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1 Introduction and main results
The normal form theory founded for dynamical systems by Poincaré is widely used to anal-
yse local dynamical properties, whose main idea is to simplify systems to proper forms.
Many researchers including Dulac, Sternberg, Chen, Birkhoff and Il’yashenko devoted
their great efforts to the development of the theory. Nowadays, it plays an important role
in the study of bifurcations and stabilities, which is also widely applied to celestial mechan-
ics, biomathematics, the control theory and so on. More topics for the systematic study of
normal forms can be found in many monographs such as [4, 6, 7] and a series of papers.

In the classical theory, transformations that we seek are established near fixed points or
(quasi)-periodic orbits. Due to the talent idea of the concept exponential dichotomy by
Sacker and Sell, the spectral theory can be established to characterise the exponential dy-
namical behaviour of general linear non-autonomous systems in [3, 11], which shall lead
to the simplification of nonlinear parts in [8, 12, 13]. Additionally, normal forms of ran-
dom dynamical systems and non-autonomous differential systems were archived in [9, 14]
based on the Lyapunov exponent and the nonuniform dichotomy spectrum, respectively.
Previously, we proved the analytic conjugacy of Poincaré type and Poincaré–Dulac type for
analytic non-autonomous differential systems based on the dichotomy spectrum of their
linear parts in [13] using the methods from [2, 5]. In this paper we persuade to modify the
technique of [2] to handle the case of non-autonomous difference ones.
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Firstly, we recall the uniform exponential dichotomy spectral theory in [3] of linear dif-
ference systems

xk+1 = Akxk , xk ∈R
n (1)

with invertible matrices Ak ∈R
n×n. Let Φ : Z×Z →R

n×n, (k, t) → Φ(k, t), and denote the
evolution operator of system (1) by

Φ(k, t) =

⎧
⎪⎪⎨

⎪⎪⎩

Ak–1 · · ·At , k > t

I, k = t

A–1
k · · ·A–1

t–1, k < t.

System (1) is said to be of bounded growth, provided that there exist constants K and a ≥ 1
such that

∥
∥Φ(k, t)

∥
∥≤ Ka|k–t| for k, t ∈ Z,

which is equivalent to the fact that Ak and A–1
k are bounded for ∀k ∈ Z. Hence system (1)

has a nonempty and compact dichotomy spectrum Σ(A) =
⋃d

i=1[ai, bi] with 0 < a1 ≤ b1 <
· · · < ad ≤ bd , where 1 ≤ d ≤ n. Similar to the block diagonalization with respect to the Jor-
dan normal form of the linear part matrix for autonomous systems, [11] gave the block di-
agonalization theorem for non-autonomous ones by the dichotomy spectrum. More pre-
cisely, it means that there exists a kinematic similarity matrix function S : Z →R

n×n such
that system (1) is kinematically similar to

yk+1 = Bkyk , (2)

where Bk = diag{B1
k , . . . , Bd

k } is in the d block diagonal form, and each block Bi
k : Z →R

n×n

corresponds to the spectral interval [ai, bi] for i = 1, . . . , d and n1 + · · · + nd = n.
Now we consider the reducibility of the following non-autonomous nonlinear difference

system:

xk+1 = Fk(xk) = Akxk + fk(xk), xk ∈R
n, (3)

where Fk is analytic in a neighbourhood of the origin, the linear part is of bounded growth
and fk(xk) = o(‖xk‖) as xk → 0 is analytic uniformly for all k ∈ Z = {0,±1,±2, . . .}. Then
the uniform dichotomy spectrum of the linear part is Σ(A) =

⋃d
i=1[ai, bi], where a1 ≤ b1 <

· · · < ad ≤ bd . Moreover, the linear part is kinematically similar to a block diagonal one of
form (2). So in the rest of the paper we always assume that Ak in (3) is of the block diagonal
form and each block Ai

k corresponds to one spectral interval [ai, bi].
In order to do the cancellation of nonlinear terms, based on the block diagonal form of

the linear part, the map on the index set is denoted by

Γ : Nn
l →N

d
l

ν �→ τ
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for

τ = (ν1 + · · · + νn1 ,νn1+1 + · · · + νn1+n2 , . . . ,νn–nd+1 + · · · + νn)

with ν = (ν1, . . . ,νn) ∈ Z
n
+, |ν| = ν1 + · · · + νn, Nd

l = {τ = (τ1, . . . , τd) ∈ Z
d
+ : |τ | = l} and |τ | =

|ν| = l. Rewrite the nonlinearity fk(xk) as its Taylor series:

fk(xk) =
∞∑

|ν|≥2

fk,νxν
k , xν

k = xν1
k,1 · · ·xνn

k,n.

As usual, ej denotes the unit vector, whose jth component is 1. Our definition of the res-
onant term can be given as follows, which accords with Siegmund’s in [11].

Definition 1.1 The dichotomy spectrum Σ(A) =
⋃d

i=1[ai, bi] is called resonant, provided
that there exists a vector τ = (τ1, . . . , τd) ∈ Z

d
+ fulfilling |τ | ≥ 2 and

1 ∈
[

aj′
d∏

i=1

b–τi
i , bj′

d∏

i=1

a–τi
i

]

for some j′ ∈ {1, . . . , d}. Then the monomial xν
kej is called a resonant term for ej′ = Γ (ej)

and τ = Γ (ν).

Finally, our main results can be summarised as follows.

