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Abstract
In our article, a nonlinear density-dependent mortality Nicholson’s blowflies system
with patch structure has been investigated, in which the delays are time-varying and
multiple pairs. Based upon the fluctuation lemma and differential inequality
techniques, some sufficient conditions are found to ensure the global asymptotic
stability of the addressed model. Moreover, a numerical example is provided to
illustrate the feasibility and effectiveness of the obtained findings, and our
consequences are new even when the considered model degenerates to the scalar
Nicholson’s blowflies equation.
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1 Introduction
Recently, Berezansky and Braverman [1] pointed out that several important classes of infi-
nite dimensional dynamical systems arising from biological and medical sciences are spe-
cial cases of the following general scalar delay differential equation:

x′(t) =
m∑

j=1

Fj
(
t, x

(
t – τ1(t)

)
, . . . , x

(
t – τl(t)

))
– G

(
t, x(t)

)
, t ≥ t0, (1.1)

where m and l are positive integers. Here G is considered to be instantaneous mortality, Fj

(j ∈ I := {1, 2, . . . , m}) describes the feedback controls depending on the values of the stable
variable with respective delays τ1(t), τ2(t), . . . , τl(t). Clearly, (1.1) includes the following
nonlinear density-dependent mortality Nicholson’s blowflies model:

x′(t) = –
a(t)x(t)

b(t) + x(t)
+

m∑

j=1

βj(t)x
(
t – hj(t)

)
e–γj(t)x(t–gj(t)), t ≥ t0, (1.2)
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which in the case hj ≡ gj coincide with the classical models [2–6]. In particular, the non-
linear density-dependent mortality term, a(t)x(t)

b(t)+x(t) is referred to as population mortality,
βj(t)x(t – hj(t))e–γj(t)x(t–gj(t)) designates the time-dependent birth function with maturation
delay hj(t) and incubation delay gj(t), and gets the maximum reproduces rate 1

γj(t) , and j ∈ I .
For the past decade or so, for the special case of (1.2) with hj ≡ gj (j ∈ I), not only the

dynamic behaviors of time-delay Nicholson’s blowflies models, such as existence, persis-
tence, oscillation, periodicity and stability, but also the variants of the models have aroused
current research interest, and some useful results have been obtained in the existing pa-
pers; for example, see [7–15]. In addition, it is proved that more than one delay involved in
the identical nonlinear function Fj can cause chaotic oscillations in [1], and an example is
given to represent that two delays, rather than one delay, can produce a continuous oscil-
lation. As a matter of fact, when more than one delay occurs, the delay feedback function
Fj should be regarded as a multi-variable function. This will make it more difficult to study
the dynamic behaviors of (1.1) and (1.2).

On the other hand, it is of great practical significance to investigate the dynamic be-
haviors of a Nicholson’s blowflies model with patch structure. Consequently, the scalar
equation (1.1) can be naturally generalized as the following nonlinear density-dependent
mortality Nicholson’s blowflies model with patch structure:

x′
i(t) = –

aii(t)xi(t)
bii(t) + xi(t)

+
n∑

j=1,j �=i

aij(t)xj(t)
bij(t) + xj(t)

+
m∑

j=1

βij(t)xi
(
t – τij(t)

)
e–γij(t)xi(t–σij(t)), i ∈ Q := {1, 2, . . . , n}, (1.3)

which in the classical case τij ≡ σij (i ∈ Q, j ∈ I) has been widely studied in the litera-
ture of the past [16–20]. In the ith patch, aii(t)xi(t)

bii(t)+xi(t) labels the death rate of the the current
population level xi(t); βij(t)xi(t – τij(t))e–γij(t)xi(t–σij(t)) designates the time-dependent birth
function which requires maturation delays τij(t) and incubation delays σij(t), and gets the
maximum reproduction rate 1

γij(t) ; for i, j ∈ Q and j �= i, the weight function aij(t)xj(t)
bij(t)+xj(t) desig-

nates the population cooperative connection between jth patch and ith patch.
It should be mentioned that, up to now, the models (1.1), (1.2) and (1.3) relate to the

global stability analysis of two or more delays are very few [1, 21–24]. For the special case
of (1.2) with hj ≡ gj (j ∈ I), some delay-independent criteria ensuring the global asymp-
totic stability have been established in [25]. More precisely, the author in [25] obtained
the global asymptotical stability of (1.2) on C([–τ , 0], (0, +∞)) and under the following
assumptions:

max
j∈I

γ +
j ≤ 1, sup

t∈R

m∑

j=1

βj(t)
γj(t)

