

∥
∥2 +

1
2s

‖uh‖2.

Therefore

d
dt

‖uh‖2 + s
∥
∥D2uh

∥
∥2 + 2‖Duh‖4

L4 ≤ 1
s
‖uh‖2. (11)

According to the method of solving separable equations, we can get the result

d
dt

(
e– t

s ‖uh‖2) ≤ 0. (12)

Integrating (12) with respect to t, we have

∥
∥uh(t)

∥
∥2 ≤ e

t
s
∥
∥uh(0)

∥
∥2 ≤ e

T
s
∥
∥uh(0)

∥
∥2 ≤ C

∥
∥uh(0)

∥
∥2, 0 ≤ t ≤ T . (13)

Integrating (11) with respect to t, we get

∥
∥uh(t)

∥
∥2 –

∥
∥uh(0)

∥
∥2 + s

∫ t

0

∥
∥D2uh

∥
∥2 dt ≤ 1

s

∫ t

0
‖uh‖2 dt.

By (13), we obtain

∫ t

0

∥
∥D2uh

∥
∥2 dt ≤ C

∥
∥uh(0)

∥
∥2. (14)

Choose vh = uh,t in (6) to get

‖uh,t‖2 +
(
α(x, t)D2uh, D2uh,t

)
+

(|Duh|2Duh – Duh, Duh,t
)

= 0. (15)

A direct calculation gives

(
α(x, t)D2uh, D2uh,t

)
=

1
2

d
dt

(
α(x, t)D2uh, D2uh

)
–

1
2

(
∂α

∂t
D2uh, D2uh

)

.

Define the energy function

Eh(t) =
1
2
(
α(x, t)D2uh, D2uh

)
+

1
4
((

1 – |Duh|2
)2, 1

)
. (16)

It is clear that Eh(t) ≥ 0. Differentiating Eh(t) with respect to t, we get

d
dt

Eh(t) =
(
α(x, t)D2uh, D2uh,t

)
+

1
2

(
∂α

∂t
(x, t)D2uh, D2uh

)

+
(|Duh|2Duh, Duh,t

)
– (Duh, Duh,t).

By (14), we have

d
dt

Eh(t) = –‖uh,t‖2 +
1
2

(
∂α

∂t
(x, t)D2uh, D2uh

)

≤ –‖uh,t‖2 +
M1

2
∥
∥D2uh

∥
∥2. (17)
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Integrating (17) with respect to t, we have

Eh(t) – Eh(0) ≤ M1

2

∫ t

0

∥
∥D2uh

∥
∥2 dt ≤ C

∥
∥uh(0)

∥
∥2.

It is obvious that

Eh(t) ≤ Eh(0) + C
∥
∥uh(0)

∥
∥2.

In view of (3) and (16), we obtain

s
2
∥
∥D2uh

∥
∥2 +

1
4
‖Duh‖4

L4 –
1
2
‖Duh‖2

≤ S
2
∥
∥D2uh(0)

∥
∥2 +

1
4
∥
∥Duh(0)

∥
∥4

L4
–

1
2
∥
∥Duh(0)

∥
∥2 + C

∥
∥uh(0)

∥
∥2.

It is clear to see from Cauchy’s inequality that

s
2
∥
∥D2uh

∥
∥2 +

1
4
‖Duh‖4

L4 +
1
2
∥
∥Duh(0)

∥
∥2

≤ S
2
∥
∥D2uh(0)

∥
∥2 +

1
4
∥
∥Duh(0)

∥
∥4

L4
+ C

∥
∥uh(0)

∥
∥2 +

1
2
‖Duh‖2

≤ S
2
∥
∥D2uh(0)

∥
∥2 +

1
4
∥
∥Duh(0)

∥
∥4

L4
+ C

∥
∥uh(0)

∥
∥2 +

s
4
∥
∥D2uh

∥
∥2 +

1
4s

‖uh‖2.

Therefore

s
4
∥
∥D2uh

∥
∥2 ≤ S

2
∥
∥D2uh(0)

∥
∥2 +

1
4
∥
∥Duh(0)

∥
∥4

L4
+ C

∥
∥uh(0)

∥
∥2. (18)

It follows that

∥
∥D2uh

∥
∥ ≤ C

∥
∥D2uh(0)

∥
∥2, 0 ≤ t ≤ T , (19)

where C is a positive constant depending on α(x, t) and uh(0).
Owing to the interpolation inequality, we obtain

‖Duh‖2 ≤ 1
2
∥
∥D2uh

∥
∥2 +

1
2
‖uh‖2.

Thus (10) holds. The proof of the theorem is completed. �

Now, we give the error estimates between the solution to problem (5) and the solution
in L2 and H2 norms.

Theorem 3.2 Let u be the solution to (5), uh be the solution to (6), u(0) ∈ H4(I), u, ut ∈
L2(0, T ; H4(I)), the initial value satisfies

∥
∥u(0) – uh(0)

∥
∥ ≤ Ch4∥∥u(0)

∥
∥

4.
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As 0 ≤ t ≤ T , we have the following error estimate:

‖u – uh‖ ≤ Ch4
(

∥
∥u(0)

∥
∥2

4 +
(∫ t

0

(∥
∥u(τ )

∥
∥2

4 +
∥
∥ut(τ )

∥
∥2

4

)
dτ

) 1
2
)

, (20)

where C is a positive constant depending on α(x, t) and T , independent of mesh size h.

Proof Denote θ (t) = Rhu – uh and ρ(t) = u – Rhu. Then

‖u – uh‖ ≤ ∥
∥θ (t)

∥
∥ +

∥
∥ρ(t)

∥
∥. (21)

It follows from (5)–(7) that

(θt , vh) +
(
α(x, t)D2θ , D2vh

)

= –(ρt , vh) –
(|Du|2Du – |Duh|2Duh, Dvh

)
+ (Du – Duh, Dvh). (22)

Taking vh = θ in (22), we have

1
2

d
dt

‖θ‖ + s
∥
∥D2θ

∥
∥

≤ ∣
∣–(ρt , θ )

∣
∣ +

∣
∣–

(|Du|2Du – |Duh|2Duh, Dθ
)∣
∣ +

∣
∣(Dθ + Dρ, Dθ )

∣
∣. (23)

By estimating the nonlinear term, we have

∣
∣–

(|Du|2Du – |Duh|2Duh, Dθ
)∣
∣

=
∣
∣–

((|Du|2 + DuDuh + |Duh|2
)
Dθ , Dθ + Dρ

)∣
∣

=
∣
∣
((|Du|2 + DuDuh + |Duh|2

)
D2θ , θ + ρ

)

+
((

2DuD2u + D2uDuh + DuD2uh + 2DuhD2uh
)
Dθ , θ + ρ

)∣
∣

≤ ||Du|2 + DuDuh + |Duh|2|∞ · ∥∥D2θ
∥
∥ · ‖θ + ρ‖

+
∥
∥2DuD2u + D2uDuh + DuD2uh + 2DuhD2uh

∥
∥ · ‖Dθ‖ · ‖θ + ρ‖

≤ (|Du|2∞ + |Du|∞ · |Duh|∞ + |Duh|2∞
) · ∥∥D2θ

∥
∥ · ‖θ + ρ‖

+
(
2‖Du‖∞ · ∥∥D2u

∥
∥ +

∥
∥D2u

∥
∥ · ‖Duh‖∞ + ‖Du‖∞ · ∥∥D2uh

∥
∥

+ 2‖Duh‖∞ · ∥∥D2uh
∥
∥
) · ‖Dθ‖ · ‖θ + ρ‖.