Theorem 1.2 Assume that the exponential dichotomy spectrum of system (1) is Σ(A) =
⋃d

i=1[ai, bi] for a1 ≤ b1 < · · · < ad ≤ bd . Then the following statements hold.
(i) (Formal conjugacy) If the linear part of system (3) is in the block diagonal form

corresponding to the spectrum Σ(A), then there exists a formal coordinates
substitution, which turns system (3) into

yk+1 = Akyk + gk(yk),

where gk(yk) consists of resonant terms only.
(ii) (Analytic conjugacy) If the spectrum Σ(A) is in the Poincaré domain, i.e. a1 > 1 or

bd < 1, then there exists a coordinates substitution xk = yk + hk(yk), which is analytic
with respect to the variable yk in the uniform neighbourhood of the origin and turns
system (3) into a polynomial one with respect to the variable yk of degree no more
than max{ln a1/ ln bd, ln bd/ ln a1}. Moreover, if Σ(A) is non-resonant, then system (3)
is locally analytically conjugated to its linear part.

The rest of the article is organised as follows. In Sect. 2 basic definitions and lemmas are
provided, which are key to our main arguments. Then comes the proof of Theorem 1.2,
while two examples are well illustrated as the applications in Sect. 3.

2 Preliminaries
In order to state the proof of our results clearly, in this section we introduce some nec-
essary contents. Let us begin with the precise definition of the exponential dichotomy
spectrum.
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Definition 2.1 ([3, 11]) We say that system (1) admits an exponential dichotomy if there
exists an invariant projector Pk , which means

Pk+1Ak = AkPk , ∀k ∈ Z

and constants K ≥ 1, α > 1 such that

∥
∥Φ(k, t)Pt

∥
∥≤ K

(
1
α

)(k–t)

, k ≥ t;

∥
∥Φ(k, t)(I – Pt)

∥
∥≤ Kα(k–t), k ≤ t.

Then the exponential dichotomy spectrum of system (1) is the set

Σ(A) =
{

γ ∈R
+ : xk+1 =

1
γ

Akxk admits no exponential dichotomy
}

and the resolvent set ρ(A) = R
+ \ Σ(A) is its complement.

Notice that the above definitions also appear in [10, 12].
Next comes the study of a linear system having tensor structures. Denote by V1, . . . , Vk

the finite-dimensional real vector spaces of dimensions dim Vi = ni for i = 1, . . . , k. Then
let V = V1 ⊗ · · · ⊗ Vk be their tensor product, a vector space of dimension n = n1n2 · · ·nk ,
which is defined to be the vector space L(V ∗

1 ×· · ·×V ∗
k ,R) of k-linear forms on V ∗

1 ×· · ·×
V ∗

k . As usual, V ∗ denotes the dual of V . From [12] we know that linear cocycles Φi on Vi

deduce a linear cocycle Φ1 ⊗ · · · ⊗ Φl on V , where Vi (i = 1, . . . , l) are finite dimensional
real vector fields and V = V1 ⊗ · · · ⊗ Vl . Restricted to our attention, we have the following
for l = 2, then the extension to general k is obvious.

Lemma 2.2 If linear systems

xk+1 = Ai
kxk , i = 1, 2,

have evolution operators Φ i(k, t) with the corresponding exponential dichotomy spectrum
Σ(Ai) =

⋃di
i=1[a(i)

1 , b(i)
1 ], then Φ1(k, t) ⊗Φ2(k, t) is the evolution operator of the system xk+1 =

(A1
k ⊗ A2

k)xk with the exponential dichotomy spectrum estimation

d1⋃

i=1

d2⋃

j=1

[
a(1)

i a(2)
j , b(1)

i b(2)
j
]
.

Proof Since Φ i(k, t) has the following form:

Φ i(k, t) =

⎧
⎪⎪⎨

⎪⎪⎩

Ai
k–1 · · ·Ai

t , k > t;

Ii, k = t;

(Ai
k)–1 · · · (Ai

t–1)–1, k < t,
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we have that

Φ1(k, t) ⊗ Φ2(k, t) =
(
A1

k–1 · · ·A1
t
)⊗ (A2

k–1 · · ·A2
t
)

=
(
A1

k–1 ⊗ A2
k–1
) · · · (A1

t ⊗ A2
t
)

for k > t, then Φ1(k, t) ⊗ Φ2(k, t) = I1 ⊗ I2 = I for k = t and similarly Φ1(k, t) ⊗ Φ2(k, t) =
((A1

k)–1 ⊗ (A2
k)–1) · · · ((A1

t–1)–1 ⊗ (A2
t–1)–1) for k < t, which shows Φ1(k, t) ⊗ Φ2(k, t) is the

evolution operator of the system xk+1 = (A1
k ⊗ A2

k)xk . Here I1 and I2 are identity matrices.
The remaining part is similar to Proposition 4 in [13] just by using Definition 2.1 here.

Taking the invariant linear space V 1
l ⊗ V 2

j of the operator Φ1 ⊗ Φ2, when k > t, we have
that

∥
∥
(
Φ1(k, t) ⊗ Φ2(k, t)

)
(u × v)

∥
∥ =
∥
∥Φ1(k, t)u

∥
∥ · ∥∥Φ2(k, t)v

∥
∥

≤ K1
(
α1

l
)(k–t)‖u‖ · K2

(
α2

j
)(k–t)‖v‖

= K1K2
(
α1

l α
2
j
)(k–t)‖u ⊗ v‖

for all possible l and j, where u ∈ V 1
l and v ∈ V 2

j , a(i)
j < αi

j < a(i)
j + μ, i = 1, 2 and μ 
 1. The

case is similar for k < t. So making μ → 0, this completes the proof. �

Then we show the properties of two matrix operators N(·) and T(·), which are key to
the formal cancellation of the nonlinearities. Denote by Hl

n(Rn) the vector space of homo-
geneous polynomials of degree l in n variables with values in R

n. A basis {u1, . . . , un} in R
n

and the basis {xτ }||τ |=l of Hl
n(R1) give a basis {xτ ui} in Hl

n(Rn). By the following equivalence:

Hl
n
(
R

n) � f =
n∑

i=1

∑

|τ |=l

fτ ,ixτ ui → (fτ ,i) ∈R

,

it admits Hl
n(Rn) ∼= R


, where 
 = dim Hl
n(Rn). Moreover, we can make the identity

Hl
n(Rn) = Hl

n(R1) ⊗R
n. Thus denote a d̃ × d̃ matrix by

N(A)l =
(
N (l)

τζ (A)
)
, (Ax)τ =

∑

ζ∈Zn
+,|ζ |=l

Nl
ζτ (A)xζ .