<
a–

max{1, b+} , lim sup
t→+∞

m∑

j=1

βj(t)
γj(t)

1
e

<
a–

b+ + 1
, (1.4)

where τ := max{max1≤j≤m g+
j , max1≤j≤m h+

j } > 0, and g+ and g– be defined as

g+ = sup
t∈[t0,+∞)

g(t), g– = inf
t∈[t0,+∞)

g(t).

The deficiency is that we can find some errors in the process of proving the main conse-
quence in [25]. In fact, as pointed in [26], in lines 3–4 of page 856 in [25], letting t → η(ϕ)
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cannot result in lim supt→+∞
∑m

j=1
βj(t)

γj(t)a(t)
1
e ≥ 1 because of the fact that η(ϕ) = +∞ has not

been proved. This suggests that the above-described literature leaves space for improve-
ment.

Based on the above considerations, we study a nonlinear density-dependent mortality
Nicholson’s blowflies system involving multiple pairs of time-varying delays described in
(1.3). We shall establish a delay-independent criterion to ensure the global asymptotic
stability of (1.3) without τij ≡ σij (i ∈ Q, j ∈ I), which has not been investigated till now.
Moreover, our consequences generalize and improve all known consequences in [25, 26],
and the error mentioned above has been corrected in Lemma 2.1.

For convenience, we suppose that aii, bii, γij : R → (0, +∞), aij (i �= j), bij (i �= j), βij, τij,σij :
R → [0, +∞) for all i ∈ Q, j ∈ I are bounded and continuous functions, and we denote

ri = max
{

max
j∈I

τ+
ij , max

j∈I
σ +

ij

}
, τ = max

i∈Q
ri, C+ =

n∏

i=1

C
(
[–ri, 0], [0, +∞)

)
.

For x = (x1, . . . , xn) ∈ R
n and ϕ ∈ ∏n

i=1 C([–ri, 0], [0, +∞)), define |x| = (|x1|, . . . , |xn|),
‖x‖∞ = maxi∈Q |xi|, and ‖ϕ‖ = maxi∈Q{maxt∈[–ri ,0] |ϕi(t)|}. Furthermore, it will be consid-
ered the following admissible initial conditions:

xi(t0 + θ ) = ϕi(θ ), θ ∈ [–ri, 0], ϕ ∈ C0
+ =

{
ϕ ∈ C+|ϕi(0) > 0, i ∈ Q

}
. (1.5)

We denote x(t; t0,ϕ) as a solution of (1.3) with the initial value problem (1.5), and let
[t0,η(ϕ)) be the maximal right-interval of existence of x(t; t0,ϕ). Moreover, by employ-
ing the local Lipschitz property of the right side function with regard to the nonnegative
function space, we find that x(t; t0,ϕ) exists and is unique.

2 Preliminary results
We first present the global existence of solutions for (1.3) with the admissible initial value
problem (1.5).

Lemma 2.1 For all i ∈ Q, j ∈ I , assume that

lim sup
t→+∞

[ n∑

j=1,j �=i

aij(t)
aii(t)

+
m∑

j=1

βij(t)
aii(t)γij(t)

1
e

]
< 1 (2.1)

and

σij(t) ≥ τij(t) and lim
t→+∞

(
σij(t) – τij(t)

)
e
∫ t

t0
[
∑n

j=1,j �=i aij(v)+
∑m

j=1 βij(v)] dv = 0 (2.2)

hold. Then, the solution x(t) = x(t; t0,ϕ) is positive and bounded for all t ∈ [t0, +∞).

Proof We first assert that

xi(t) > 0 for all t ∈ [
t0,η(ϕ)

)
, i ∈ Q. (2.3)
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Suppose to the contrary that Eq. (2.3) does not hold, then there exist ω ∈ Q and t̄ω ∈
(t0,η(ϕ)) such that

xω(t̄ω) = 0, xj(t) > 0 for all t ∈ [t0, t̄ω), j ∈ Q.