Based on Sobolev’s embedding theorem, H2(I) ↪→ W 1,∞(I), i.e.,

|Du|∞ ≤ C‖u‖2, |Duh|∞ ≤ C‖uh‖2,

we obtain

–
(|Du|2Du – |Duh|2Duh, Dθ

) ≤ C
(‖Dθ‖ +

∥
∥D2θ

∥
∥
)‖θ + ρ‖

≤ s
8
∥
∥D2θ

∥
∥2 + C

(‖θ‖2 + ‖Dθ‖2 + ‖ρ‖2) ≤ s
4
∥
∥D2θ

∥
∥2 + C

(‖θ‖2 + ‖ρ‖2). (24)



Qin et al. Advances in Difference Equations        (2020) 2020:172 Page 8 of 26

In addition, it is easy to get

(Dθ + Dρ, Dθ ) = –
(
θ + ρ, D2θ

) ≤ s
4
∥
∥D2θ

∥
∥2 + C

(‖θ‖2 + ‖ρ‖2).

Using (3), Hölder’s inequality, and Young’s inequality, we can deduce

1
2

d
dt

‖θ‖2 + s
∥
∥D2θ

∥
∥2 ≤ 1

2
‖ρt‖2 +

1
2
‖θ‖2 +

s
2
∥
∥D2θ

∥
∥2 + C

(‖θ‖2 + ‖ρ‖2). (25)

Hence

d
dt

‖θ‖2 + s
∥
∥D2θ

∥
∥2 ≤ C

(‖θ‖2 + ‖ρ‖2 + ‖ρt‖2). (26)

By Gronwall’s inequality, we have

‖θ‖2 ≤ C
(

∥
∥θ (0)

∥
∥2 +

∫ t

0

(‖ρ‖2 + ‖ρt‖2)dτ

)

. (27)

Moreover, using the triangle inequality, we know

∥
∥θ (0)

∥
∥ =

∥
∥u(0) – uh(0) + Rhu(0) – u(0)

∥
∥ ≤ ∥

∥u(0) – uh(0)
∥
∥ +

∥
∥ρ(0)

∥
∥. (28)

Hence, when 0 ≤ t ≤ T , it follows from (21) and (27)–(28) that formula (20) is derived.
This completes the proof. �

Theorem 3.3 Let u be the solution to (5), uh be the solution to (6), u(0) ∈ H4(I), u, ut ∈
L2(0, T ; H4(I)), and the initial value satisfies

∣
∣u(0) – uh(0)

∣
∣
2 ≤ Ch2∥∥u(0)

∥
∥

4. (29)

Then we have the following error estimate:

∣
∣u(t) – uh(t)

∣
∣
2 ≤ Ch2

(
∥
∥u(0)

∥
∥

4 +
(∫ t

0

(∥
∥u(τ )

∥
∥2

4 + h4∥∥ut(τ )
∥
∥2

4

)
dτ

) 1
2
)

, (30)

where C is a positive constant depending on α(x, t), independent of mesh size h.

Proof Letting vh = θt in (22), we get

‖θt‖2 +
d
dt

(
α(x, t)D2θ , D2θ

)
–

1
2

(
∂

∂t
α(x, t)D2θ , D2θ

)

= –(ρt , θt) –
(|Du|2Du – |Duh|2Duh, Dθt

)
+ (Dθ + Dρ, Dθt)

= –(ρt , θt) +
(
D

(|Du|2Du – |Duh|2Duh
)
, θt

)
–

(
D2θ + D2ρ, θt

)

≤ 1
2
‖θt‖2 + C

(‖ρt‖2 +
∥
∥D

(|Du|2Du – |Duh|2Duh
)∥
∥2 +

∥
∥D2θ

∥
∥2 +

∥
∥D2ρ

∥
∥2).

Using the triangle inequality and Sobolev’s embedding theorem, we get

∥
∥D

(|Du|2Du – |Duh|2Duh
)∥
∥
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≤ ∥
∥
(
D2u – D2uh

)(|Du|2 + DuDuh + |Duh|2
)∥
∥

+
∥
∥(Du – Duh)

(
2DuD2u + D2uDuh + DuD2uh + 2DuhD2uh

)∥
∥

≤ ∥
∥D2u – D2uh

∥
∥
(|Du|2∞ + |Du|∞|Duh|∞ + |Duh|2∞

)

+ ‖Du – Duh‖
(
2|Du|∞

∥
∥D2u

∥
∥ +

∥
∥D2u

∥
∥|Duh|∞

+ |Du|∞
∥
∥D2uh

∥
∥ + 2|Duh|∞

∥
∥D2uh

∥
∥
)

≤ C
(‖Dθ‖ +

∥
∥D2θ

∥
∥ + ‖Dρ‖ +

∥
∥D2ρ

∥
∥
)

≤ C
(‖Dθ‖ +

∥
∥D2θ

∥
∥ + ‖ρ‖2

)
. (31)

Based on (4) and ε-inequality, we have

‖θt‖2 +
d
dt

(
α(x, t)D2θ , D2θ

)

≤ M1

2
∥
∥D2θ

∥
∥2 +

1
2
‖θt‖2 + C

(‖ρt‖2 + ‖ρ‖2
2 + ‖Dθ‖2 +

∥
∥D2θ

∥
∥2)

≤ 1
2
‖θt‖2 + C

(‖ρt‖2 + ‖ρ‖2
2 + ‖θ‖2 +

∥
∥D2θ

∥
∥2). (32)

Integrating (32) with respect to t, we find

(
α(x, t)D2θ , D2θ

)
–

(
α(x, 0)D2θ (0), D2θ (0)

)

≤ C
∫ t

0

(‖ρt‖2 + ‖ρ‖2
2 + ‖θ‖2 +

∥
∥D2θ

∥
∥2)dτ .

By (3), we have

s
∥
∥D2θ

∥
∥2 ≤ S

∥
∥D2θ (0)

∥
∥2 + C

∫ t

0

(‖ρt‖2 + ‖ρ‖2
2 + ‖θ‖2 +

∥
∥D2θ

∥
∥2)dτ .

