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1 Introduction

In 1950, Szész [20] introduced positive linear operators in the sense of exponential growth
on nonnegative semiaxes and exhaustively investigated them. These operators later be-
came known as Szasz operators. The Szdsz type operators involving Charlier polynomials

were defined in [21] as

(b-Dny 0 ~(b)
- 1 G b-Dny) (1
L.f;y,b)=e(1-~ - = (-, 1.1
(f3,) 6( b) ?:0 I -, (1.1)
where b > 1 and y > 0, having the generating functions [5] of the form
o, L\ Zoo N
e|l1- 5) = : G (u)ﬁ, |t| < b, (1.2)
=0

where C”(u) = Y_o())(~u0),(2) and (k)o = 1, (k) = k(k +1) -+~ (k + m 1), for m > 1.
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Motivated by the work done in [9], we define the Kantorovich generalization [10] of (1.2)
as follows:

b-Dpny © ~B) (1 1+1/vy
Mn Vn)(f y) =y,e (1 - 1) ' yz M / f(t) dt (1.3)

b < I o

where 1, and v, are sequences of positive numbers which are increasing and unbounded
such that

1 1
lim —=0, M_-14 o<—>. (1.4)
n—>00 Yy, Vi v,

If we take pu,, = v, = n, we will have the operators defined in [9].
For some recent and interesting results on the various generalizations and correspond-

ing approximation results, we refer to [1, 3, 6-8, 14—17, 22].

2 Auxiliary results

We first present some auxiliary results.

Lemma 2.1 Let Q%) be defined by (1.3). Then, we have
1L QUm(15y) =1,
2. (Mn Vi) (t y) — _y+ 2‘)”

(Mn V) (42, /L,, Hn 1 10
3. (t ,y) + E(4+ m)y+ 32
( nmvn n %
4. ll " (t3,3’) 3)’ +l:_2(%+%)y2+l: g + (15 1) (b- 12)y+
5 (Mn Vpr) (t4,y)
2
Ey + U—’%(IZ + 50+ ’:—g(46+ 2+ )2)y + Lo (64+ (bﬁ)Z 3)y+ 151.

Proof With the help of the Charlier polynomials’ generating function given by (1.2), after

some simple calculations, we obtain

SO _ (1)

" I b

G (=0 - D) 1\ e

Z ny (1 - Z) 1+ MnJ/),

1=0 :

o lZCl(b)(_(b_ 1itny) 1\ ~(-Duny 1
2me(1-= 202 4wyl 3 21,

; I e( b) (’”‘"y “”( +b—1>+ )

S R ) A Y S AW
2 I e<1_5> <“"y +“"(6+b-1>y

=0
10 —6 2 +5
( * b 1)2> )
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o0 (b) =(b-Dpny
b DMU) 1 4.4, 3 6 3
1-- 10
>t ) ot st100 55
30 11
2 2
“‘”( b—1+<b—1>2>y

+ 37 + 32 + 20 + 6 +15
Hon -1 -1 w-13) :

From the above equalities, the claims of the lemma can be obtained. O

Lemma 2.2 For the operator Q,,; (pir,v) given by (1.3), we have the following equalities:

. oV Mn 1
(l) Q(M )(t yry) - <_ - 1))/ + )
V, Vy

n

2
K (tn>Vn) 2, _ Mn 2 MU 1 2 2
@ &=y ’y)‘<v7‘l>y*(W(“m)‘;)“ﬁ’

i) QU™ (¢ - y)%y)

3

", 3 6/,Ln 1 3y 1 2\ 3
21l — |5+ —— 2 3+ —— | -2
" (Vﬁ( +b_1> (+b 1)+ UZ<+b—l) vn>y

2

2 30 11 e 6 2 12\ ,

Pafgg, 20 o 20 N _ 2y, % 2 ),22
+<v3< -1t -12) U o1 T o) Tz P

Uy 37 32 20 6 20 15
+| — + + + -—=y+—=.
) b1 G-17 b-1p) )T
3 Local approximation results

In what follows, let Q%" (¢ = ;5) = X1, ) and QU™ (£ = )% 9) = &1, (7). We will
now give two theorems on the uniform convergence and the order of approximation.