Based on the fact that
⎧
⎨

⎩
xω(t0) = ϕw(0) > 0,

x′
ω(t) ≥ – aωω(t)

bωω(t) xω(t) +
∑m

j=1 βωj(t)xω(t – τωj(t))e–γωj(t)xω(t–σωj(t)), t ∈ [t0, t̄ω),

we obtain

0 = xω(t̄ω)

≥ e–
∫ t̄ω

t0
aωω (u)
bωω (u) duxω(t0)

+ e–
∫ t̄ω

t0
aωω (u)
bωω (u) du

∫ t̄ω

t0

e
∫ s

t0
aωω (v)
bωω (v) dv

m∑

j=1

βωj(s)xω

(
s – τωj(s)

)
e–γωj(s)xω(s–σωj(s)) ds

> 0,

which is a contradiction and results in the above assertion.
Now, we show that η(ϕ) = +∞. For all i ∈ Q and t ∈ [t0,η(ϕ)), define yi(t) = max{1,

maxt0–ri≤s≤t xi(s)}, we obtain

x′
i(t) ≤

n∑

j=1,j �=i

aij(t) +
m∑

j=1

βij(t)xi
(
t – τij(t)

) ≤
[ n∑

j=1,j �=i

aij(t) +
m∑

j=1

βij(t)

]
yi(t)

and

xi(t) ≤ xi(t0) +
∫ t

t0

[ n∑

j=1,j �=i

aij(v) +
m∑

j=1

βij(v)

]
yi(v) dv

≤ max
{

1,‖ϕ‖} +
∫ t

t0

[ n∑

j=1,j �=i

aij(v) +
m∑

j=1

βij(v)

]
yi(v) dv,

which suggests that

yi(t) ≤ max
{

1,‖ϕ‖} +
∫ t

t0

[ n∑

j=1,j �=i

aij(v) +
m∑

j=1

βij(v)

]
yi(v) dv, ∀t ∈ [t0,η(ϕ)), i ∈ Q.

Hence, by the Gronwall–Bellman inequality, we obtain

xi(t) ≤ yi(t) ≤ max
{

1,‖ϕ‖}e
∫ t

t0
[
∑n

j=1,j �=i aij(v)+
∑m

j=1 βij(v)] dv, ∀t ∈ [t0,η(ϕ)), i ∈ Q.

It follows from Theorem 2.3.1 in [27] that η(ϕ) = +∞, and then

xi(t) ≤ yi(t) ≤ max
{

1,‖ϕ‖}e
∫ t

t0
[
∑n

j=1,j �=i aij(v)+
∑m

j=1 βij(v)] dv, (2.4)

for all t ∈ [t0, +∞), i ∈ Q.
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Furthermore, for each t ∈ [t0 – ri, +∞), we define

Mi(t) = max
{
ξ : ξ ≤ t, xi(ξ ) = max

t0–ri≤s≤t
xi(s)

}
.

Next, we show that xi(t) is bounded on [t0, +∞) for all i ∈ Q. Otherwise, we can choose
i0 ∈ Q such that

lim
t→+∞ xi0

(
Mi0 (t)

)
= +∞, and lim

t→+∞ Mi0 (t) = +∞. (2.5)

Note that, for t ≥ t0, it follows that

x′
i0 (s) ≤

n∑

j=1,j �=i0

ai0j(s) +
m∑

j=1

βi0j(s)xi0
(
Mi0 (t)

)

≤
[ n∑

j=1,j �=i0

ai0j(s) +
m∑

j=1

βi0j(s)

]
yi0

(
Mi0 (t)

)
, (2.6)

for all s ∈ [t0, t] and t ∈ [t0, +∞). This, combined with (1.3), (2.2), (2.3), (2.4) and the fact
that supw≥0 we–w = 1

e , gives us

0 ≤ x′
i0

(
Mi0 (t)

)

≤ –
ai0i0 (Mi0 (t))xi0 (Mi0 (t))

bi0i0 (Mi0 (t)) + xi0 (Mi0 (t))
+

n∑

j=1,j �=i0

ai0j
(
Mi0 (t)

)

+
m∑

j=1

βi0j
(
Mi0 (t)

)
xi0

(
Mi0 (t) – σi0j

(
Mi0 (t)