Then

∥
∥D2θ

∥
∥2 ≤ C

(
∥
∥D2θ (0)

∥
∥2 +

∫ t

0

(‖ρt‖2 + ‖ρ‖2
2 + ‖θ‖2)dτ

)

. (33)

Note that

∥
∥D2θ (0)

∥
∥ ≤ ∥

∥D2u(0) – D2uh(0)
∥
∥ +

∥
∥D2Rhu(0) – D2u(0)

∥
∥. (34)

Combining (33) and (34), we have

∥
∥D2θ

∥
∥ ≤ Ch2

(
∥
∥u(0)

∥
∥

4 +
(∫ t

0

(∥
∥u(τ )

∥
∥2

4 + h4∥∥ut(τ )
∥
∥2

4

)
dτ

) 1
2
)

.

Finally, using (29), we obtain (30). The proof is completed. �
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4 Fully discrete finite element scheme
To construct the Crank–Nicolson scheme, we define the following function:

H
(
Dun

h
)

=
1
4
(
1 –

∣
∣Dun

h
∣
∣2)2, (35)

where H(Dun
h) is a double well potential function. Obviously, H ′(Duh) = |Duh|2Duh – Duh.

The fully discrete finite element scheme for problem (1) is: Find un
h ∈ Uh (n = 1, 2, . . . , N)

such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂tun
h, vh) + (αn– 1

2 D2un– 1
2

h , D2vh) + ( H(Dun
h)–H(Dun–1

h )
Dun

h–Dun–1
h

, Dvh) = 0,

∀vh ∈ Uh,

(u(0) – u0
h, vh) = 0, ∀vh ∈ Uh,

(36)

where N is a given positive integer, �t = T/N denotes the time step size, tn = n�t and

∂tun
h =

(
un

h – un–1
h

)
/�t,

αn– 1
2 = α

(
x, tn– 1

2
)
,

un– 1
2

h =
(
un

h + un–1
h

)
/2,

tn– 1
2 =

(
tn + tn–1)/2.

Firstly, we analyze the boundedness of the fully discrete scheme (36). It is a key step for
deducing the error estimate.

Theorem 4.1 Let u0
h ∈ H2

0 (I) ∩ W 1,4(I), then there exists a unique solution un
h for problem

(36) such that

∥
∥un

h
∥
∥

2 ≤ C
∥
∥u0

h
∥
∥

2, 0 ≤ t ≤ T , (37)

where C is a positive constant depending on α(x, t) and T , independent of h and �t.

Proof A direct calculation gives

H(Dun
h) – H(Dun–1

h )
Dun

h – Dun–1
h

=
1
4
(
Dun

h + Dun–1
h

)(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2) –

1
2
(
Dun

h + Dun–1
h

)
. (38)

Setting vh = un
h + un–1

h in (36), we get

1
�t

(∥
∥un

h
∥
∥2 –

∥
∥un–1

h
∥
∥2) +

s
2
∥
∥D2un

h + D2un–1
h

∥
∥2

+
1
4
((

Dun
h + Dun–1

h
)2,

∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2) ≤ 1

2
∥
∥Dun

h + Dun–1
h

∥
∥2. (39)
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Using Cauchy’s inequality, we obtain

1
�t

(∥
∥un

h
∥
∥2 –

∥
∥un–1

h
∥
∥2) +

s
2
∥
∥D2un

h + D2un–1
h

∥
∥2

≤ s
4
∥
∥D2un

h + D2un–1
h

∥
∥2 +

1
4s

∥
∥un

h + un–1
h

∥
∥2.

Further, we derive

1
�t

(∥
∥un

h
∥
∥2 –

∥
∥un–1

h
∥
∥2) ≤ 1

4s
∥
∥un

h + un–1
h

∥
∥2 ≤ 1

2s
(∥
∥un

h
∥
∥2 +

∥
∥un–1

h
∥
∥2). (40)

Letting γ = 1
2s , we have

∥
∥un

h
∥
∥2 ≤ 1 + γ�t

1 – γ�t
∥
∥un–1

h
∥
∥2 ≤ · · · ≤

(
1 + γ�t
1 – γ�t

)n∥
∥u0

h
∥
∥2. (41)

It is easy to show

(
1 + γ�t
1 – γ�t

)n

=
(

1 +
2γ�t

1 – γ�t

) 1–γ�t
2γ�t · 2γ n�t

1–γ�t
.

If �t is small enough, we conclude

∥
∥un

h
∥
∥2 ≤ C

∥
∥u0

h
∥
∥2. (42)

Choosing vh = ∂tun
h in (36), we have

∥
∥∂tun

h
∥
∥2 +

1
2�t

(
α
(
x, tn– 1

2
)(∣

∣D2un
h
∣
∣2 –

∣
∣D2un–1

h
∣
∣2), 1

)

+
1
�t

(
H

(
Dun

h
)

– H
(
Dun–1

h
)
, 1

)
= 0. (43)

Then we get

(
1
2
α
(
x, tn– 1

2
)∣
∣D2un

h
∣
∣2 + H

(
Dun

h
)
, 1

)

≤
(

1
2
α
(
x, tn– 1

2
)∣
∣D2un–1

h
∣
∣2 + H

(
Dun–1

h
)
, 1

)

. (44)

Define the function

G
(
un

h, tn– 1
2
)

=
(

1
2
α
(
x, tn– 1

2
)∣
∣D2un

h
∣
∣2 + H

(
Dun

h
)
, 1

)

, (45)

then G(un
h, tn– 1

2 ) ≥ 0. By (44) and (45), we have

G
(
un

h, tn– 1
2
) ≤ G

(
un–1

h , tn– 3
2
)

+
1
2
((

α
(
x, tn– 1

2
)

– α
(
x, tn– 3

2
))∣

∣D2un–1
h

∣
∣2, 1

)
.
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With the differential mean value theorem and the boundedness of variable coefficient, we
obtain

G
(
un

h, tn– 1
2
) ≤ G

(
un–1

h , tn– 3
2
)

+
�t
2

∣
∣
∣
∣
∂α

∂t
(x, ξ )

∣
∣
∣
∣

∥
∥D2un–1

h
∥
∥2

≤ G
(
un–1

h , tn– 3
2
)

+
M1�t

2
∥
∥D2un–1

h
∥
∥2,

where tn– 3
2 < ξ < tn– 1

2 . Then

G
(
un

h, tn– 1
2
)

– G
(
un–1

h , tn– 3
2
) ≤ M1�t

2
∥
∥D2un–1

h
∥
∥2.

Taking the sum over n, we get

G
(
un

h, tn– 1
2
)

– G
(
u1

h, t
1
2
) ≤ M1�t

2

n–1∑

j=2

∥
∥D2uj

h
∥
∥2. (46)

It is obvious that

G
(
un

h, tn– 1
2
) ≥ s

2
∥
∥D2un

h
∥
∥2 +

(
H

(
Dun

h
)
, 1

) ≥ s
2
∥
∥D2un

h
∥
∥2.