Theorem 3.1 Letf € C[0,00)NG. Thenlim,_,o Q,, (b, v} (f;3) =f(y), the sequence of oper-
ators Eq. (1.3) converges uniformly in each compact subset of [0,00), where

= '/Oyf(s)ds

Proof From Lemma 2.1(1)—(3), we get

G- {r:%;

<Ke®”,K e R* and B GR}.

: (msvn) (k.o — Ak —
Jim Q5 (s5y) =0 k=0,1,2.

The proof of the theorem is established by taking advantage of the above uniform conver-
gence in each compact subset of [0, 00) and the famous Korovkin’s theorem. O

Suppose f € C[0,00), i.e., f belongs to the space of uniformly continuous functions on
[0,00). If § > 0, then the modulus of continuity w(f, §) is defined by

o(f,8):= sup [f(o)~f(s)|.

o,5€[0,00)
lo—-¢|=<d

Page 3 of 23



Ansari et al. Advances in Difference Equations (2020) 2020:192

Theorem 3.2 Let f € C[0,00) N E. For the operators Qi’fb”’””)(f;y) given by (1.3) the follow-

ing estimate holds:

| Q¥ (£, 9) - f(9)|

< {1 +\/(un S e (<4+ b—i1>/xn —3vn>y+ %}w(f,vin) (3.1)

Proof From (1.3) and the property of modulus of continuity, the left-hand side of (3.1)

leads to

| QU (£;5) — £ ()]

1\ G-Diny C(b) —(b-1)u, I+1/vy,
S I 3E e L
=0 ) vn

(1 B 1)(17—1)11-;1)’ % Cl(b)(—(b— 1)) 1+1/vy
=0

b

; It -yl dt}w(f,a).

I
<11+ -v,e 7
. l/vn

Using Cauchy—Schwarz inequality for the integral, we get

| QW (f;5) — £ ()]

o~ 1+1/vy 172
XZM(W /l 1 (t—y)zdt) }woﬂa). (32)

!
1=0 a Ivn

In the above sum, we apply Cauchy—Schwarz inequality, and then in view of Lemma 2.1,

(3.2) becomes

QU™ (5 3) £ ()]

1/2
L O E G (b - D)

1=0

1 (b-1)pupy ©© C(b) —(b -1y, 1+1/vy 12
X (u,qe‘l <1 - —) Z M (t—y)*dt o(f,8)

ny n v,

where, taking § = -, we get (3.1). O

v’
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Let aj,a; > 0 be fixed. We now consider the following space of Lipschitz type (see
(18]):

| = Al"
K + lll)\.z + azk)’/z’

Lipg\‘}[l'@)(r) = {f € C[0,00) : lf(K) —f(k)| < M( A K > 0}, (3.3)

where M is a positive constant and 0 < < 1.

Theorem 3.3 Letf € Lipﬁ\‘?’”)(r) and r € (0,1], then Yy > 0, we have

i ) )”2.

(a1y? + azy)

QU £19) — £ )| §M<

Proof Since

-1 < L=y

t+ary? +ayy)’?’

one has

nVn nVn |t_ |r
QU (f13) £ < MO >(—y y).

(t + a1y? + ayy)?’

Applying Hélder’s inequality with p = 2 and 5%, we find that

(t_y)z . )V/Z.

t+ay? +ayy

Qs fi) =] < MQL’?J’””(

Since f € Lipg‘fll’“z)(r) and L L__ Vy e (0,00), we have

<
tra1y’+agy  aryi+azy’

(t—y)2 ’ >r/2

2 )
ayy- +agy

Qi) -] = M@l

M
< -
- (ﬂ1y2 +612_)/)r/2

_ sﬂn:”n (y) )r/z
- M( (a2 +azy))

Our proof is now completed. d

QU (£~ y)%9)"

