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Abstract
This research work is related to studying a class of special type delay implicit fractional
order differential equations under anti-periodic boundary conditions. With the help of
classical fixed point theory due to Schauder and Banach, we derive some results
about the existence of at least one solution. Further, we also study some results
including Hyers–Ulam, generalized Hyers–Ulam, Hyers–Ulam Rassias, and generalized
Hyers–Ulam–Rassias stability. We provide some test problems for illustrating our
analysis.
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1 Introduction
Differential equations have numerous of applications in many applied fields of sciences.
Due to these applications, the class of differential equations has remained an interesting
area of research. The fractional order derivative is a generalization of the classical deriva-
tive, which has been proved to be a strong tool for modeling of many physical, biological,
and evolutionary problems. In the recent times this has been the hottest and most interest-
ing area of research in mathematics as well as in other scientific and engineering courses.
For some historical and recent work, we refer the readers to [1–9]. A comprehensive study
in the form of a book has been given by Podlubny [10].

In previous years, the study of nonlinear differential and integral equations has received
much attention from mathematicians due to a wide range of their applications. Since using
integer order differential operators for modeling various dynamical systems, the heredi-
tary process and memory description cannot be well explained in many situations. There-
fore, researchers are applying the fractional differential operators to describe memory and
hereditary processes in a more accurate way. This fact motivated researchers to take inter-
est in fractional order differential equations. Various aspects of fractional calculus, such
as qualitative theory, stability analysis, optimization, and numerical analysis, have been
investigated. In this regard a lot of research work can be found in the literature about
existence theory. We refer the readers to [11–14]. On the other hand, the area devoted
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to establishing a procedure for numerical solutions has been investigated very well. See
[15–18] and the references therein.

It is necessary for numerical procedure to be stable to produce good results, which is
highly acceptable in applications. For this purpose stability analysis is used. This is an
important aspect of qualitative analysis. Various kinds of stability, including exponential,
Mittag-Leffler, and Lyapunov stability, have been evaluated for a number of problems.
In the last few years the mentioned stabilities have been upgraded for linear and non-
linear fractional order differential equations and their systems (for details, see [19–21]).
Establishing these stabilities for nonlinear systems has merits and de-merits in construc-
tions. Some of them need a pre-defined Lyapunov function, which often is very difficult
and time consuming to construct on trail basis. On the other hand, the exponential and
Mittag-Leffler stability involving exponential functions often create difficulties in treat-
ing during numerical analysis of problems. In 1940–41, Ulam and Hyers introduced the
concept of Hyers–Ulam stability. This concept of stability was initially used for functional
equations; for details, we refer to [22, 23]. Onward the said stability was further modified
to a more general form by other researchers for functional equations, ordinary differential
equations. Some very fruitful results have been formed in this regard, which can be traced
in [24–26] and the references therein. In the last two decades the said stability theory has
been considered very well for fractional order differential equations and their systems, see
[27, 28].

The delay differential equations constitute an important class of differential equations.
Such equations emphasize the waste analysis of full nonlinear equations or systems in bi-
ology and physics, as well as in other applied fields. Among delay differential equations,
the pantograph type delay differential equation is a prominent type. Such type of delay dif-
ferential equations has proportional delay terms. Such type of delay differential equations
has applications in electro-dynamic, quantum mechanics, etc. [29]. Therefore, keeping
in mind the applications, researchers are devoted to studying different aspects like exis-
tence theory and numerical analysis of the mentioned class of differential equations. See
for detail [30]. The authors [31] in 2013 studied the following pantograph fractional order
differential equation with t ∈ [0, T]:

C
0 Dα

t z(t) = f
(
t, z(t), z(λt)

)
,

z(0) = z0, z0 ∈ R,

where 0 < α ≤ 1, 0 < λ < 1, and f : [0, T] × R2 → R. They developed the existence theory
for the aforesaid equation by using fixed point theory. Very recently the authors in [32]
established qualitative theory for a coupled system of delay fractional order differential
equations by using hybrid fixed point theory.