Therefore we know

G
(
un

h, tn– 1
2
)

– G
(
u1

h, t
1
2
) ≤ M1�t

s

n–1∑

j=2

G
(
uj

h, tj– 1
2
)
.

Based on (44) and u0
h ∈ H2

0 (I) ∩ W 1,4(I), we have

G
(
u1

h, t
1
2
)

=
(

1
2
α
(
x, t

1
2
)∣
∣D2u1

h
∣
∣2 + H

(
Du1

h
)
, 1

)

≤
(

1
2
α
(
x, t

1
2
)∣
∣D2u0

h
∣
∣2 + H

(
Du0

h
)
, 1

)

≤ C
(
u0

h
)
,

where C(u0
h) is a constant depending on u0

h. Then

G
(
un

h, tn– 1
2
) ≤ C

(
u0

h
)

+
M1�t

s

n–1∑

j=2

G
(
un

h, tn– 1
2
)
. (47)

Using discrete Gronwall’s inequality, we derive

G
(
un

h, tn– 1
2
) ≤ C, C = C

(
u0

h, s, M1, T
)
. (48)

Based on (48), it is easy to see

∥
∥D2un

h
∥
∥ ≤ C

∥
∥D2u0

h
∥
∥. (49)
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We also know

∥
∥Dun

h
∥
∥2 ≤ 1

2
(∥
∥un

h
∥
∥2 +

∥
∥D2un

h
∥
∥2).

By (42) and (49), we obtain (37). The proof is completed. �

Next, we give the error estimate in L2 norm.

Theorem 4.2 Let un be the solution to problem (5), un
h be the solution to the fully discrete

scheme (36), u(0) ∈ H4(I), ut ∈ L2(0, T ; H4(I)) ∩ L2(0, T ; W 1,4(I)), uttt ∈ L2(0, T ; L2(I)) and
u0

h ∈ Uh satisfying

∥
∥u(0) – u0

h
∥
∥ ≤ Ch4∥∥u(0)

∥
∥

4. (50)

Then we have the following error estimate:

∥
∥un – un

h
∥
∥ ≤ C

(
(�t)2 + h3), (51)

where C is a positive constant depending on α(x, t) and T , independent of mesh size h.

Proof Denote un
t = ut(x, tn) and un = u(x, tn). Setting t = tn–1 and t = tn in (5), respectively,

we obtain

(
un

t + un–1
t

2
, vh

)

+
(

α(x, tn)D2un + α(x, tn–1)D2un–1

2
, D2vh

)

+
( |Dun|2Dun + |Dun–1|2Dun–1 – Dun – Dun–1

2
, Dvh

)

= 0. (52)

Denote

Φ
(
D2un, D2un–1, D2un– 1

2
h

)

=
α(x, tn)D2un + α(x, tn–1)D2un–1

2
– α

(
x, tn– 1

2
)
D2un– 1

2
h (53)

and

F
(
Dun, Dun–1, Dun

h, Dun–1
h

)

=
|Dun|2Dun + |Dun–1|2Dun–1 – Dun – Dun–1

2
–

H(Dun
h) – H(Dun–1

h )
Dun

h – Dun–1
h

. (54)

It follows from (52)–(54) and (36) that

(
un

t + un–1
t

2
– ∂tun

h, vh

)

+
(
Φ

(
D2un, D2un–1, D2un– 1

2
h

)
, D2vh

)

+
(
F
(
Dun, Dun–1, Dun

h, Dun–1
h

)
, Dvh

)
= 0. (55)
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Let ρn = un – Rhun and θn = Rhun – un
h , then un – un

h = ρn + θn. It is clear to get

un
t + un–1

t
2

– ∂tun
h =

un
t + un–1

t
2

– ∂tun + ∂tun – ∂tun
h

=
un

t + un–1
t

2
– ∂tun + ∂t

(
un – Rhun + Rhun – un

h
)

= ∂tθ
n – rn, (56)

where

rn = ∂tRhun – ∂tun + ∂tun –
ut(tj) + ut(tj–1)

2
.

An easy calculation gives

Φ
(
D2un, D2un–1, D2un– 1

2
h

)

=
1
2
((

α
(
x, tn) – α

(
x, tn– 1

2
))

D2un +
(
α
(
x, tn–1) – α

(
x, tn– 1

2
))

D2un–1

+ α
(
x, tn– 1

2
)(

D2un + D2un–1 – D2un
h – D2un–1

h
))

=
1
2
((

α
(
x, tn) – α

(
x, tn– 1

2
))

D2un +
(
α
(
x, tn–1) – α

(
x, tn– 1

2
))

D2un–1

+ α
(
x, tn– 1

2
)(

D2θn + D2θn–1 + D2ρn + D2ρn–1)).

Using Taylor’s theorem, we have

α
(
x, tn) = α

(
x, tn– 1

2
)

+
�t
2

∂α

∂t
(
x, tn– 1

2
)

+
(�t)2

6
∂2α

∂2t

(

x, tn– 1
2 + ξ1

�t
2

)

, 0 < ξ1 < 1

and

α
(
x, tn–1) = α

(
x, tn– 1

2
)

–
�t
2

∂α

∂t
(
x, tn– 1

2
)

+
(�t)2

6
∂2α

∂2t

(

x, tn– 1
2 + ξ2

�t
2

)

, –1 < ξ2 < 0.

With (4), we get

Φ
(
D2un, D2un–1, D2un– 1

2
h

)

=
�t
2

∂α

∂t
(
x, tn– 1

2
)(

D2un – D2un–1) + O
(
(�t)2)

+
1
2
α
(
x, tn– 1

2
)(

D2θn + D2θn–1 + D2ρn + D2ρn–1). (57)

From (7), we have

(
∂tθ

n, vh
)

+
1
2
(
αn– 1

2
(
D2θn + D2θn–1), D2vh

)

+
�t
2

(
∂α

∂t
(
x, tn– 1

2
)(

D2un – D2un–1), D2vh

)

+
(
O

(
(�t)2), D2vh

)

=
(
rn, vh

)
–

(
F
(
Dun, Dun–1, Dun

h, Dun–1
h

)
, Dvh

)
. (58)
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Setting vh = θn + θn–1 in (58), we get

1
�t

(∥
∥θn∥∥2 –

∥
∥θn–1∥∥2) +

s
2
∥
∥D2θn + D2θn–1∥∥2

≤ ∥
∥rn∥∥2 +

1
4
∥
∥θn + θn–1∥∥2 +

∥
∥F

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2

+
1
4
∥
∥Dθn + Dθn–1∥∥2 +

M1�t
2

∥
∥D2un – D2un–1∥∥

∥
∥D2θn + D2θn–1∥∥

≤ ∥
∥rn∥∥2 +

∥
∥F

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2 +

1
4

(

1 +
1
2s

)
∥
∥θn + θn–1∥∥2

+
s
4
∥
∥D2θn + D2θn–1∥∥2 +

(M1�t)2

2s
∥
∥D2un – D2un–1∥∥2.