So the entries of N(A)l depend nonlinearly on the ones of A. The following results are
summarised from [13] and [12] or [9].

Lemma 2.3 Let A and B be n × n matrices and set l ≥ 2, then the following statements
hold:

(i) ‖N(A)l‖ ≤ C‖A‖l , N(I2)l = I1, N(AB)l = N(B)lN(A)l , where the constant C is
independent of A, I2 and I1 are n × n and d̃ × d̃ unit matrices, respectively.

(ii) If A is invertible, then N(A–1)l = (N(A))–1
l .

(iii) If Ak = diag{A1
k , . . . , Ad

k } is bounded with Ai
k : Z→R

ni×ni for i = 1, . . . , d, then there
exists a permutation matrix P independent of k in R

d̃×d̃ , which makes N(A)l similar
to a block diagonal matrix

diag
{

N(A)
τ∈Nd

l
, τ ∈ Z

d
+, |τ | = l

}
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with N(A)τ : Z→R
qτ ×qτ , qτ =

∏d
i=1

(τi+ni–1)!
τi !(ni–1)! . Moreover, we have

∥
∥N(Ak)τ

∥
∥≤ C

d∏

i=1

∥
∥Ai

k
∥
∥τi ,

where the constant C is dependent of Ak .

The above is from Proposition 5 (p. 2965) of [13], which stems from propositions in [2].
Then comes the operator T(·). Precisely, the linear operator T(A)l on Hl

n(R1) is given by

T(A)l : h(x) �→
∑

|τ |=l

hτ (Ax)τ , h(x) =
∑

τ∈Zd
+,|τ |=l

hτ xτ ∈ Hl
n
(
R

1).

So we can regard N(A)l as the matrix representation of the operator T(A)l . Denote by
ΦT(A–1

k )l
(k, t) the evolution operator of the system xk+1 = T(A–1

k )lxk . According to the defi-
nitions of matrices N(·)l and T(·)l , obviously, we have the following.

Lemma 2.4 It admits ΦT(A–1
k )l

(k, t) = N(Φ(k, t))–1
l , where Φ(k, t) is the evolution operator

of system (1).

Proof Straightforwardly, by Lemma 2.3(i) we compute

N
(
Φ(k + 1, t)

)–1
l · (N(Φ(k, t)

)–1
l

)–1 = N
(
Φ(k + 1, t)–1)

l · N
(
Φ(k, t)

)

l

= N
(
Φ(k, t)Φ(k + 1, t)–1)

l = N
(
A–1

k
)

l,

which shows that N(Φ(k, t))l is the matrix solution of the system xk+1 = T(A–1
k )lxk . So it

completes the proof. �

Compared with the continuous case in [13, 14], ours is simple as the one in [2]. There-
fore, by Lemmas 2.2, 2.3 and 2.4, the following statements hold.

Lemma 2.5 Let Φ(k, t) be the evolution operator of system (1).
(i) We have that ΦT(A–1

k )l
(k, t) ⊗ Φ(k, t) = N(Φ(t, k))l ⊗ Φ(k, t).

(ii) If Ak = diag{A1
k , . . . , Ad

k }, then there exists a permutation matrix P ∈R
d̃×d̃

independent of k such that N(Φ(t, k))l is similar to a block diagonal matrix

{Λτ }τ∈Nd
l

= diag
{

N
(
Φ(t, k)

)}

τ∈Nd
l

and

∥
∥N
(
Φ(t, k)

)

τ

∥
∥≤ C(n, l)

d∏

i=1

∥
∥Φ i(t, k)

∥
∥τi ,

where τ ∈ Z
d
+, |τ | = l, i = 1, . . . , d, C(n, l) depends on n, l.

Proof The result (i) is from Lemma 2.4, while (ii) is a direct application of Lemma 2.3. This
completes the proof. �
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The last one is the classical Gronwall type inequality for the discrete case.

Lemma 2.6 (Gronwall inequality [1]) Let, for all k ∈ N and k ≥ a, the following inequality
be satisfied:

u(k) ≤ p(k) + q(k)
k–1∑

l=a

f (l)u(l).

Then, for all k ∈N and k ≥ a, we have

u(k) ≤ p(k) + q(k)
k–1∑

l=a

p(l)f (l)
k–1∏

τ=l+1

(
1 + q(τ )f (τ )

)
.

3 Proofs of the main results
The proof consists of two parts. Firstly, we get the normal form of (1) under formal con-
jugacy. Then we continue to deal with its analytic normal form.

At the beginning we make the estimation of the exponential dichotomy spectrum for
the linear equation deduced from the cancellation of non-resonant terms. Define a linear
operator Ll

Ak
on Hl

n(Rn) as follows:

Ll
Ak

h(x) = Akh
(
A–1

k x
)

(4)

for h(x) ∈ Hl
n(Rn). Since Hl

n(Rn) = Hl
n(R1) ⊗ R

n, the matrix representation of Ll
Ak

is
(I1 ⊗ Ak) · (T(A–1

k )l ⊗ I2), where I1 and I2 are the identity matrices in Hl
n(R1) and R

n.
See also Proposition 8.2.6 (p. 415) in [2].