Motivated by the above-mentioned work, in this research article we consider the follow-
ing class of pantograph implicit fractional order differential equations under anti-periodic
boundary conditions:

⎧
⎨

⎩

C
0 Dα

t z(t) = f (t, z(t), z(λt), C
0 Dα

t z(t)), t ∈ [0, T], 2 < α ≤ 3,

z(0) = –z(T), C
0 Dp

t z(0) = –C
0 Dp

t z(T), C
0 Dq

t z(0) = –C
0 Dq

t z(T),
(1)
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where 0 < λ < 1, 0 < p < 1, 1 < q < 2, and f : [0, T] × R3 → R is a continuous function, C
0 Dα

t

stands for a Caputo derivative of order 2 < α ≤ 3. We investigate qualitative theory as well
as different kinds of stability including Hyers–Ulam stability, generalized Hyers–Ulam sta-
bility, Hyers–Ulam–Rassias stability, and generalized Hyers–Ulam–Rassias stability for
the considered problem. For qualitative theory we utilize the usual fixed point theorem
due to Schauder and Banach, while for stability theory nonlinear functional analysis is
used. Finally, this work is strengthened by providing examples and short conclusion.

2 Preliminaries
The space M = C([0, T]) is a Banach space with respect to the norm defined by

‖z‖M = max
t∈[0,T]

{∣∣z(t)
∣
∣ : t ∈ [0, T]

}
.

Definition 1 ([33]) Integral of fractional order for the function z ∈ L1([0, T], R+) of order
α ∈ R+ is recalled as

0Iα
t z(t) =

∫ t

0

(t – s)α–1

Γ (α)
z(s) ds, (2)

such that the integral on right-hand sides is convergent.

Definition 2 ([33]) Caputo fractional order derivative of a function z on interval [0, T],
can be defined as

C
0 Dα

t z(t) =
1

Γ (n – α)

∫ t

0
(t – s)n–α–1z(n)(s) ds, (3)

where n = [α] + 1.

Lemma 1 ([34]) If α > 0, the given result holds

0It
α
(C

0 Dα
t z(t)

)
= z(t) –

n–1∑

i=0

citi, where n = [α] + 1, ci ∈ R. (4)

Definition 3 ([35]) Problem (1) is Hyers–Ulam stable if there exists a real number Cf > 0
such that, for ε > 0 and for any solution z̄ ∈M of the inequality

∣∣C
0 Dα

t z̄(t) – f
(
t, z̄(t), z̄(λt), C

0 Dα
t z̄(t)

)∣∣ ≤ ε, ∀t ∈ [0, T], (5)

there is the unique solution z ∈M of problem (1) such that

∣∣z̄(t) – z(t)
∣∣ ≤ Cf ε, ∀t ∈ [0, T].

Definition 4 ([35]) Problem (1) is generalized Hyers–Ulam stable if there exists ζ ∈
C(R+, R+), ζ (0) = 0 such that, for any solution z̄ ∈ M of the inequality (5), there is the
unique solution z ∈M of problem (1) such that

∣
∣z̄(t) – z(t)

∣
∣ ≤ ζ (ε), ∀t ∈ [0, T].
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Definition 5 ([35]) Problem (1) is Hyers–Ulam–Rassias stable with respect to ξ ∈
C([0, T], R+) if there exists a real number Cf > 0 such that, for ε > 0 and for any solution
z ∈M of the inequality

∣∣C
0 Dα

t z̄(t) – f
(
t, z̄(t), z̄(λt), C

0 Dα
t z̄(t)

)∣∣ ≤ ξ (t)ε, ∀t ∈ [0, T], (6)

there exists the unique solution z ∈M of problem (1) such that

∣
∣z̄(t) – z(t)

∣
∣ ≤ Cf εξ (t), ∀t ∈ [0, T]. (7)

Definition 6 ([35]) Problem (1) will be generalized Hyers–Ulam–Rassias stable with re-
spect to ξ ∈ M if there is Cf > 0 such that, for any solution z̄ ∈ M of the inequality (6),
there exists the unique solution z ∈M of problem (1) such that

∣∣z̄(t) – z(t)
∣∣ ≤ Cf ξ (t), ∀t ∈ [0, T]. (8)

Remark 1 A function z̄ ∈M is a solution of (5) if there is a function ϑ(t) ∈M (dependent
on z̄) such that

(i) |ϑ(t)| ≤ ε ∀t ∈ [0, T];
(ii) C

0 Dα
t z̄(t) = f (t, z̄(t), z̄(λt), C

0 Dα
t z̄(t)) + ϑ(t), ∀t ∈ [0, T].

Remark 2 A function z̄ ∈ M is a solution of (6) if there is a function ϑ(t) ∈ C([0, T], R)
(dependent on z̄) such that