We denote the space of all functions / on [0, 1) which are real-valued, uniformly contin-
uous, as well as bounded by Cz[0, 00) and endow it with the norm ||/||o = sup,cjo) 1 M)|-
Further, we obtain a local direct estimate for the operators (1.3), using the Lipschitz max-

imal function of order r introduced by Lenze [13] as:

By sup MOHO)

) (3.4)
t#y,t€[0,00) |t - J’|’

where y € [0,1) and r € (0, 1].
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Theorem 3.4 Letf € Cpl0,00) and 0 < r < 1, then Vy € [0, 00)
| QU (f539) = F | < @0 (F ) (Erpn )
Proof By equation (3.4),

If (&) -fO)| <@ (f,y)lE ="

Applying Q;" b”‘v”) on both sides of the above inequality, then using Lemma 2.1, as well as

Holder’s inequality with p = 2/r, g = 2/(2 — r), we obtain

| QU™ (f;3) — £ (9)| < @, (f, 1) QY™ (It = 31" 7)
< a,(f,9)(QU (- y)59)) "

~ rl2
= wV(f’ y) (Sﬂnvvn (.y)) M
Thus, we have our desired result. O

The Peetre’s K-functional is given by

K(g,8)= inf {llg—/Ile+8lhlez},

heC%[0,00)

where C3[0,00) = (i1 € Cp[0,00) : I, i € Cy[0,00)} with the norm |1l ¢z = [|Alloc + 11/ [l +
17" || oo- Also, the inequality

K(g,8) < M(ws(g,/8) + min{1,8}/glloc)

holds for all § > 0, where w, is the second-order modulus of smoothness of g € Cz[0, 00),
which is defined by

w2(g,8)= sup  sup |g(y+2h) —2g(y + h) + g(y)|.

0<|h| <8 y,y+2h€[0,00)

Theorem 3.5 Iff € Cz[0, 00), then

QY1) (£33) = )| < 4K, Camn ) + OF s Xm0

where £y, () = (E,0, () + Xl%«n:‘}n (9))/4. Furthermore,

| QU (£59) £ )] < M(@(F ] Guion @) + ML, Gy, OV Nlo0) + O (Fs | Xy )]
Proof For f € Cz[0, 00), we define the auxiliary operator as follows:

(Vi) (s,vn) Mn 3

Q" (f59) = Q™ (3 ) —f(v—y+ 7 ) +f (). (3.5)
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After taking the absolute value of both sides,

| QU ()| < | QU (5 9)] + P( y+—>+lf(y)|

< IlflloolQ"” " (L9,)] + flloo + I lloo
< 3[flloo- (3.6)

By Lemma 2.1, we have Q (nvn) (¢ ) = y, and therefore Q nvn) (1 _ 25) = 0.
Letge Cg[O, 00), using Taylor’s theorem, we can write

g =g0) +dONE—) + / (¢ - u)g () du
y

Applying operator Q (o) 6 the above equation, we get

Q) (g;y) - g(y)

= Q) (f (t —u)g"(u) du;y)
y
({78 ¢ 7 l'j_:‘lerzv” Mn 3 7
= QU (/ (t-u)g (u)du;y> —/ (U—y+ 5 —u)g (v) du.
y y n n

Now taking the absolute value of both sides, we obtain

| Q% (g;9) - g ()|

t

< Qﬁq/f;vvw ( / (t —u)g" (u) du; y)

y

Sryem,

< fofé“’”")( ;y) + ( /

y

HKn
7 Vi)
= le'Lf @t (| Vel )+

</ Vi Yoo, 2vn
Therefore, by using the norm on g, we have

Seye oy 3
O 7
+ —y+ — - d
I Gl e S

Hn

t
(6= )] d oy, 2

lg" (u)| du)

a) ||

3
_y+

(t-—u ‘ )| du
Vi 2v,

—u

2
| Q) (g3 y) — g(y)|<||gllc2{ ) (¢ — y)2; ) + ( y+i—y)}

Vo 2v,
< IIgIIcz{Q“” (8- 9)%y) + (QY ™ (8 - y59)) )
< 182 {Emin ) + 22,0, O} (37)