Proposition 3.1 The non-autonomous system xk+1 = Ll
Ak

xk has the exponential dichotomy
spectrum estimation

⋃

τ∈Nd
l

⋃

j=1,...,d

[

aj

d∏

i=1

b–τi
i , bj

d∏

i=1

a–τi
i

]

. (5)

Proof Notice that the matrix representation of the linear operator Ll
Ak

given by (4) is

Ll
Ak

= (I1 ⊗ Ak) · (T(A–1
k
)

l ⊗ I2
)

=
(
I1 · T

(
A–1

k
)

l

)⊗ (Ak · I2) = T
(
A–1

k
)

l ⊗ Ak ,

where I1, I2 are identity matrices in Hl
n(R1) and R

n. By Lemmas 2.2, 2.4 and 2.5, we obtain
that

ΦLl
Ak

(k, t) = ΦT(A–1
k )l

(k, t) ⊗ Φ(k, t) = N
(
Φ(k, t)

)–1
l ⊗ Φ(k, t),
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which leads to

ΦLl
Ak

(k, t) = N
(
Φ(k, t)

)–1
l ⊗ Φ(k, t)

= N
(
SkΨ (k, t)S–1

t
)–1

l ⊗ (SkΨ (k, t)S–1
t
)

= N
(
StΨ

–1(k, t)S–1
k
)

l ⊗
(
SkΨ (k, t)S–1

t
)

=
(
N
(
S–1

k
)

l · N
(
Ψ –1(k, t)

)

l · N(St)l
)⊗ (Sk · Ψ (k, t) · S–1

t
)

=
(
N
(
S–1

k
)

l ⊗ Sk
) · (N(Ψ –1(k, t)

)

l ⊗ Ψ (k, t)
) · (N(St)l ⊗ S–1

t
)
,

where evolution operators Φ(k, t) and Ψ (k, t) are kinematically similar to an invertible
matrix S, Ψ (k, t) is a block diagonal matrix with blocks Ψ i(k, t) for i = 1, . . . , d. Moreover,
each block Ψ i(k, t) satisfies

∥
∥Ψ i(k, t)

∥
∥≤ Kβk–t

i , k ≥ t;
∥
∥Ψ i(k, t)

∥
∥≤ Kαk–t

i , k ≤ t.

Here, for each spectrum interval [ai, bi], we have that ai –μ1 ≤ αi < ai and bi < βi ≤ bi +μ1

for i = 1, . . . , d, where the positive parameter μ1 can be chosen arbitrarily small. By the
way, we specially note that Ψ (k, t) is just an evolution operator of system (2).

For arbitrary a ∈ Z, we note that

Ψ (k, a)Ψ (a, t) = Ψ (k, t), Ψ (k, t)Ψ (t, k) = I.

Therefore, it yields that

N
(
Ψ –1(k, a)

)

l · N
(
Ψ –1(t, a)

)–1
l = N

(
Ψ –1(k, a)

)

l · N
(
Ψ (t, a)

)

l

= N
(
Ψ (t, a)Ψ –1(k, a)

)

l

= N
(
Ψ (t, a)Ψ (a, k)

)

l

= N
(
Ψ (t, k)

)

l = N
(
Ψ (k, t)

)–1
l .

By Lemmas 2.3 and 2.5, we have that N(Ψ (k, t))–1
l = N(Ψ (t, k))l and N(Ψ (t, k))l is similar

to the block diagonal one

{Λτ }τ∈Nd
l

= diag
{

N
(
Ψ (t, k)

)}

τ∈Nd
l
, |τ | = l,

where ‖N(Ψ (t, k))τ‖ ≤ C(n, l)
∏d

i=1 ‖Ψ i(t, k)‖τi and C(n, l) depends on n and l . Further-
more, these lead to

∥
∥N
(
Ψ (t, k)

)

τ

∥
∥≤ C(n, l)

d∏

i=1

∥
∥Ψ i(t, k)

∥
∥τi

≤ C(n, l)
d∏

i=1

Kα
(t–k)τi
i = K

′
d∏

i=1

α
–τi(k–t)
i
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for k ≥ t and

∥
∥N
(
Ψ (t, k)

)

τ

∥
∥≤ C(n, l)

d∏

i=1

∥
∥Ψ i(t, k)

∥
∥τi

≤ C(n, l)
d∏

i=1

Kβ
(t–k)τi
i = K

′
d∏

i=1

β
–τi(k–t)
i

for k ≤ t, where K ′ = C(n, l)Kd . Hence, let μ1 → 0, and the spectrum estimation of
N(Ψ (k, t))–1

l is

⋃

τ∈Nd
l

[ d∏

i=1

b–τi
i ,

d∏

i=1

a–τi
i

]

.

Note again that ΦLl
Ak

(k, t) is kinematically similar to N(Ψ –1(k, t))l ⊗Ψ (k, t) with an invert-

ible matrix N(St)l ⊗S–1
t . Since the kinematic similarity affects nothing about the exponen-

tial dichotomy spectrum of the system, the spectrum estimation of N(Φ(k, t))–1
l is

⋃

τ∈Nd
l

[ d∏

i=1

b–τi
i ,

d∏

i=1

a–τi
i

]

.

At the end, by Lemma 2.2, we can obtain that the spectrum estimation of linear operator
Ll

Ak
is

⋃

τ∈Nd
l

⋃

j=1,...,d

[

aj

d∏

i=1

b–τi
i , bj

d∏

i=1

a–τi
i

]

.