(i) |ϑ(t)| ≤ εξ (t) ∀t ∈ [0, T];
(ii) C

0 Dα
t z̄(t) = f (t, z̄(t), z̄(λt), C

0 Dα
t z̄(t)) + ϑ(t), ∀t ∈ [0, T].

3 Existence results
Theorem 1 Let y ∈ C([0, T], R), then the equivalent integral equation of the following prob-
lem

⎧
⎨

⎩

C
0 Dα

t z(t) = y(t), for t ∈ [0, T], 2 < α ≤ 3,

z(0) = –z(T), C
0 Dp

t z(0) = –C
0 Dp

t z(T), C
0 Dq

t z(0) = –c
0Dq

t z(T)
(9)

is given by

z(t) =
∫ T

0
W(t, s)y(s) ds, (10)

while the Green’s function W(t, s) is expressed as

W(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(t–s)α–1– 1
2 (T–s)α–1

Γ (α) + Γ (2–p)(T–2t)(T–s)α–p–1

2Γ (α–p)T1–p

– [pT2–4Tt+2(2–p)t2Γ (3–q)(T–s)α–q–1]
4(2–p)Γ (α–p)T2–q , 0 ≤ s ≤ t ≤ T ,

(T–s)α–1

2Γ (α) + Γ (2–p)(T–2t)(T–s)α–p–1

2Γ (α–p)T1–p

– [pT2–4Tt+2(2–p)t2Γ (3–q)(T–s)α–q–1]
4(2–p)Γ (α–p)T2–q , 0 ≤ t ≤ s ≤ T .

(11)
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Proof Let z be a solution of (9), then by Lemma 1 there exist some real constants c0, c1, c2

such that

z(t) = 0Iα
t y(t) – c0 – c1t – c2t2 =

1
Γ (α)

∫ t

0
(t – s)α–1y(s) – c0 – c1t – c2t2. (12)

Using the results C
0 Dp

t b = 0 (b is constant), C
0 Dp

t t = t1–p

Γ (2–p) , C
0 Dp

t t2 = 2t2–p

Γ (3–p) , and C
0 Dp

t 0Iα
t y(t) =

0Iα–p
t y(t), we get

C
0 Dp

t z(t) =
1

Γ (α – p)

∫ t

0
(t – s)α–p–1y(s) ds – c1

t1–p

Γ (2 – p)
– c2

2t2–p

Γ (3 – p)
.

In view of C
0 Dq

t t = 0(1 < q < 2) and C
0 Dq

t t2 = 2t2–q

Γ (3–q) , we get

C
0 Dq

t z(t) =
1

Γ (α – q)

∫ t

0
(t – s)α–q–1y(s) ds – c2

2t2–q

Γ (3 – q)
.

Applying the boundary conditions z(0) = –z(T), C
0 Dp

t z(0) = –C
0 Dp

t z(T), C
0 Dq

t z(0) =
–C

0 Dq
t z(T), we find that

c0 =
1

2Γ (α)

∫ T

0
(T – s)α–1y(s) ds –

Γ (2 – p)Tp

2Γ (α – p)

∫ T

0
(T – s)α–p–1y(s) ds

+
pΓ (3 – q)Tq

4(2 – p)Γ (α – q)

∫ T

0
(T – s)α–q–1y(s) ds,

c1 =
Γ (2 – p)

Γ (α – p)T1–p

∫ T

0
(T – s)α–p–1y(s) ds

–
Γ (3 – q)

(2 – p)Γ (α – q)T1–q

∫ T

0
(T – s)α–q–1y(s) ds,

c2 =
Γ (3 – q)

2Γ (α – q)T2–q

∫ T

0
(T – s)α–q–1y(s) ds.

Substituting the values of c0, c1, and c2 in (12), one gets the following result:

z(t) =
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds –

1
2Γ (α)

∫ T

0
(T – s)α–1y(s) ds

+
Γ (2 – p)(T – 2t)
2Γ (α – p)T1–p

∫ T

0
(T – s)α–p–1y(s) ds

–
(pT2 – 4Tt + 2(2 – p)t2)Γ (3 – q)

4(2 – p)Γ (α – q)T2–q

∫ T

0
(T – s)α–q–1y(s) ds

=
∫ T

0
W(t, s)y(s) ds. �

Corollary 1 Problem (1) has the following solution:

z(t) =
∫ T

0
W(t, s)f

(
s, z(s), z(λs), C

0 Dα
t z(s)

)
ds.