))
e–γi0 j(Mi0 (t))xi0 (Mi0 (t)–σi0 j(Mi0 (t)))

+
m∑

j=1

βi0j
(
Mi0 (t)

)∫ Mi0 (t)–τi0 j(Mi0 (t))

Mi0 (t)–σi0 j(Mi0 (t))
x′

i0 (s) dse–γi0 j(Mi0 (t))xi0 (Mi0 (t)–σi0 j(Mi0 (t)))

≤ ai0i0
(
Mi0 (t)

)
[

–
xi0 (Mi0 (t))

bi0i0 (Mi0 (t)) + xi0 (Mi0 (t))
+

n∑

j=1,j �=i0

ai0j(Mi0 (t))
ai0i0 (Mi0 (t))

+
m∑

j=1

βi0j(Mi0 (t))
ai0i0 (Mi0 (t))γi0j(Mi0 (t))

γi0j
(
Mi0 (t)

)
xi0

(
Mi0 (t) – σi0j

(
Mi0 (t)

))

× e–γi0 j(Mi0 (t))xi0 (Mi0 (t)–σi0 j(Mi0 (t)))

]

+
m∑

j=1

βi0j
(
Mi0 (t)

)∫ Mi0 (t)–τi0 j(Mi0 (t))

Mi0 (t)–σi0 j(Mi0 (t))

[ n∑

j=1,j �=i0

ai0j(s) +
m∑

j=1

βi0j(s)

]
yi0

(
Mi0 (t)

)
ds

≤ ai0i0
(
Mi0 (t)

)
[

–
xi0 (Mi0 (t))

bi0i0 (Mi0 (t)) + xi0 (Mi0 (t))
+

n∑

j=1,j �=i0

ai0j(Mi0 (t))
ai0i0 (Mi0 (t))

+
m∑

j=1

βi0j(Mi0 (t))
ai0i0 (Mi0 (t))γi0j(Mi0 (t))

1
e

]
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+
m∑

j=1

βi0j
(
Mi0 (t)

)[
σi0j

(
Mi0 (t)

)
– τi0j

(
Mi0 (t)

)]
e
∫ Mi0 (t)

t0 [
∑n

j=1,j �=i0
ai0 j(v)+

∑m
j=1 βi0 j(v)] dv

×
[ n∑

j=1,j �=i0

a+
i0j +

m∑

j=1

β+
i0j

]
max

{
1,‖ϕ‖}

and

0 ≤
[

–
xi0 (Mi0 (t))

bi0i0 (Mi0 (t)) + xi0 (Mi0 (t))
+

n∑

j=1,j �=i0

ai0j(Mi0 (t))
ai0i0 (Mi0 (t))

+
m∑

j=1

βi0j(Mi0 (t))
ai0i0 (Mi0 (t))γi0j(Mi0 (t))

1
e

]

+
1

ai0i0 (Mi0 (t))

m∑

j=1

βi0j
(
Mi0 (t)

)[
σi0j

(
Mi0 (t)

)
– τi0j

(
Mi0 (t)

)]

× e
∫ Mi0 (t)

t0 [
∑n

j=1,j �=i0
ai0 j(v)+

∑m
j=1 βi0 j(v)] dv

[ n∑

j=1,j �=i0

a+
i0j +

m∑

j=1

β+
i0j

]
max

{
1,‖ϕ‖}, (2.7)

where Mi0 (t) > 2τ + t0.
Letting t → +∞, from the facts

lim
t→+∞

[
σi0j(t) – τi0j(t)

]
e
∫ t

t0
[
∑n

j=1,j �=i0
ai0 j(v)+

∑m
j=1 βi0 j(v)] dv = 0 and lim

t→+∞ Mi0 (t) = +∞,

Equation (2.7) yields

0 ≤ –1 + lim sup
t→+∞

[ n∑

j=1,j �=i0

ai0j(t)
ai0i0 (t)

+
m∑

j=1

βi0j(t)
ai0i0 (t)γi0j(t)

1
e

]
< 0,

which is a contradiction and proves that x(t) is bounded for all t ∈ [t0, +∞). The proof is
complete. �

3 Global asymptotic stability for (1.3)
Theorem 3.1 For all i ∈ Q, j ∈ I , let (2.2) and

maxi∈Q,j∈I lim supt→+∞ γij(t) ≤ 1,
supt∈[t0,+∞) max{1, bii(t)}[∑n

j=1,j �=i
aij(t)

aii(t)bij(t) +
∑m

j=1
βij(t)
aii(t) ] < 1,

lim supt→+∞[1 + bii(t)][
∑n

j=1,j �=i
aij(t)
aii(t) +

∑m
j=1

βij(t)
aii(t)γij(t)

1
e ] < 1,

lim supt→+∞ max{1, bii(t)}[∑n
j=1,j �=i

aij(t)
aii(t)bij(t) e +

∑m
j=1

βij(t)
aii(t)γij(t) ] < 1,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.1)

be satisfied. Then the zero equilibrium point of (1.3) is globally asymptotically stable on C0
+.

Proof Denote x(t; t0,ϕ) by x(t). From Lemma 2.1, we find that the set of {x(t; t0,ϕ) : t ∈
[t0, +∞)} is bounded, and 0 ≤ lim supt→+∞ xi(t) < +∞ for all i ∈ Q.
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We first claim that the zero equilibrium point is stable. Without loss of generality, let
0 < ε < 1 satisfy

sup
t∈[t0,+∞)

max
{

1, bii(t)
}
[ n∑

j=1,j �=i

aij(t)
aii(t)bij(t)

+
m∑

j=1

βij(t)
aii(t)

]
< e–ε , i ∈ Q. (3.2)

Choose 0 < δ < ε, we claim that, for ‖ϕ‖ < δ,

xi(t) = xi(t; t0,ϕ) < ε for all t ∈ [t0, +∞) and i ∈ Q. (3.3)

In the contrary case, there exist t∗ ∈ (t0, +∞) and i∗ ∈ Q such that

xi∗ (t∗) = ε, xj(t) < ε for all t ∈ [t0 – σj, t∗) and j ∈ Q. (3.4)

Note the fact that

bi(t) + x < max
{

1, bi(t)
}

ex for all (t, x) ∈ [t0, +∞) × (0, +∞) and i ∈ Q, (3.5)

and from Eqs. (1.3), (3.2) and (3.4) we have the result that

0 ≤ x′
i∗ (t∗)

= –
ai∗i∗ (t∗)ε

bi∗i∗ (t∗) + ε
+

n∑

j=1,j �=i∗

ai∗j(t∗)xj(t∗)
bi∗j(t∗) + xj(t∗)

+
m∑

j=1

βi∗j(t∗)xi∗
(
t∗ – τi∗j(t∗)

)
e–γi∗ j(t∗)xi∗ (t∗–σi∗ j(t∗))

≤ –
ai∗i∗ (t∗)

max{1, bi∗i∗ (t∗)}εe–ε +
n∑

j=1,j �=i∗

ai∗j(t∗)ε
bi∗j(t∗)

+
m∑

j=1

βi∗j(t∗)xi∗
(
t∗ – τi∗j(t∗)

)
e–γi∗ j(t∗)xi∗ (t∗–σi∗ j(t∗))

= ai∗i∗ (t∗)

{
–

1
max{1, bi∗i∗ (t∗)}εe–ε +

n∑

j=1,j �=i∗

ai∗j(t∗)ε
ai∗i∗ (t∗)bi∗j(t∗)

+
m∑

j=1

βi∗j(t∗)
ai∗i∗ (t∗)

xi∗
(
t∗ – τi∗j(t∗)

)
e–γi∗ j(t∗)xi∗ (t∗–σi∗ j(t∗))

}

<
ai∗i∗ (t∗)

max{1, bi∗i∗ (t∗)}

{
–e–ε + max

{
1, bi∗i∗ (t∗)

}

×
[ n∑

j=1,j �=i∗

ai∗j(t∗)
ai∗i∗ (t∗)bi∗j(t∗)

+
m∑

j=1

βi∗j(t∗)
ai∗i∗ (t∗)

]}
ε

≤ ai∗i∗ (t∗)
max{1, bi∗i∗ (t∗)}

{
–e–ε + sup

t∈[t0,+∞)
max

{
1, bi∗i∗ (t)

}
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×
[ n∑

j=1,j �=i∗

ai∗j(t)
ai∗i∗ (t)bi∗j(t)

+
m∑

j=1

βi∗j(t)
ai∗i∗ (t)

]}
ε

< 0,

which is absurd and proves (3.3). Therefore, the zero equilibrium point is stable.
Next, we just need to prove that u = maxi∈Q lim supt→+∞ xi(t) = 0. From the fluctuation

lemma [28, Lemma A.1], one can pick a sequence {tk}k≥1 and i∗ ∈ Q such that

tk → +∞, xi∗ (tk) → u, x′
i∗ (tk) → 0 as k → +∞.