This completes the proof. �

Now we do formal cancellations. Applying the scheme of Poincaré–Dulac type formal
reductions, we can assume that a near identity formal change of variables xk = yk + hk(yk)
transforms system (3) into

yk+1 = Rk(yk) = Akyk + ḡk(yk), (6)

which leads to

hk+1
(
Akyk + ḡk(yk)

)
= Akhk(yk) + fk

(
yk + hk(yk)

)
– ḡk(yk),

or equivalently

hk+1
(
yk + ḡk

(
A–1

k yk
))

= Akhk
(
A–1

k yk
)

+ fk
(
A–1

k yk + hk
(
A–1

k yk
))

– ḡk
(
A–1

k yk
)
. (7)

Expanding hk , ḡk , fk as formal Taylor series

hk ∼
∞∑

|ν|≥2

hk,νyν
k , fk ∼

∞∑

|ν|≥2

fk,νyν
k , ḡk ∼

∞∑

|ν|≥2

ḡk,νyν
k ,
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where ν = (ν1, . . . ,νn), l = |ν| ≥ 2, hk,ν , fk,ν and ḡk,ν are bounded vector-valued functions
from Z to R

n. Inserting these expressions into equality (7), we shall solve equation (7) for
hk,ν , k ∈ Z inductively by comparing terms of degree l for l = 2, 3, . . . .

Comparing the monomials of degree l in equality (7), we can get that

hk+1,l = Ll
Ak

hk,l + Tk,l – Ĝk,l, (8)

where Ll
Ak

is the linear operator defined by (4), Ĝk,l is the coefficient of ḡk(A–1
k yk) of degree

l and Tk,l is the coefficient of degree l of the expression

fk

(

A–1
k yk +

l–1∑

|ν|=2

hk,ν
(
A–1

k yk
)ν
)

–
l–1∑

|ν|=2

hk+1,ν

(

yk +
l–1∑

|ν|=2

ḡk
(
A–1

k yk
)ν
)

,

which has been known already by the induction assumption.
First we consider the non-resonant case. If the spectrum Σ(A) is lth non-resonant, i.e.

1 /∈ [aj′
∏d

i=1 b–τi
i , bj′

∏d
i=1 a–τi

i ] for all |τ | = l, the linear operator Ll
Ak

has the exponential
dichotomy spectrum (5) by Proposition 3.1. So we can choose Ĝk,l = 0 because equation
(8) has a unique solution hk,l for arbitrary Ĝk,l . Especially, if Σ(A) is non-resonant for
∀|l| ≥ 2, system (3) is formally conjugated to its linear part.

We now consider the resonant case. Assume that Ak is in block diagonal form cor-
responding to Σ(A). By Lemmas 2.2, 2.4 and Proposition 3.1, (Tk,ν – Ĝk,ν)ej corre-
sponds to the diagonal block of Ll

Ak
with exponential dichotomy spectrum estimation

[aj′
∏d

i=1 b–τi
i , bj′

∏d
i=1 a–τi

i ], where ej′ = Γ (ej), τ = Γ (ν). Moreover, by Proposition 3.1, the
linear operator Ll

Ak
is similar to the following matrix:

⎛

⎜
⎝

M+
k 0 0

0 M–
k 0

0 0 Mc
k

⎞

⎟
⎠ ,

where M+
k is made of the blocks corresponding to exponential dichotomy spectrum esti-

mation satisfying aj′
∏d

i=1 b–τi
i > 1 ; M–

k has ones fulfilling bj′
∏d

i=1 a–τi
i < 1 and others are in

Mc
k .
In order to solve system (8), let hk,l = (h+

k , h–
k , hc

k), Tk,l = (T+
k , T–

k , Tc
k ), Ĝk,l = (Ĝ+

k , Ĝ–
k , Ĝc

k),
we divide the evolution operator of linear system

hk+1,l = Ll
Ak

hk,l

into ΦLl
Ak

(k, t) = (Φ+
Ll

Ak
(k, t),Φ–

Ll
Ak

(k, t),Φc
Ll

Ak
(k, t)). So system (8) can be decomposed into

three subsystems as follows:

h+
k+1,l = Ll

Ak
h+

k,l + T+
k,l – Ĝ+

k,l, (9)

h–
k+1,l = Ll

Ak
h–

k,l + T–
k,l – Ĝ–

k,l, (10)

hc
k+1,l = Ll

Ak
hc

k,l + Tc
k,l – Ĝc

k,l. (11)
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For subsystems (9) and (10), the conditions

aj′
d∏

i=1

b–τi
i > 1 and bj′

d∏

i=1

a–τi
i < 1

imply the non-resonance by 1 /∈ [aj′
∏d

i=1 b–τi
i , bj′

∏d
i=1 a–τi

i ] for l =
∑d

i=1 τi ≥ 2, then by set-
ting Ĝ+

k,l = Ĝ–
k,l = 0 these subsystems have the unique solutions

h+
k,l = –

∞∑

t=k

Φ+
Ll

Ak
(k, t + 1)T+

t,l, aj′ >
d∏

i=1

bτi
i ,

h–
k,l =

k–1∑

t=–∞
Φ–

Ll
Ak

(k, t + 1)T–
t,l, bj′ <

d∏

i=1

aτi
i ,

respectively. For subsystem (11) we can make Tc
k,l = Ĝc

k,l . It especially has the trivial solu-
tion hc

k,l = 0.
Summarising the above arguments, if Ak is block diagonal corresponding to Σ(A), then

system (1) is analytically conjugated to

xk+1 = Jetl–1
xk =0 Fk(xk) + gk(xk) + O

(‖xk‖l+1), (12)

where gk is a polynomial consisting of resonant monomials only with respect to the vari-
able xk of degree l. Here Jetl

·=0 F(·) denotes the part of the Taylor expansion of the function
F of order no more than l with respect to the variable · at · = 0.