Now, using the definition of auxiliary operators (3.5), we get

| QW (f;5) — £ ()]
3V (1 3) ~ £(y) +f(

2) 100
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< | QM (f — giy)| + | QY (g39) - g()]

o000+ (225 2 ) -1

Combining (3.6) and (3.7) with the above equation, we get

QY (f39) - £ )]

Hn 3
< 3If ~glloo + Igllez (€ ) + X, OV} + 1f ~&llos + w(f, A —yD

),

=< 4”f _g”oo + ||g||6§4§;tn,vn ()’)

and after taking the infimum on the right-hand side over all g € Cﬁ, we have
Qs (59 -f )]
E 4I<(f’ é—Ufnvvn (y)) ) (y)‘)
= M(a)z(f, V éﬁl‘«m"n (y)) + min{l’ ;l’-nvvn (y)} ”f”oc)

w®))-

This completes the proof of the theorem. d

Theorem 3.6 Let f € C3[0,00), then ¥y >0 and 8 >0,
| Q¥ (£;9) — )| < {If )] + 20(F", 8,)) }-
Proof Since f € (11; [0,00), we can write
FO-F0)=F 0)e-3)+ [ (70 -1 ) (3.8)
y

Now, using the well-known property of the modulus of continuity for § > 0 and f €
C310,00),

v/(u) —f/()/)| < (|u;y| +1>a)(f’,8),

hence

/yt(f’(u)—f'(y))du‘f(( el yl)w(f 5)

Therefore, from (3.8) and the above equation, we have

| QW (f15) — £ ()]
<[ »[Q¥ ™ (1t - yliy) + ( QU™ (£ - y)%y) + QU ”")(|t—y|;y))w(f’,8).
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After applying the Cauchy—Schwarz inequality, we get

| QU (f5 )~ £ )|
E(lf/(y)i_{_w(f/,a))\/ (n,vn) (t }/)Z,y \/Qﬂnun ly)
+(; unVn ((t- y)z,y)>a)(f 5)

(0] + ol 9))5.00+ (52 )olr).

Choosing 8§ = §,(y), we get our desired result. d

Forf e Cz[0, 00), the Ditzian—Totik modulus of smoothness [4] of the first order is given

by
- ffo- ) o)

’

he() 0, oo)},
2

and an appropriate Peetre’s K-functional is defined by
K,(f,8) = inf 0 +6 00 §>0,
o0 = nf T =gl +6lleg o},

where W, [0,00) := {g: g € ACioc[0,00), [l¢g loc < 00} Where g € ACio[0,00) means g is
absolutely continuous on every compact subset [a, b] of [0, 00). It is known from [4] that
there exists a constant M such that

M w0, (f,8) < K,(f,8) < Mawy(f,3). (3.9)

Now, we find the order of approximation of the sequence of operators (1.3) by means of
Ditzian—Totik modulus of smoothness.

Theorem 3.7 Foranyf € C5[0, 00) and y € [0, 00),

| QU 3 f(y\<Ma)q,( SJ(;))

Proof Let ¢(y) = /¥, then by Taylor’s theorem, for any g € W,,[0, 00), we get

8(t)=g0) + f () du=g(y) + / gue)

y y  o(u)

therefore,

|g(t)—g@)| = ||§0g/||oo‘/y o(u)du

=2]eg'| W—ﬂI
|

=2[eg|
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which gives

lt=yl £ -yl
=2]eg|

80 —¢)] =2[eg .. ~ol)

f

Using Lemma 2.1 and the above equation, for any g € W,,[0, 00), we get

Q0 9 =0 <1 g + 1215 @9) - ¢0)] + g0 ~0)]

2110€ oo G
<20f —glloo + ———Q " (1t - yl;5).
If -¢ o) (It= L)

Applying the Cauchy—Schwarz inequality yields

|QMnVn (f;y)_f(y)|§2|[f—g||oo 2||(Pg ||oo\/Q(ann (t - y)z;y)

2||</7g lloo

=2[lf - glloo + o0)

84 (3).