Based on the Newton–Leibniz formula and Hölder’s inequality, we have

∣
∣D2un – D2un–1∣∣ =

∣
∣
∣
∣

∫ tn

tn–1

D2ut(t) dt
∣
∣
∣
∣ ≤ �t

1
2

(∫ tn

tn–1

∣
∣D2ut(t)

∣
∣2 dt

) 1
2

.

Thus

1
�t

(∥
∥θn∥∥2 –

∥
∥θn–1∥∥2) +

s
2
∥
∥D2θn + D2θn–1∥∥2

≤ ∥
∥rn∥∥2 +

∥
∥F

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2 +

1
4

(

1 +
1
2s

)
∥
∥θn + θn–1∥∥2

+
s
4
∥
∥D2θn + D2θn–1∥∥2 +

M2
1(�t)3

2s

∫ tn

tn–1

∥
∥D2ut(t)

∥
∥2 dt. (59)

A direct calculation gives

∥
∥F

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥

=
∥
∥
∥
∥

1
2
((

Dun)3 +
(
Dun–1)3) –

1
4
(
Dun + Dun–1)(∣∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

+
1
4
(
Dun + Dun–1)(∣∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

–
1
4
(
Dun

h + Dun–1
h

)(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2)

–
1
2
(
Dun + Dun–1) +

1
2
(
Dun

h + Dun–1
h

)
∥
∥
∥
∥.

From (37) and Sobolev’s embedding theorem, H2
0 (I) ↪→ H1,∞(I), we know

∣
∣Dun∣∣∞ ≤ C

∥
∥un∥∥

2 ≤ C,
∣
∣Dun

h
∣
∣∞ ≤ C

∥
∥un

h
∥
∥

2 ≤ C. (60)

Using Hölder’s inequality, we have

∣
∣Dun – Dun–1∣∣ =

∣
∣
∣
∣

∫ tn

tn–1

Dut(t) dt
∣
∣
∣
∣ ≤ C(�t)

1
2

(∫ tn

tn–1

∣
∣Dut(t)

∣
∣2 dt

) 1
2

. (61)
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From (60) and (61), we have

∥
∥
∥
∥

1
2
((

Dun)3 +
(
Dun–1)3) –

1
4
(
Dun + Dun–1)(∣∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

∥
∥
∥
∥

=
1
4
∥
∥
∣
∣Dun∣∣2Dun –

∣
∣Dun∣∣2Dun–1 – Dun∣∣Dun–1∣∣2 +

∣
∣Dun–1∣∣2Dun–1∥∥

=
1
4
∥
∥
(
Dun + Dun–1)(Dun – Dun–1)2∥∥

≤ 1
4
(∣
∣Dun∣∣∞ +

∣
∣Dun–1∣∣∞

)∥
∥
(
Dun – Dun–1)2∥∥

≤ C�t
∫ tn

tn–1

∥
∥Dut(t)

∥
∥2 dt. (62)

Due to (60), we get

∥
∥
(
Dun + Dun–1)(∣∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

–
(
Dun

h + Dun–1
h

)(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2)∥∥

=
∥
∥
(
Dun + Dun–1)(∣∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

–
(
Dun

h + Dun–1
h

)(∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

+
(
Dun

h + Dun–1
h

)(∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

–
(
Dun

h + Dun–1
h

)(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2)∥∥

≤ (∣
∣Dun∣∣2

∞ +
∣
∣Dun–1∣∣2

∞
)∥
∥
(
Dun + Dun–1) –

(
Dun

h + Dun–1
h

)∥
∥

+
(∣
∣Dun

h
∣
∣∞ +

∣
∣Dun–1

h
∣
∣∞

)∥
∥
(
Dun + Dun

h
)(

Dun – Dun
h
)

+
(
Dun–1 + Dun–1

h
)(

Dun–1 – Dun–1
h

)∥
∥

≤ (∣
∣Dun∣∣2

∞ +
∣
∣Dun–1∣∣2

∞
)(∥

∥Dθn + Dθn–1∥∥ +
∥
∥Dρn + Dρn–1∥∥

)

+
(∣
∣Dun

h
∣
∣∞ +

∣
∣Dun–1

h
∣
∣∞

)(∣
∣Dun∣∣∞ +

∣
∣Dun

h
∣
∣∞ +

∣
∣Dun–1∣∣∞ +

∣
∣Dun–1

h
∣
∣∞

)

× (∥
∥Dθn + Dθn–1∥∥ +

∥
∥Dρn + Dρn–1∥∥

)

≤ C
(∥
∥Dθn + Dθn–1∥∥ +

∥
∥Dρn + Dρn–1∥∥

)
. (63)

By the triangle inequality, we obtain

∥
∥
(
Dun + Dun–1) –

(
Dun

h + Dun–1
h

)∥
∥

=
∥
∥Dθn + Dρn + Dθn–1 + Dρn–1∥∥

≤ ∥
∥Dθn + Dθn–1∥∥ +

∥
∥Dρn + Dρn–1∥∥. (64)

In view of (62)–(64) and (9), we have

∥
∥F

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥

≤ C
(

∥
∥Dθn + Dθn–1∥∥ +

∥
∥Dρn + Dρn–1∥∥ + �t

∫ tn

tn–1

∥
∥Dut(t)

∥
∥2 dt

)
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≤ C
(

∥
∥Dθn + Dθn–1∥∥ + h3 + �t

∫ tn

tn–1

∥
∥Dut(t)

∥
∥2 dt

)

.

Based on the ε-inequality and Hölder’s inequality, we obtain

∥
∥F

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2

≤ C
(

∥
∥θn + θn–1∥∥2 + h6 + (�t)3

∫ tn

tn–1

∥
∥Dut(t)

∥
∥4 dt

)

+
s
8
∥
∥D2θn + D2θn–1∥∥2. (65)

Let rn = rn
1 + rn

2 , where

rj
1 = ∂tRhu(tj) – ∂tu(tj) =

1
�t

∫ tj

tj–1

(Rh – I)ut dt,

rj
2 = ∂tu(tj) –

ut(tj) + ut(tj–1)
2

.

It is clear to see that

∥
∥rj

1
∥
∥ ≤ 1

�t
Ch4

∫ tj

tj–1

‖ut‖4 dt ≤ C(�t)– 1
2 h4

(∫ tj

tj–1

‖ut‖2
4 dt

) 1
2

.

Using Taylor’s formula, we derive

∥
∥rj

2
∥
∥ ≤ C�t

∫ tj

tj–1

‖uttt‖dt ≤ C(�t)
3
2

(∫ tj

tj–1

‖uttt‖2 dt
) 1

2
.