At this moment, we can deal with analytical cancellations, when Σ(A) is in the Poincaré
domain. Now we take the following system into account:

xk+1 = Akxk + gk(xk) + O
(‖xk‖l+1),

which has the same smoothness as system (1). Notice that the fact a1 > 1 or bd < 1
means that the remainder O(‖ · ‖l+1) contains non-resonant terms only for the case
l + 1 > ln bd/ ln a1 or l + 1 > ln a1/ ln bd , respectively.

After doing formal normal form reductions, we do the cancellation of the remainder
analytically. First comes the homotopy method. In order to apply the homotopy method
from [8], technically we consider this s-parametric system instead

xk+1 = Fk(xk , s) = Akxk + gk(xk) + sek(xk), (13)

where the smoothness is the same as system (1), s ∈ [0, 1], Ak and gk are the ones as men-
tioned above and ek(·) = O(‖ · ‖l+1) is the remainder.

Lemma 3.1 If there exists a series mappings rk analytic for (xk , s) in Oρ′ × [0, 1] and ful-
filling ‖rk(xk , s)‖ = o(‖x‖2) as xk → 0, such that rk satisfies the following equation:

DxkFk(xk , s)rk(xk , s) – rk+1
(
Fk(xk , s), s

)
= –ek(xk), (14)

where D· is the Jacobian matrix with respect to ·, then systems xk+1 = Fk(xk , 0) and xk+1 =
Fk(yk , 1) are locally conjugated analytically. Here Fk is given by (13).
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Proof Let Vk = (Fk(xk , s), s), Uk = (rk(xk , s), 1) for k ∈ Z. We have that

D(xk ,s)VkUk =

(
∂Fk (xk ,s)

∂xk
rk(xk , s) + ∂Fk (xk ,s)

∂s

1

)

.

By using (14) and ∂Fk (xk ,s)
∂s = ek(xk), the following holds:

D(xk ,s)VkUk = Uk+1 ◦ Vk . (15)

Denote by ϕτ
Uk

the local flow generated by Uk , which is analytic. From (15) we have

Vk ◦ ϕτ
Uk

= ϕτ
Uk+1

◦ Vk .

Set ϕ1
Uk

(xk , 0) = (hk(xk), 1), it yields that

Vk ◦ ϕ1
Uk

(xk , 0) =
(
Fk(xk , s), s

) ◦ (hk(xk), 1
)

=
(
Fk
(
hk(xk), 1

)
, 1
)

and

ϕ1
Uk+1

◦ Vk(xk , 0) =
(
hk+1(xk), 1

) ◦ (Fk(xk , 0), 0
)

=
(
hk+1

(
Fk(xk , 0)

)
, 1
)
,

which is equivalent to

Fk
(
hk(xk), 1

)
= hk+1

(
Fk(xk , 0)

)
,

where hk is analytic locally. This completes the proof. �

So we set φm
k (·, s) = Fk+m–1(Fk+m–2(· · ·Fk+1(Fk(·, s), s) · · · ), s) analytically from R

n to R
n,

and denote φm
k (·, s) and rk(·, s) by φm

k,s(·) and rk,s(·) for convenience, respectively. To simplify
notations, we use f∗h = (Df · h) ◦ f –1.Therefore, system (13) is in the new form

xk+1 = Fk(xk , s) = φk(xk , s) = φk,s(xk),

and equation (14) is

(φk,s)∗rk,s(·) = rk+1,s(·) – ẽk(·), (16)

where ẽk(·) = ek ◦ φ–1
k,s (·). Then we write down a formal solution of equation (14) from [8].

Lemma 3.2 The function

rk,s(·) = –
∞∑

m=1

(
φ–m

k,s
)

∗̃ek+m–1(·)

is a formal solution of (16).
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Proof We do the computation straightforwardly and get

(φk,s)∗rk,s(·) = –
∞∑

m=1

(φk,s)∗
(
φ–m

k,s
)

∗̃ek+m–1(·)

= –
∞∑

m=1

(
φ–m+1

k+1,s
)

∗̃ek+m–1(·)

= –
(
φ0

k+1,s
)

∗̃ek(·) –
∞∑

m=2

(
φ–m+1

k+1,s
)

∗̃ek+m–1(·)

= –̃ek(·) –
∞∑

m=1

(
φ–m

k+1,s
)

∗̃ek+m(·)

= rk+1,s(·) – ẽk(·).

That completes the proof. �

Without loss of generality, we assume that bp < 1. Let Uδ = {x ∈ C
n : ‖x‖ ≤ δ}, 
 =

{u ∈ C | |u| ≤ 2} and l = ln a1/ ln bp. Otherwise, if a1 > 1, the following proof procedure
is similar only by using another solution

rk,s(·) =
∞∑

m=0

(
φm

k,s
)

∗̃ek–m–1(·)

of equation (16). Note again here Σ(A) =
⋃d

i=1[ai, bi]. The following estimations are used
to control the norm of the formal solution.

Lemma 3.3 In system (13) there exists δ0 > 0 such that
(i) ‖ek(x)‖ ≤ C‖x‖l+1 for (x, k) ∈ Uδ0 ×Z,

(ii) ‖φm
k,s(x)‖ ≤ C̃(bd + μ1)mdemμ2 for (x, k) ∈ Uδ0 ×Z, s ∈ 
, m ≥ 0,

(iii) ‖Dφ–m
k,s (x)‖ ≤ C̃(a1 – μ1)–mdemμ3 for (x, k) ∈ Uδ0 ×Z, s ∈ 
, m ≥ 0, where μi(δ0) are

positive constants and μi 
 1, i = 1, 2, 3.

Proof There exists δ0 > 0 such that Fk,s(x) is analytic in the region (x, s) ∈ Uδ0 × 
 uni-
formly for k ∈ Z. Set M = supUδ0 ×
 ‖F‖ < ∞. By Cauchy’s integral representation

∂ω
x fk(x) =

∂ |ω|fk(x1 · · ·xn)
∂xω1

1 · · · ∂xωn
n

=
ω!