Taking infimum on the right-hand side over all g € W,,[0, 00), we get

Q1 (£ ) f(y>|<2f<( ‘S}j))

which leads to the required result with the help of the relation between Peetre’s K-
functional and Ditzian—Totik modulus of smoothness as given by the relation (3.9). [

4 Approximation results in weighted spaces
Let v > 0. We denote C,[0,00) := {f € C[0,00) : |[f(£)| < Ms(1 +t"),Vt > 0} equipped with
the norm

[f ()]

I£ll, = su . (4.1)
7l te[O,Eo)l"'tv

Further, let C;[0,00) be the subspace of C;[0,00) consisting of functions f such that

[

lim;_, o vyl exists.

Theorem 4.1 For each f € C;[0,00) and r > 0, the following relation holds:

QU y) — f ()]

lim sup =0.
7790 e [0,00) (1 + )

Proof Let yo > 0 be arbitrary but fixed, then by (4.1), we can write

Mn Vn)(f ) —f)]

y€[0,00) (1 +y 2)1+r

_ QN -fON 190 (f39) -1 0)]
_Sllp + su

y<yo (1 +y2)1+r 7570 (1 +y2)1+r
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/’»n U}’l
< sup{| QU (3y) — )|} + sup. i) +7ON,

Y=yo y>y0 (1 +y2)1+r

Since [f(£)] < |If|l2(1 + y?), we get

1QUr"(F3) — f ()]

(4.2)
ye[0,00) (L+yH)ler
M" (L 2% ;91 If W
< (Un,vn)
120" (32)=10) ”C[Oyo ’ ”f||2;>yo (1 +y2) yyo (L+y2)Hr
=h+L+I3 (say). (4.3)

By Korovkin’s theorem, we can see that the sequence of operators {Q(“ nb) (f;3)} converges
uniformly to the function f on every closed interval [0,a] as n — oo, (cf. [12, p. 149]).
Therefore, for a given € > 0, In; € N such that

= Q) (i) (£ ) —f()’)”c[o,yo] < % vz m. (44)

By using Lemma 2.1, we can find #; € N such that

ﬂnvnltZ;_12 E,V>,
|Q ( + y) (+y)|<3”_f||2 nz=np

or Q#nvn)(1+t ’y) (1+y2)+ m, Vl’lZn2.

Hence

|Q(Mn Vi) (1 + t2;y)|
I = sup ———————
2 |[f||2y>y13 (1+92)0r

1 €
<IIf Il su 7(“ 2 +—>
l2s0p (v \ (1) * 50,

1 €

<||fll2 su <7) + =
4 2y>y€ (T+y?)) 3
I/ 112

+ ¢ Vun>n (4.5)
(L+y2) 3 = )
Now, using (4.1),
Iy = sup ol _ Il (46)

o (L+Y)H = (1+93)"
Let us denote ny = max{ny, ny}, then by (4.4), (4.5), and (4.6), we get

2¢
112 +—, Vn>n. (4.7)

(L+ydr 37 -

11+12+[3<2

Choose y, so large that

il _ € 48)

Q+y) 3

Page 11 of 23



Ansari et al. Advances in Difference Equations (2020) 2020:192 Page 12 of 23

Then, combining (4.3), (4.7), and (4.8), we obtain

Q" (53 =/ )]

ye[0,00) (1 +y2) L

<€, Ym>ny.

Hence, the proof is completed. d

Now, we will obtain the rate of convergence of the operators Q,; (i, ””)(f ;y) defined by
(1.3) for the functions having derivatives of bounded variation. Let DBV][0,00) be the
space of functions in C;[0, 00), which have the derivative of bounded variation on every
finite subinterval of [0, 00). Here, we show at the point y, where f’(y+) and f'(y—) exist,
the operators Q(,ff;’u”)(f ;y) converge to the function f(y). A function f € DBV]0, 00) can

be represented as

y
10) = /0 a(0)dt +£(0),

where g denotes a function of bounded variation on every finite subinterval [0, 00). Many
researchers studied in this direction and their work pertaining to this area is described in
the papers [2, 11, 19], etc.