Moreover, from the boundedness of the coefficient and delay functions in (1.3), we can
suppose that, for j ∈ I ,

lim
k→+∞

ai∗j(tk) = a∗
i∗j ∈

[
a–

i∗j, a+
i∗j

]
, lim

k→+∞
bi∗j(tk) = b∗

i∗j ∈
[
b–

i∗j, b+
i∗j

]
,

lim
k→+∞

βi∗j(tk) = β∗
i∗j ∈

[
β–

i∗j,β
+
i∗j

]
,

lim
k→+∞

γi∗j(tk) = γ ∗
i∗j ∈

[
γ –

i∗j,γ
+
i∗j

]
, lim

k→+∞
τi∗j(tk) = τ ∗

i∗j ∈
[
τ–

i∗j, τ
+
i∗j

]
,

lim
k→+∞

σi∗j(tk) = σ ∗
i∗j ∈

[
σ –

i∗j,σ
+
i∗j

]
, lim

k→+∞
γi∗j(tk)xi∗

(
tk – σi∗j(tk)

)
= μ∗

i∗j ∈ [0, u],

lim
k→+∞

(
bi∗i∗ (tk) + 1

)
( n∑

j=1,j �=i∗

ai∗j(tk)
ai∗i∗ (tk)

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)γi∗j(tk)

1
e

)

=
(
b∗

i∗i∗ + 1
)
( n∑

j=1,j �=i∗

a∗
i∗j

a∗
i∗i∗

+
m∑

j=1

β∗
i∗j

a∗
i∗i∗γ

∗
i∗j

1
e

)

≤ lim sup
t→+∞

(
bi∗i∗ (t) + 1

)
( n∑

j=1,j �=i∗

ai∗j(t)
ai∗i∗ (t)

+
m∑

j=1

βi∗j(t)
ai∗i∗ (t)γi∗j(t)

1
e

)
< 1,

(3.6)

and

lim
k→+∞

max
{

1, bi∗i∗ (tk)
}
( n∑

j=1,j �=i∗

ai∗j(tk)
ai∗i∗ (tk)bi∗j(tk)

e +
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)γi∗j(tk)

)

= max
{

1, b∗
i∗i∗

}
( n∑

j=1,j �=i∗

a∗
i∗j

a∗
i∗i∗b∗

i∗j
e +

m∑

j=1

β∗
i∗j

a∗
i∗i∗γ

∗
i∗j

)

≤ lim sup
t→+∞

max
{

1, bi∗i∗ (t)
}
( n∑

j=1,j �=i∗

ai∗j(t)
ai∗i∗ (t)bi∗j(t)

e +
m∑

j=1

βi∗j(t)
ai∗i∗ (t)γi∗j(t)

)
< 1. (3.7)

Furthermore, from (1.3), (2.2), (2.4), we get

x′
i∗ (tk) = –

ai∗i∗ (tk)xi∗ (tk)
bi∗i∗ (tk) + xi∗ (tk)

+
n∑

j=1,j �=i∗

ai∗j(tk)xj(tk)
bi∗j(tk) + xj(tk)

+
m∑

j=1

βi∗j(tk)xi∗
(
tk – σi∗j(tk)

)
e–γi∗ j(tk )xi∗ (tk –σi∗ j(tk ))
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+
m∑

j=1

βi∗j(tk)
∫ tk –τi∗ j(tk )

tk –σi∗ j(tk )
x′

i∗ (s) dse–γi∗ j(tk )xi∗ (tk –σi∗ j(tk ))

≤ ai∗i∗ (tk)

{
–

xi∗ (tk)
bi∗i∗ (tk) + xi∗ (tk)

+
n∑

j=1,j �=i∗

ai∗j(tk)xj(tk)
ai∗i∗ (tk)[bi∗j(tk) + xj(tk)]