(2π i)n

∫

γ

fk(u) du
(u – x)ω+e ,

we have that

gk(x) =
l∑

|ω|=2

∂ω
x fk(0)
ω!

xω,

where |ω| =
∑n

i=1 ωi, e = (1, . . . , 1) ∈ Z
n
+, γ = {u : |ui| = δ – ε, i = 1, 2, . . . , n}, 0 < ε 
 1 and

gk(x) = fk(x) – ek(x). Let Lk,s(x) = gk(x) + sek(x), s ∈ [0, 1] ⊂ 
. Thus, it admits

sup
Uδ0 ×


∥
∥∂xLk,s(x)

∥
∥ = ρ ≤ CM

δ2 δ0
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and

∥
∥ek(x)

∥
∥≤ nl+1(l + 1)!C0M

1
δl+1 ‖x‖l+1 = C‖x‖l+1,

where ‖x‖ ≤ δ0 < δ, 0 < δ0 ≤ 2
3δ and C is a constant depending only on n. So conclusion (i)

is proved.
Then set Γk(t, w) to be the evolution operator of the linear part of system (14). Using

linear variation, it admits

xk+m = φm
k,s(xk) = Γk(m, 0)xk +

m–1∑

i=0

Γk(m, i + 1)Lk+i,s(xk+i), (17)

where Lk,s(·) = gk(·) + sek(·). As we have shown, from [11] there exists kinematic similarity
S : Z → R

n×n such that Γk(t, w) is kinematically similar to a block diagonal matrix with
invertible block matrices ψ i

k(t, w) for i = 1, . . . , d. Moreover, it admits

∥
∥Γk(t, w)

∥
∥≤

⎧
⎨

⎩

C̃β
d(t–w)
d , t ≥ ω,

C̃α
d(t–w)
1 , t ≤ ω,

where bd < βd ≤ bd + μ1, a1 – μ1 ≤ α1 < a1, μ1 is a small constant and C̃ > 1.
From (17) we obtain

∥
∥φm

k,s(xk)
∥
∥≤ ∥∥Γk(m, 0)

∥
∥ +

m–1∑

i=0

∥
∥Γk(m, i + 1)

∥
∥ρ
∥
∥φi

k,s(xk)
∥
∥,

which by Lemma 2.6 implies

∥
∥φm

k,s(xk)
∥
∥≤ C̃(bd + μ1)md(1 + C̃ρ)m ≤ C̃(bp + μ1)mpemμ2

for μ2 = C̃ρ . Of course, μ2 is a positive constant that can be chosen sufficiently small, if so
is δ0. This verifies result (ii).

At last, set Mk,s(xk+1) = –A–1
k Lk,s(xk) and ρ ′ = supUδ0×


‖∂xMk,s(x)‖. We can obtain that

φ–m
k,s (xk+m) = Γk(0, m)xk+m +

m–1∑

i=0

Γk(0, m – i – 1)Mk+m–1–i,s
(
φ–i

k,s(xk+m)
)
.

Taking derivatives with respect to variable xk+m on both sides, we have that

∥
∥Dφ–m

k,s (xk+m)
∥
∥≤ ∥∥Γk(0, m)

∥
∥ +

m–1∑

i=0

∥
∥Γk(0, m – i – 1)

∥
∥ρ ′∥∥Dφ–i

k,s(xk+m)
∥
∥.

Utilising Lemma 2.6 again and by similar arguments as before it yields that

∥
∥Dφ–m

k,s (xk+m)
∥
∥≤ C̃(a1 – μ)–mpemμ3 ,

where μ3 is a positive constant and μ3 
 1. So result (iii) is confirmed. �
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Summarising all the above arguments, we can provide the proof of our main results.

Proof of Theorem 1.2 Doing the change xk = yk + hk(yk) to system (3), we get system (6).
If hk(·) is the homogeneous polynomial of degree l with respect to the variable ·, by com-
paring the lth order terms on both sides of equality (7), we can obtain equation (8). From
Proposition 3.1 we can solve it for the proper Tk,l and Ĝk,l , which finally leads to system
(12). Since this transformation has nothing to do with monomials of degree less than l,
we can do such transformations in the order by l and have the new system without non-
resonant terms formally, which proves (i).

Now Σ(A) is in the Poincaré domain. We do the above changes till it reaches l =
max{[ln a1/ ln bd], [ln bd/ ln a1]}, where [·] is the classical integer part function. Hence, it
leads to system (13) after s-parameterising, where the remainder ek(·) only contains non-
resonant terms. Without loss of generality, we assume that bd < 1. Then we begin to prove
that the formal solution rk,s of (14) is locally analytic. By Lemma 3.3 it yields the norm
estimation

∥
∥rk,s(x)

∥
∥≤

∞∑

m=1

CC̃l+2(a1 – μ1)–mdemμ3 (bd + μ1)md(l+1)emμ2(l+1),

where l = [ln a1/ ln bd]. By choosing the positive number μ1 small enough, we can make
(bd + μ1)l > a1 > a1 – μ1, which implies that

∥
∥rk,s(x)

∥
∥≤ C

∞∑

m=1

[(
(bd + μ1)l

a1 – μ

)d

(bd + μ1)deμ3 eμ2(l+1)
]m

≤ C
∞∑

m=1

e(μ4d+μ3+μ2(l+1)+d ln(bd+μ1))m

for C = CC̃l+2 and μi 
 1 for i = 1, . . . , 4. Therefore, rk,s(·) is analytic in Oρ′ × [0, 1] ⊂
Uδ0 × 
. So by Lemma 3.1 we get result (ii). �

At last, we illustrate two examples for the applications.
First comes a singular perturbed system

ε
kx = Akxk + fk(xk), (18)

where Σ(A) =
⋃d

i=1[ai, bi] with 0 < a1 ≤ b1 < · · · < ad ≤ bd , 
kx = xk+1 – xk is the classical
first order difference operator, ε is a positive small parameter and fk(x) = O(‖x‖2) as x → 0
is analytic with respect to the variable x ∈ Uδ0 uniformly for k ∈ Z.