In order to study the order of convergence of the operators Q,, ; {in,vn) (f;) for the functions

having a derivative of bounded variation, we rewrite the operator (1.3) as follows:

QU () = / Wt )f (6)d (4.9)

where W(¢,y) is a kernel given by

1\ G0 20O (h 1) ,)
W(t,) = vye! (1 _ E) ZZ ll—!y)g(t),
-0

x1(t) being the characteristic function of I = [V by

’
n’ Vn

Lemma 4.2 Let for all x > 0 and suﬁiciently large n,
ELn Vi
(1) Ay, (&) = fo uydu<’(y 2,0<L‘<y,

£,
) 1= A (&) = [ W, ) du < ‘Zf;y)z Jy<t

Proof Using Lemma 2.1 and the definition of the kernel, we get

t
)»Mn,,,n(t,y)zf W (u,y)du
0

2
A u> W (u,y) du
Y-

IA
h
/\

(u— y)2 W (u,y) du.

IA
—_
o\h

(v —1)?
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Hence, we have

1 v
l/'n Vn(t-y (y t)Z Qf’llf;‘ )((u—y)Z,y,b)

<50 t)zéin,vn(y).

In the same fashion, we can prove the other inequality, therefore, we omit the details. [J

Let \/zf be the total variation of f on [a, b], i.e.,

b n
\/f=V(filab) = ;ug,?(Z f o) —f()’u)|>, (4.10)
a N\l

where P is the set of all partitions P = {a = yo,¥1,...,¥, = b} of [a, b], whick also has the
property

b c b
V=V
Let

fO)-f(-), 0<t<y,
5@ =40, t=y, (4.11)

SO =f+), y<t<oo.

Theorem 4.3 Let f € DBVI[0,00), y > 0, and n be sufficiently large, then we get
QU (i) - F )
%-2 ()/) Wnl (y+ylk y+ylk
(f(y+) +f'0-)) ‘mm(y)! e Z(\/f;) f(\/f>

=\ i
ot I G as LAY
O] [Vin 0]+ | 50700 =S 09) [, 0
Proof By (4.11), we obtain
0= 307 09) £ 0) 450 + 5 (4 - () sene )
F 070 - %(f’(y+) +f/(y—))>, @12

where

1, t=y,
8,(t) =
0, t#y.
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Now using Lemma 2.1, equations (4.9) and (4.12), we get

QU (£, ) — £ (y)
- fo (F(O) £ ) W(t,3) de

_ / ” ( / rw du) W(t,y) dt
0 y
_ oo 1 ’ 7 / 1 7 ’
- [T HEr o0+ r 09y @+ S om-rom)senta—)
#0700 - 5709 5 0) ) [t |t )
Since f; 8y(u) du = 0, we have

QU (f33) - ()
=50 +r60) [ W [ ( /y fy/(u)du)W(t,y)dt

+ %(f’(ﬁ) -f'-) f |t —y|W(t,y)dt. (4.13)
0

Now, we break the second term on the right-hand side of the above equation as follows:

/Ooo</ytfy’(u)du)W(t,y)dt
:_/Oy</tyfy/(u)du>W(t,y)dt+/yoo</ytfy'(u)du>w/(t’y)dt

= _11 + IZ!

where

Yoy
11:/(; </ fy’(u)du>W(t,y)dt,
- T [ ruwa )W(t, )dt.
2 /y (/yfyu u y

Taking the absolute value on both sides of (4.13), we have

|QUWr ™ (5 3) £ ()]

=

3070407 0) | Qe =)+ 1+

+ QU™ (1t yl; ).

o -16-)
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After applying the Cauchy—Schwarz inequality, we obtain

‘Qﬂn Vn) _f(y)|

(+) +f/<y—))‘|wun,un(y>| SIL+ 1D

’\/Q Hons Un) (t_y)z;y)

: ‘5(f/<y+) +f'<y—>)‘|wﬂn,vn O]+ 111+ 12+ [2 (7000 0, 0.