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)γi∗j(tk)

γi∗j(tk)xi∗
(
tk – σi∗j(tk)

)
e–γi∗ j(tk )xi∗ (tk–σi∗ j(tk ))

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)

∫ tk –τi∗ j(tk )

tk –σi∗ j(tk )

[ n∑

j=1,j �=i∗
ai∗j(s) +

m∑

j=1

βi∗j(s)

]
yi∗ (tk) ds

}

≤ ai∗i∗ (tk)

{
–

xi∗ (tk)
bi∗i∗ (tk) + xi∗ (tk)

+
n∑

j=1,j �=i∗

ai∗j(tk)xj(tk)
ai∗i∗ (tk)[bi∗j(tk) + xj(tk)]

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)γi∗j(tk)

γi∗j(tk)xi∗
(
tk – σi∗j(tk)

)
e–γi∗ j(tk )xi∗ (tk–σi∗ j(tk ))

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)

(
σi∗j(tk) – τi∗j(tk)

)

× e
∫ tk

t0 [
∑n

j=1,j �=i∗ ai∗ j(v)+
∑m

j=1 βi∗ j(v)] dv
( n∑

j=1,j �=i∗
a+

i∗j +
m∑

j=1

β+
i∗j

)
max

{
1,‖ϕ‖}

}

and

1
ai∗i∗ (tk)

x′
i∗ (tk)

≤ –
xi∗ (tk)

bi∗i∗ (tk) + xi∗ (tk)
+

n∑

j=1,j �=i∗

ai∗j(tk)xj(tk)
ai∗i∗ (tk)[bi∗j(tk) + xj(tk)]

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)γi∗j(tk)

γi∗j(tk)xi∗
(
tk – σi∗j(tk)

)
e–γi∗ j(tk )xi∗ (tk–σi∗ j(tk ))

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)

(
σi∗j(tk) – τi∗j(tk)

)

× e
∫ tk

t0 [
∑n

j=1,j �=i∗ ai∗ j(v)+
∑m

j=1 βi∗ j(v)] dv
( n∑

j=1,j �=i∗
a+

i∗j +
m∑

j=1

β+
i∗j

)
max

{
1,‖ϕ‖}, (3.8)

where tk > 2τ + t0. If u ≥ 1, from (2.2), (3.1), (3.6), (3.8) and the facts that u
b∗

ii+u ≥ 1
b∗

ii+1 and
supu≥0 ue–u = 1

e , letting k → +∞ leads to

0 ≤ –
1

b∗
i∗i∗ + 1

+
n∑

j=1,j �=i∗

a∗
i∗ju

a∗
i∗i∗ (b∗

i∗j + u)
+

m∑

j=1

β∗
i∗j

a∗
i∗i∗γ

∗
i∗j

1
e

<
1

b∗
i∗i∗ + 1

[
–1 +

(
b∗

i∗i∗ + 1
)
( n∑

j=1,j �=i∗

a∗
i∗j

a∗
i∗i∗

+
m∑

j=1

β∗
i∗j

a∗
i∗i∗γ

∗
i∗j

1
e

)]
< 0,

which is a contradiction and we have the result that 0 ≤ u < 1.
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If 0 < u < 1, from (2.2), (3.1), (3.5), (3.7), (3.8) and the fact that

xe–x is monotonously increasing on [0, 1],

we have

1
ai∗i∗ (tk)

x′
i∗ (tk)

≤ 1
max{1, bi∗i∗ (tk)}

{
–xi∗ (tk)e–xi∗ (tk ) + max

{
1, bi∗i∗ (tk)

}
[ n∑

j=1,j �=i∗

ai∗j(tk)xj(tk)
ai∗i∗ (tk)bi∗j(tk)

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)γi∗j(tk)

γi∗j(tk)xi∗
(
tk – σi∗j(tk)

)
e–γi∗ j(tk )xi∗ (tk–σi∗ j(tk ))

+
m∑

j=1

βi∗j(tk)
ai∗i∗ (tk)

(
σi∗j(tk) – τi∗j(tk)