Corollary 3.4 There exists ε0 > 0 such that system (18) can be analytically linearised for
0 < ε < ε0.

Proof Rewrite system (18) into

xk+1 = ε–1(Ak + εI)xk + ε–1fk(xk).
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By the roughness of the spectrum or using the method in the proof of Lemma 6(b) in
[8], we obtain that the spectrum Σ(B(ε)) =

⋃d
i=1[a′

i, b′
i], where Bk(ε) = Ak + εI . More-

over, there exists ε1 > 0 such that |ai – a′
i| ≤ ρ and |bi – b′

i| ≤ ρ for ε < ε1, where
ρ0 = mini=1,...,d–1{|a1|, |ai+1 – bi|} and ρ = ρ0/4. So Σ(ε–1B(ε)) =

⋃d
i=1[ε–1a′

i, ε–1b′
i]. When

ε–1a′
1 > 1, system (18) is in the Poincaré domain. Additionally, there are no resonant terms,

provided that ε–2a′2
1 > ε–1b′

d . Therefore, choosing ε < ε0 = min{ε1, (a1–ρ)2

bd+ρ
} and applying

Theorem 1.2, system (18) can be analytically linearised, which completes the proof. �

Now we take the classical logistic map

xn+1 = rxn(1 – xn)

into account. By restricting the graphic of the map to [0, 1] × [0, 1], the parameter r can
be taken for all r > 0. It was shown in [13] that the system is chaotic for r > r∗ = 3.570,
i.e. there exists an invariant set, which is topologically semi-conjugated to 2-shifted sym-
bolic dynamical system Λ2. Here, by the corollary, we know that the system can be locally
linearised for the sufficiently large r in the neighbourhood of each orbit of Λ2, although
globally the system is complicated.

Then we take a global exponentially Lyapunov stable/unstable system into account

xk+1 =
Akxk

1 + gα(xk)
, (19)

where Σ(A) =
⋃d

i=1[ai, bi] with 0 < a1 ≤ b1 < · · · < ad ≤ bd , g(x) is a positive semi-definite
quadratic form and α ≥ 1 is the power.

Corollary 3.5 Assume that bd < 1 (a1 > 1) of Σ(A) in system (19). When b2α+1
d /a1 < 1

(a2α+1
1 /bd > 1), system (19) can be linearised by a coordinates substitution, which is ana-

lytic in UR ×Z for any R > 0.

Proof Without loss of generality, we can assume bd < 1. To apply the homotopy method,
we consider

xk+1 = Akxk + ĝ(xk , s)

instead, where ĝ is given by

ĝ(x, s) =
1 + sgα(x)
1 + gα(x)

for s ∈ [0, 1]. Since 0 ≤ g(x) ≤ c1‖x‖2 for any x, we obtain that

1
1 + cα

1 ‖x‖2α
≤ ĝ(x, s) ≤ 1.

Then we check the conditions of Lemma 3.3 one by one. First, note that ‖Ak‖ =
‖Φ(k – 1, k)‖ ≤ c2eβ for 0 > β > ln bd . Then it yields

∣
∣
∣
∣
gα(x)Akx
1 + gα(x)

∣
∣
∣
∣≤ c3‖x‖2α+1,
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where c3 = cα
1 c2eβ . Second, easily we can get that ‖φm

k,s(x)‖ ≤ c2eβm‖x‖ for m ≥ 0. As usual,
φm

k,s(x) is the trajectory of the original system fulfilling φ0
k,s(x) = x. At last, by the first order

variation, we get that

Dφm+1
k,s (x) =

(
Am

1 + gα(φm
k,s(x))

–
(1 – s)αgα–1(φm

k,s(x))Amφm
k,s(x)�g(φm

k,s(x))
(1 + gα(φm

k,s(x)))2

)

Dφm
k,s(x)

=
Am

1 + gα(φm
k,s(x))

(

I –
(1 – s)αgα–1(φm

k,s(x))φm
k,s(x)�g(φm

k,s(x))
1 + gα(φm

k,s(x))

)

Dφm
k,s(x),

where the gradients �g = (∂x1 g, . . . , ∂xn g). Note that

m∏

i=k

(
1 + gα

(
φm

k,s(x)
))≤ exp

(

ln

( m∏

i=0

(
1 + c4‖x‖2αe2αβm)

))

≤ exp

( m∑

i=0

c4‖x‖2αe2αβm

)

≤ c5‖x‖2α ,

where c4 = cα
1 c2α

2 and c5 = c4/(1 – e2αβ ). Together with the above estimations, we obtain
that

∥
∥
∥
∥

(1 – s)αgα–1(φm
k,s(x))φm

k,s(x)�g(φm
k,s(x))

1 + gα(φm
k,s(x))

∥
∥
∥
∥≤ c6‖x‖2αe2αβm,

where c6 = 2αcα–1
1 c2α

2 . So it leads to

∥
∥φ–m

k,s (x)
∥
∥≤ c7‖x‖2αeγ mec8(x),

where c8(x) =
∑

m≥0 c6‖x‖2αe2αβm ≤ c6‖x‖2α/(1 – e2αβ ) and γ > – ln a1 > 0. Finally, by con-
ditions of the corollary, we can choose β and γ properly such that γ + (2α + 1)β < 0. So
the coordinates substitution is convergent and analytic, which completes the proof. �
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