We easily get

n∑

j=1

∥
∥rj∥∥2 ≤ C(�t)–1((�t)4 + h8)

∫ tn

0

(‖ut‖2
4 + ‖uttt‖2)dt. (66)

Adding (59), (65), and (66), we have

(∥
∥θn∥∥2 –

∥
∥θn–1∥∥2) +

s�t
8

∥
∥D2θn + D2θn–1∥∥2

≤ C
(

�t
(∥
∥θn + θn–1∥∥2 + h6)

+
(
(�t)4 + h8)

∫ tn

tn–1

(‖ut‖2
4 + ‖Dut‖4 +

∥
∥D2ut

∥
∥2 + ‖uttt‖2)dt

)

.

We know

∥
∥θn + θn–1∥∥2 ≤ 2

(∥
∥θn∥∥2 +

∥
∥θn–1∥∥2).

Then

(∥
∥θn∥∥2 –

∥
∥θn–1∥∥2) +

s�t
8

∥
∥D2θn + D2θn–1∥∥2
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≤ C
(

�t
(∥
∥θn∥∥2 +

∥
∥θn–1∥∥2 + h6)

+
(
(�t)4 + h8)

∫ tn

tn–1

(‖ut‖2
4 + ‖Dut‖4 +

∥
∥D2ut

∥
∥2 + ‖uttt‖2)dt

)

. (67)

Taking the sum over n, by n�t = tn ≤ T , we have

∥
∥θn∥∥2 –

∥
∥θ0∥∥2 +

s�t
8

n∑

i=1

∥
∥D2θ i + D2θ i–1∥∥2

≤ C

(

�t
n∑

i=1

(∥
∥θ i∥∥2 +

∥
∥θ i–1∥∥2) + Th6

+
(
(�t)4 + h8)

∫ tn

0

(‖ut‖2
4 + ‖Dut‖4 +

∥
∥D2ut

∥
∥2 + ‖uttt‖2)dt

)

.

Hence

(1 – C�t)
∥
∥θn∥∥2 ≤ (1 + C�t)

∥
∥θ0∥∥2 + C

(

�t
n–1∑

i=1

∥
∥θ i∥∥2 + Th6 + (�t)4 + h8

)

.

If �t is small enough, we have

∥
∥θn∥∥2 ≤ 1 + C�t

1 – C�t
∥
∥θ0∥∥2 +

C
1 – C�t

(

�t
n–1∑

i=1

∥
∥θ i∥∥2 + Th6 + (�t)4 + h8

)

.

By discrete Gronwall’s inequality, it gives

∥
∥θn∥∥ ≤ C

(
(�t)2 + h3).

Using (9) and (50), we get

∥
∥θ0∥∥ ≤ ∥

∥u(0) – uh(0)
∥
∥ +

∥
∥u(0) – Rhu(0)

∥
∥ ≤ Ch4∥∥u(0)

∥
∥

4.

Finally, we obtain (51). The proof is completed. �

In the following theorem, we introduce the error estimate in H2 norm.

Theorem 4.3 Let un be the solution to (5), un
h be the solution to the fully discrete problem

(36), u(0) ∈ H4(I), ut ∈ L2(0, T ; H4(I)) ∩ L2(0, T ; W 2,4(I)), uttt ∈ L2(0, T ; L2(I)), and u0
h ∈ Uh

satisfying

∣
∣u(0) – u0

h
∣
∣
2 ≤ Ch2∥∥u(0)

∥
∥

4. (68)

Then we have the following error estimate:

∣
∣un – un

h
∣
∣
2 ≤ C

(
�t + h2). (69)
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Proof Letting vh = ∂tθ
n in (58), we get

∥
∥∂tθ

n∥∥2 +
1

2�t
(
αn– 1

2
(
D2θn + D2θn–1), D2θn – D2θn–1)

+
1
2

(
∂α

∂t
(
x, tn– 1

2
)(

D2un – D2un–1), D2θn – D2θn–1
)

≤ ∥
∥rn∥∥2 +

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2 +

1
2
∥
∥∂tθ

n∥∥2.

By Cauchy’s inequality, we have

(
αn– 1

2 D2θn, D2θn) –
(
αn– 1

2 D2θn–1, D2θn–1)

≤ M1�t
∥
∥D2un – D2un–1∥∥

∥
∥D2θn – D2θn–1∥∥

+ 2�t
(∥
∥rn∥∥2 +

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2)

≤ M2
1�t
2

∥
∥D2un – D2un–1∥∥2 + �t

(∥
∥D2θn∥∥2 +

∥
∥D2θn–1∥∥2)

+ 2�t
(∥
∥rn∥∥2 +

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2). (70)

Using the Newton–Leibniz formula and Hölder’s inequality, we obtain

∣
∣D2un – D2un–1∣∣2 ≤

∣
∣
∣
∣�t

∫ tn

tn–1

∣
∣D2ut

∣
∣dt

∣
∣
∣
∣ ≤ �t

∫ tn

tn–1

∣
∣D2ut

∣
∣2 dt.

Based on (70), we have

(
αn– 1

2 D2θn, D2θn) –
(
αn– 1

2 D2θn–1, D2θn–1)

≤ M2
1(�t)2

2

∫ tn

tn–1

∥
∥D2ut

∥
∥2 dt + �t

(∥
∥D2θn∥∥2 +

∥
∥D2θn–1∥∥2)

+ 2�t
(∥
∥rn∥∥2 +

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2). (71)

There exists ξ ∈ (tn– 3
2 , tn– 1

2 ) such that

(
αn– 1

2
(
D2θn + D2θn–1), D2θn – D2θn–1)

=
(
αn– 1

2 D2θn, D2θn) –
(
αn– 3

2 D2θn–1, D2θn–1) –
((

αn– 1
2 – αn– 3

2
)
D2θn–1, D2θn–1))

=
(
αn– 1

2 D2θn, D2θn) –
(
αn– 3

2 D2θn–1, D2θn–1) – �t
(

∂α

∂t
(x, ξ )D2θn–1, D2θn–1

)

.

Then we have

(
αn– 1

2 D2θn, D2θn) –
(
αn– 3

2 D2θn–1, D2θn–1) – �t
(

∂α

∂t
(x, ξ )D2θn–1, D2θn–1

)

≤ M2
1(�t)2

2

∫ tn

tn–1

∥
∥D2ut

∥
∥2 dt + �t

(∥
∥D2θn∥∥2 +

∥
∥D2θn–1∥∥2)

+ 2�t
(∥
∥rn∥∥2 +

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2). (72)
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Taking the sum over n and using (4), we can obtain

(
αn– 1

2 D2θn, D2θn) –
(
α

1
2 D2θ1, D2θ1)

≤ C�t
n∑

j=2

(∥
∥D2θ j–1∥∥2 +

∥
∥D2θ j∥∥2 +

∥
∥rj∥∥2 +

∥
∥DF

(
Duj, Duj–1, Duj

h, Duj–1
h

)∥
∥2)

+ C(�t)2
∫ tn

0

∥
∥D2ut

∥
∥2 dt. (73)

It follows from (3) that

(
αn– 1

2 D2θn, D2θn) ≥ s
∥
∥D2θn∥∥2, –

(
α

1
2 D2θ1, D2θ1) ≥ –S

∥
∥D2θ1∥∥2.