)
e
∫ tk

t0 [
∑n

j=1,j �=i∗ ai∗ j(v)+
∑m

j=1 βi∗ j(v)] dv

×
( n∑

j=1,j �=i∗
a+

i∗j +
m∑

j=1

β+
i∗j

)
max

{
1,‖ϕ‖}

]}
, where tk > 2τ + t0,

and then

0 ≤ –ue–u + max
{

1, b∗
i∗i∗

}
( n∑

j=1,j �=i∗

a∗
i∗j

a∗
i∗i∗b∗

i∗j
u +

m∑

j=1

β∗
i∗j

a∗
i∗i∗γ

∗
i∗j

μ∗
i∗je

–μ∗
i∗ j

)

<

[
–1 + max

{
1, b∗

i∗i∗
}
( n∑

j=1,j �=i∗

a∗
i∗j

a∗
i∗i∗b∗

i∗j
e +

m∑

j=1

β∗
i∗j

a∗
i∗i∗γ

∗
i∗j

)]
ue–u

< 0,

which is absurd and proves that u = 0. The proof is complete. �

Remark 3.1 Obviously, for the scalar equation (1.2), all the results of [25, 26] are special
cases in Theorem 3.1 because the adopted assumptions are weaker.

4 A numerical example
This section presents a numerical example to illustrate the applicability of the analytical
results derived in this article.

Example 4.1 Consider the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = – (2+cos t)x1(t)

3+x1(t) +
1

10 (1+cos t)x2(t)
2+x2(t)

+ 1
60 (1 + sin2 t)x1(t – 2e| arctan t|)e–(1+ 100

1+t2 )x1(t–2e| arctan t|–100e–1.5t )

+ 1
80 (1 + sin2 2t)x1(t – 2e| arctan 2t|)e–(1+ 200

1+t2 )x1(t–2e| arctan 2t|–150e–1.5t ),

x′
2(t) = – (2+sin t)x2(t)

4+x2(t) +
1

20 (1+cos 2t)x1(t)
2+x1(t)

+ 1
130 (1 + cos2 t)x2(t – 2e| arctan 4t|)e–(1+ 100

1+t2 )x2(t–2e| arctan 4t|–100e–1.4t )

+ 1
150 (1 + cos4 2t)x2(t – 2e| arctan 4t|)e–(1+ 200

1+t2 )x2(t–2e| arctan 4t|–145e–1.45t ).

(4.1)
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Figure 1 Numerical solutions x(t) on system (4.1).
Numerical solutions x(t) to Example 4.1 with initial
values: (sin t + 1, – cos t – 3, cos t, sin t),
(2 cos t + 2, 3 sin t – 1, –2 sin t, 3 cos t), (–3 sin t – 2, –4
sin t + 3, –3 cos t, –4 cos t).

Obviously, it is elementary to check that the assumptions (2.2) and (3.1) are satis-
fied in (4.1). Therefore, by Theorem 3.1, we find that (0, 0) is a globally asymptoti-
cally stable equilibrium point on C0

+ = {ϕ ∈ C([–(2e π
2 + 150), 0], [0, +∞)) × C([–(2e π

2 +
145), 0], [0, +∞)) and ϕi(0) > 0, i = 1, 2}. Figure 1 reveals the above consequences through
a numerical solution of different initial values.

Remark 4.1 It should be pointed out that the global asymptotic stability on the patch struc-
ture Nicholson’s blowflies systems with nonlinear density-dependent mortality terms and
multiple pairs of time-varying delays has not been touched in the previous literature. As
in [16–26] and [29–74], the authors still do not make a point of the global asymptotic sta-
bility on the Nicholson’s blowflies systems involving multiple pairs of time-varying delays,
and we also mention that none of the consequences in [16–26] and [29–97] can obtain the
convergence of the zero equilibrium point in (4.1).

5 Conclusions
In the present manuscript, we studied nonlinear density-dependent mortality Nichol-
son’s blowflies systems with patch structure, in which the delays are time-varying and
come in multiple pairs. Here, we develop a method based on differential inequality tech-
niques combining the application of the fluctuation lemma to obtain some sufficient con-
ditions for the global asymptotic stability of the given system. The derived results of this
manuscript complement some earlier publications to some extent. To the best of our
knowledge, it is the first time one deals with this aspect. In addition, the method used in
this paper provides a possible method for studying the global asymptotic stability of other
patch structure population dynamic models with multiple pairs of different time-varying
delays.
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