Now applying Lemma 4.2 and integration by parts, /; can be written as

I = ‘/Oy(‘/;yfy/(u)du>W(t,y)dt
} fy < /y ) du>%)\umvn(t, y)dt
ff win(9)d

On taking the absolute value of I;, we have

y
|11|:/ w(t)P“Hn»Vn(t’y)dt
0

y-yl\/n y
<[ O e 0P
0

y=ylvn

=K + Ky, say.

Sincefy’(y) =0, by (4.11), we have

y=yl/n
K = /0 0 = £10) Ay E:3) it

Now, using Lemma 4.2,

y-ylvn
K <8 () /0 0 -£)

dt
(y—1)?

By the definition of total variation (4.10) and taking ¢ = y — y/u, we obtain

K <& , () / y/f( ) dtt)z
.0 [ (V)%

y-ylu

(4.14)
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Now, after breaking the integral into a sum, we have

2‘) [f] kel f Y
I<1 P‘nn / \/fy

J-ylu

- M(y)[zf]<\y/f)</m du)

y k=1 \y—ylk

%-van(y) [f] y
>(V5)

y k=1 \y—ylk
Since by Lemma 4.2, 1, (¢,y) < 1 and using (4.11), we get

y [V
K, = /H/n (\/fy) dt

t

(Vo) [

y-yln

(V)

Thus, we get

ﬂ\%

Wnl /
|I|< /Ln;n(y)2<\/f)

k=1 \y—ylk

( \/ f) (4.15)

y-y/n

Using Lemma 4.2, we can write

Oo(/‘tfy/(u) du) Wt y) dt’
¥ y

2y t , 9
: (/; Sy () du) 5(1 - A’Mn:”n(t’y)) dt| +

Now, applying integration by parts and (4.11), we get

2| =

Lj(/ytfy’(u)du> W(t,y)dt‘.

2y
|12|: /y fy(u)du ILnVn 2%}’) / f t) l’-nvn(ty))dt’
([ 7w -rood )W(t, )dt|
+/2y</y(fuf@+)” y
2 2y
< )du‘.M;(”+ / O] =, e e

)]

/ (f&) —fO)W(t,y) dt| +

=P1 +Py +P3+ Py, say.

f W(t,y) de
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Now, by (4.11), we get

Pl — Nn Vn

I f u) du

H«rz Vn

~f'(y+)) du

2
) ,
- L"’ 2O o) — £ ) =3 )|
y

and
2y
Po= [ 5O 2y ) de
y
yyl/n
- / lfy/(t)|(1 - )\‘ﬂn,vn(t’y)) dt
y

o (6,9)) d
+y/[lfy(t)\( s (6,9)) At

= +/) say.

Using Lemma 4.2,1-2,,,,(t,y) <1and (4.11), we get

y+yl/n
Ji= / Iy @)]-(1 = Ay, (5)) dt
y

Yy
<[ lo-fol
y
3 /yw/ﬁ (\/fy’> s
y y
+yI/n y+yl/n
(V) [
y+yl/n
(V)

Now, again with the help of Lemma 4.2 and (4.11), we obtain

=

4~

2y
Jo = / (O)(L= ko, (69)) dt
2 y+y/ﬁm |( " )

zy dt
2 4 _f S
<£.0) /y O

By using (4.10) and ¢ = y + y/u, we get

]2 Sgin,vn(y) J/er/«/_(\/.f) f— y)z
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Jn y+y/u
= Hn Vn / ( \/ f)
y+ylu

< S0 V”(y) [Zﬂ/kH ( \/f;) du
y
(VA fy+ylk )
*"“"”)Zl(y?f;) ()

y

k
2 [ﬁ] y+ylk
2HnVn V7 Vn i
( v .fy) '
k=1 ¥y

Hence, we derive

y+yl/n 52 (y) Wnl [y+ylk
ne (V) 5522 (Vs)
¥y

Now, we estimate P5. As ¢ > 2y, then using 2(¢ — y) > t and £ — y > y, we get

A (f(t)—f(y))W(t,y)dt‘
y
< f [F@)|W(t,y)dt + / If)| Wty dt
2y 2y
,y) di ,y)d
<Mff (1+t) W(t,y) t+V(y)|f2y W (¢, y)dt