Then one has

s
∥
∥D2θn∥∥2 – S

∥
∥D2θ1∥∥2

≤ C�t
n∑

j=2

(∥
∥D2θ j∥∥2 +

∥
∥rj∥∥2 +

∥
∥DF

(
Duj, Duj–1, Duj

h, Duj–1
h

)∥
∥2)

+ C(�t)2
∫ tn

0

∥
∥D2ut

∥
∥2 dt. (74)

Introducing some symbols I1, I2, I3, then a direct calculation gives

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥

=
∥
∥
∥
∥D

(
1
2
((

Dun)3 +
(
Dun–1)3) –

1
2
(
Dun + Dun–1) –

H(Dun
h) – H(Dun–1

h )
Dun

h – Dun–1
h

)∥
∥
∥
∥

=
∥
∥
∥
∥D

(
1
2
((

Dun)3 +
(
Dun–1)3) –

1
4
(
Dun + Dun–1)(∣∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

)

+
1
4

D
((

Dun + Dun–1)(∣∣Dun∣∣2 +
∣
∣Dun–1∣∣2) –

(
Dun

h + Dun–1
h

)(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2))

–
1
2

D
((

Dun + Dun–1) –
(
Dun

h + Dun–1
h

))
∥
∥
∥
∥

= ‖I1 + I2 + I3‖.

It is obvious that

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥ ≤ ‖I1‖ + ‖I2‖ + ‖I3‖.

First, applying the triangle inequality to ‖I1‖, we get

‖I1‖ =
1
4
∥
∥D

((
Dun)3 –

∣
∣Dun∣∣2Dun–1 – Dun∣∣Dun–1∣∣2 +

(
Dun–1)3)∥∥2

=
1
4
∥
∥D

((
Dun + Dun–1)(Dun – Dun–1)2)∥∥2

=
1
4
∥
∥
(
D2un + D2un–1)(Dun – Dun–1)2
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+ 2
(
Dun + Dun–1)(Dun – Dun–1)(D2un – D2un–1)∥∥2

≤ 1
4
(∥
∥D2un∥∥2 +

∥
∥D2un–1∥∥2)∥∥

(
Dun – Dun–1)2∥∥2

+
1
2
(∣
∣Dun∣∣2

∞ +
∣
∣Dun–1∣∣∞

)2∥∥Dun – Dun–1∥∥2∥∥
(
D2un – D2un–1)∥∥2.

Based on Sobolev’s embedding theorem, we have

‖I1‖ ≤ C
(∥
∥
(
Dun – Dun–1)2∥∥2 +

∥
∥Dun – Dun–1∥∥2∥∥

(
D2un – D2un–1)∥∥2)

≤ C(�t)2
((∫ tn

tn–1

∥
∥Dut(t)

∥
∥2 dt

)2

+
∫ tn

tn–1

∥
∥Dut(t)

∥
∥2 dt

∫ tn

tn–1

∥
∥D2ut(t)

∥
∥2 dt

)

≤ C(�t)2
((∫ tn

tn–1

∥
∥Dut(t)

∥
∥2 dt

)2

+
(∫ tn

tn–1

∥
∥D2ut(t)

∥
∥2 dt

)2)

.

Further, Hölder’s inequality yields

‖I1‖ ≤ C(�t)3
(∫ tn

tn–1

∥
∥Dut(t)

∥
∥4 dt +

∫ tn

tn–1

∥
∥D2ut(t)

∥
∥4 dt

)

. (75)

Second, we analyze ‖I2‖. A direct calculation gives

I2 = D
((

Dun + Dun–1)(∣∣Dun∣∣2 +
∣
∣Dun–1∣∣2) –

(
Dun

h + Dun–1
h

)(∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

+
(
Dun

h + Dun–1
h

)(∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2) –

(
Dun

h + Dun–1
h

)(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2))

= D
((

Dun + Dun–1) –
(
Dun

h + Dun–1
h

))(∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

+
((

Dun + Dun–1) –
(
Dun

h + Dun–1
h

))
D

(∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2)

+ D
(
Dun

h + Dun–1
h

)((∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2) –

(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2))

+
(
Dun

h + Dun–1
h

)
D

((∣
∣Dun∣∣2 +

∣
∣Dun–1∣∣2) –

(∣
∣Dun

h
∣
∣2 +

∣
∣Dun–1

h
∣
∣2)).

With the help of Sobolev’s embedding theorem, we can obtain

‖I2‖ ≤ (∣
∣Dun∣∣2

∞ +
∣
∣Dun–1∣∣2

∞
)∥
∥
(
D2un + D2un–1) –

(
D2un

h + D2un–1
h

)∥
∥

+ 2
(∣
∣Dun∣∣∞

∥
∥D2un∥∥ +

∣
∣Dun–1∣∣∞

∥
∥D2un–1∥∥

)

× ∥
∥
(
Dun + Dun–1) –

(
Dun

h + Dun–1
h

)∥
∥

+
(∥
∥D2un

h
∥
∥ +

∥
∥D2un–1

h
∥
∥
)

× ∥
∥
(
Dun + Dun

h
)(

Dun – Dun
h
)

+
(
Dun–1 + Dun–1

h
)(

Dun–1 – Dun–1
h

)∥
∥

+
(∣
∣Dun

h
∣
∣∞ +

∣
∣Dun–1

h
∣
∣∞

)

× ∥
∥D

((
Dun + Dun

h
)(

Dun – Dun
h
)

+
(
Dun–1 + Dun–1

h
)(

Dun–1 – Dun–1
h

))∥
∥

≤ C
(∥
∥Dθn∥∥ +

∥
∥Dθn–1∥∥ +

∥
∥Dρn∥∥ +

∥
∥Dρn–1∥∥

+
∥
∥D2θn∥∥ +

∥
∥D2θn–1∥∥ +

∥
∥D2ρn∥∥ +

∥
∥D2ρn–1∥∥

)
.
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Then

‖I2‖ ≤ C
(∥
∥θn∥∥ +

∥
∥θn–1∥∥ +

∥
∥D2θn∥∥ +

∥
∥D2θn–1∥∥ + h2). (76)

For ‖I3‖, by the triangle inequality and (9), one can have

‖I3‖ =
∥
∥D2θn + D2ρn + D2θn–1 + D2ρn–1∥∥

≤ ∥
∥D2θn∥∥ +

∥
∥D2θn–1∥∥ +

∥
∥D2ρn∥∥ +

∥
∥D2ρn–1∥∥

≤ ∥
∥D2θn∥∥ +

∥
∥D2θn–1∥∥ + Ch2. (77)