= (Mg + [f(y)\)/oo W(t,y)dt+Mf/OOt2W(t,y)dt

2y

< (My+ lf(V)D/ tyy) Wz, y)dt+Mf/y 4t - y)>W(t,y) dt
M o0
= (%M +4Mf) /Zy (t—y)*W(t,y) dt
M
=< (—f +yzlf 0) +4Mf> QU (£ - )% )

(M e

We can compute P, as follows:
/ t-y)W(y) dt‘

<1r'os)] / wie, y)dt‘

= ' o) QY (e - 33|
= Lf’()/+)| |¢/Ly1,\)n ()’)|'

Pi= o)
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Hence, we get

2

|I| < 2Hmn2 "””” lf(2y) -fO) =3 o+)|
y+y/f 2 (Wnl fy+ylk

E#nvn(y) /

+_( V) B33V )

y k=1 y

M
e (HET i )62, 004 0] [ O .10
Now, from (4.14)—(4.16), we obtain
1
| QU (£, ) — f(9)] < ‘Ev’m) +f’(y—>)‘!wnw>! + 4] + 1L

3 (70 = 0-) [ )

= ‘%(f/b”') +f/()’_)) ‘ |‘/fun,vn ()’)|

5040

y k=1 \y—ylk —yl/n

2
El‘vn Vn

V(Zy —fO) -y +)|

y+yl/n ()/) Wnl fy+ylk
AT 55
M,
(B v )2, 004 09 0

F 500 -767)

Erunon ),

which gives the desired result. 0

5 Graphical examples

Example 5.1 Let us take f(x) = 5x* — 11x® + 2x. The convergence of the sequence of oper-
ators defined by Eq. (1.3) when u, = v, = n towards the function f(x) (cyan) is shown for
n =10, 50, 100, respectively, in Figs. 1-3 taking b = 2 (blue), b = 6 (black), and b = 15 (red).
Figures 4-6 illustrate the convergence of the sequence of operators defined by Eq. (1.3)
taking w, = n + v/n+ 1, v, = n + 12 towards the function f(x) (cyan) for n = 10,50, 100,
keeping the value of b the same.

Also, a direct comparison between the convergence of the old operator applied to f
(when w, = v, = n discussed in [9]) (blue) and the new operator (red) defined in Eq. (1.3)
towards f(x) (cyan) is shown in Figs. 7-9, respectively, for n = 10,50, 100, and b = 10. It
is clear that the new operator exhibits faster convergence towards the limit than the old
operator. Also, the new operator is giving flexibility in choosing parameters in the form of
the sequences p,, and v,,.
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Figure 1 Convergence of the operators when i, %0
=vp,=nandn=10 80

Figure 2 Convergence of the operators when 30
=v,=nandn=>50
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Figure 3 Convergence of the operators when 2

=v,=nandn=100
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"
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Figure 4 Convergence of the operators when i, 20
=n++/n+1,v,=n+12andn=10
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Figure 5 Convergence of the operators when i, 20
=n++/n+1,v,=n+12andn=50
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Figure 6 Convergence of the operators when i, 2
=n++/n+1,v,=n+12and n=100
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Figure 7 Comparison between the operators when 701
Un=V,=n,b=10and n=10
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Figure 8 Comparison between the operators when 25
Wn=v,=n,b=10and n=50
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Figure 9 Comparison between the operators when 25
HUn=V,=n,b=10and n=100

20

05 1 15 2 25

6 Conclusions

We have modified the sequence of operators discussed in [9] and developed many ap-
proximation properties such as direct theorems, rate of convergence in weighted spaces,
and approximation for functions of bounded variation. Moreover, we have also shown the
convergence of old and modified new operators graphically.
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