By (75)–(77), we get

∥
∥DF

(
Dun, Dun–1, Dun

h, Dun–1
h

)∥
∥2

≤ C
(∥
∥θn∥∥2 +

∥
∥θn–1∥∥2 +

∥
∥D2θn∥∥2 +

∥
∥D2θn–1∥∥2 + h4)

+ C(�t)3
(∫ tn

tn–1

∥
∥Dut(t)

∥
∥4 dt +

∫ tn

tn–1

∥
∥D2ut(t)

∥
∥4 dt

)

. (78)

Substituting (66) and (78) into (74), we obtain

s
∥
∥D2θn∥∥2 – S

∥
∥D2θ1∥∥2

≤ C�t
n∑

j=1

(∥
∥D2θ j∥∥2 +

∥
∥θ j∥∥2)

+ C
(
(�t)2 + h4)

∫ tn

0

(‖ut‖2
4 + ‖uttt‖2 +

∥
∥Dut(t)

∥
∥4 +

∥
∥D2ut(t)

∥
∥4)dt. (79)

Letting n = 1 in (71), based on (66) and (78), we have

∥
∥D2θ1∥∥ ≤ C

∥
∥D2θ0∥∥ + O(�t). (80)

By (79) and (80), we get

∥
∥D2θn∥∥2 ≤ C(

∥
∥D2θ0∥∥2 + (�t)2 + h4 + �t

n–1∑

j=1

(∥
∥D2θ j∥∥2 +

∥
∥θ j∥∥2).

Using (51), we have

∥
∥D2θn∥∥2 ≤ C

(
∥
∥D2θ0∥∥2 + (�t)2 + h4 + �t

n–1∑

j=1

∥
∥D2θ j∥∥2

)

.

If �t is sufficiently small, discrete Gronwall’s inequality yields

∥
∥D2θn∥∥ ≤ C

(
�t + h2).

This completes the proof. �
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Figure 1 The exact solution to problem (81)

5 Numerical approximation
In this section, a numerical example is provided to illustrate the proposed B-spline FEM
for solving the nonlinear parabolic equation. The efficiency of the cubic B-spline finite
element scheme is tested. We consider

⎧
⎪⎪⎨

⎪⎪⎩

ut + (α(x, t)uxx)xx – (|ux|2ux – ux)x = f (x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, t) = ux(x, t) = 0, x = 0, 1, t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ [0, 1],

(81)

where α(x, t) = 1 + xt is selected to satisfy the primary assumptions. We take the analytical
solution u(x, t) = t2(1 – cos 2πx). Then the concrete functional form of f (x, t) is

f (x, t) = 2t +
(
4π2t2 – 2

(
1 + 8π4x

)
t – 16π4) cos 2πx

– 16π3 sin 2πx – 48π4 sin2 πxcos2πx.

Figure 1 illustrates the behavior of the exact solution to problem (81), and Fig. 2 demon-
strates the profile of the solution to the fully discrete scheme.

In this example, the numerical solution is in good accordance with the exact solution,
indicating that the numerical scheme is valid and efficient.

Then choosing t = 1, the corresponding errors and convergence rates of the cubic B-
spline FEM are shown in Tables 1–3.

In Table 1, to analyze the spatial convergence order, we take the time step �t = 1
8000 . The

values in Table 1 indicate that with the decreasing of the space size, the error is mono-
tone decreasing. We also find that the numerical solution to the scheme is fourth order
convergent in L2 norm and is second order convergent in H2 norm.

In Table 2, we consider the error estimates and convergence orders in time direction
when the space step is fixed to h = 1

1000 . It is easy to see that the orders of error estimate
both are second order in L2 and H2 norms.

In Table 3, we analyze the convergence rate when the space and time step change at
the same time. We choose (�t, h) = ( 1

100 , 1
10 ), ( 1

400 , 1
20 ), ( 1

1600 , 1
40 ), ( 1

6400 , 1
80 ), respectively. One

can see that the relation between the space step and the time step is �t/h2 = 1. This shows
that the B-spline finite element scheme is very stable.
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Figure 2 The approximation solution to problem (81)

Table 1 The errors for different space step h at t = 1 and convergence orders

(�t,h) ‖u – uh‖ rate ‖u – uh‖1 rate ‖u – uh‖2 rate

(1/8000, 1/10) 2.0642e–4 7.0170e–3 4.3022e–1

(1/8000, 1/20) 1.4750e–5 4.1349 8.1325e–4 3.1091 1.0389e–1 2.0500
(1/8000, 1/40) 7.1398e–7 4.0406 9.9680e–5 3.0283 2.5745e–2 2.0127
(1/8000, 1/80) 4.1614e–8 4.1614 1.2399e–5 3.0071 6.4221e–3 2.0032

Table 2 The errors for different time step �t at t = 1 and convergence orders

(�t,h) ‖u – uh‖ rate ‖u – uh‖1 rate ‖u – uh‖2 rate

(1/20, 1/1000) 1.3225e–3 4.7367e–3 2.9876e–2

(1/40, 1/1000) 3.4476e–4 1.9396 1.2381e–3 1.9357 7.7977e–3 1.9379
(1/80, 1/1000) 8.6004e–5 2.0031 3.1124e–4 1.9920 1.9581e–3 1.9936
(1/160, 1/1000) 2.1555e–5 1.9964 7.8398e–5 1.9892 4.9482–4 1.9845

Table 3 The errors for different time step �t and space step h at t = 1 and convergence orders

(�t,h) ‖u – uh‖ rate ‖u – uh‖1 rate ‖u – uh‖2 rate

(1/100, 1/10) 1.8855e–4 7.0332e–3 4.3020e–1

(1/400, 1/20) 1.0720e–5 4.1366 8.1374e–4 3.1116 1.0389e–1 2.0500
(1/1600, 1/40) 6.5496e–7 4.0327 9.9694–5 3.0290 2.5745e–2 2.0127
(1/6400, 1/80) 4.0685e–8 4.0088 1.2399e–5 3.0073 6.4221e–3 2.0032

The numerical experiment indicates that the cubic B-spline FEM is an efficient approx-
imation tool for solving the fourth order nonlinear parabolic equation.

6 Conclusion
In this paper, we propose the B-spline FEM for a class of fourth order nonlinear parabolic
equations. On the one hand, B-splines have better smoothness than the Lagrange and
Hermite type elements. On the other hand, B-spline finite element only has one type of
basis functions, so the scale of matrix from B-spline FEM is lower.

The coefficient α(x, t) is variable, which broadens the application fields and also in-
creases the difficulty of analysis. By defining the biharmonic projection operator and the
energy function, we prove the boundedness of the semi-discrete and fully discrete schemes
based on B-splines. Further, the error estimates in L2 norm and H2 norm are deduced by
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using the boundedness, Sobolev’s embedding theorem, and so on. The results of numeri-
cal example confirm our theoretical analysis.

In general, the B-spline FEM is an efficient method for solving higher order nonlinear
parabolic equations. By using central difference, the convergence rate in time direction,
which can be improved, is of second order.
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