Lemma 2 The function W(t, s) in (11) obeys the given relations:
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(P1) W(t, s) is continuous over [0, T];
(P2) maxt∈[0,T]

∫ T
0 W(t, s) ds ≤ Tα

Γ (α+1) + Γ (2–p)Tα

2Γ (α–p+1) + (p+2)Γ (3–q)Tα

2(2–p)Γ (α–q+1) .
For convenience, we use the notion

	 =
Tα

Γ (α + 1)
+

Γ (2 – p)Tα

2Γ (α – p + 1)
+

(p + 2)Γ (3 – q)Tα

2(2 – p)Γ (α – q + 1)
. (13)

Proof Proof of (P1) is obvious. To derive (P2), we have

max
t∈[0,T]

∫ T

0
W(t, s) ds = max

t∈[0,T]

(
1

Γ (α)

∫ t

0
(t – s)α–1 ds –

1
2Γ (α)

∫ T

0
(T – s)α–1 ds

+
Γ (2 – p)(T – 2t)
2Γ (α – p)T1–p

∫ T

0
(T – s)α–p–1 ds

–
[pT2 – 4Tt + 2(2 – p)t2]Γ (3 – q)

4(2 – p)Γ (α – q)T2–q

∫ T

0
(T – s)α–q–1 ds

)

≤ max
t∈[0,T]

(
Tα

Γ (α + 1)
+

Γ (2 – p)Tα–p+1

2Γ (α – p + 1)T1–p

–
[pT2 – 4Tt + 2(2 – p)t2]Γ (3 – q)Tα–q

4(2 – p)Γ (α – q + 1)T2–q

)

≤ Tα

Γ (α + 1)
+

Γ (2 – p)Tα

2Γ (α – p + 1)
+

(p + 2)Γ (3 – q)Tα

2(2 – p)Γ (α – q + 1)
.

Hence we have

max
t∈[0,T]

∫ T

0
W(t, s) ds ≤ Tα

Γ (α + 1)
+

Γ (2 – p)Tα

2Γ (α – p + 1)
+

(p + 2)Γ (3 – q)Tα

2(2 – p)Γ (α – q + 1)
. �

To go ahead, we need the following conditions to hold:
(F1) For t ∈ [0, T], we have three constants 0 < Kf < 1 and Lf > 0, with

∣∣f (t, u, v, w) – f (t, ū, v̄, w̄)
∣∣ ≤ Lf

(|u – ū| + |v – v̄|) + Kf |w – w̄|

for u, v, w ∈M.
(F2) For t ∈ [0, T], there exist θ0, θ1, θ2 ∈M such that

∣∣f
(
t, u(t), v(t), w(t)

)∣∣ ≤ θ0(t) + θ1(t)
[∣∣u(t)

∣∣ +
∣∣v(t)

∣∣]

+ θ2(t)
∣∣w(t)

∣∣ for u, v, w ∈M,

with θ∗
0 = supt∈[0,T] θ0(t), θ∗

1 = supt∈[0,T] θ1(t), θ∗
2 = supt∈[0,T] θ2(t) < 1.

We define an operator N : M→M as

N (z)(t) =
∫ T

0
W(t, s)βz(s) ds, (14)

where βz(t) ∈ C([0, T], R) such that βz(t) = f (t, z(t), z(λt), C
0 Dα

t z(t)).

Theorem 2 The operator N : M→M defined in (14) is completely continuous.
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Proof The continuity of f ,W(t, s) implies the continuity of operator N . Let B ⊂ M be a
bounded set such that B = {z ∈M : ‖z‖M ≤ r}. Let z ∈ B. Then

∣
∣N z(t)

∣
∣ =

∣∣
∣∣

∫ T

0
W(t, s)βz(s) ds

∣∣
∣∣

≤
∫ T

0

∣∣W(t, s)
∣∣∣∣βz(s)

∣∣ds. (15)

By assumption (F2), we have

∣∣βz(t)
∣∣ =

∣∣f (t, z(t), z(λt),βz(t))
∣∣

≤ θ0(t) + θ1(t)
(∣∣z(t)

∣
∣ +

∣
∣z(λt)

∣
∣) + θ2

∣
∣βz(t)

∣
∣.

Taking maximum of both sides and simplifying, we have

‖βz‖M ≤ θ∗
0 + 2θ∗

1 ‖z‖M
1 – θ∗

2

≤ θ∗
0 + 2θ∗

1 r
1 – θ∗

2
= μ. (16)

Using property (P2) of the Green’s function W(t, s) given in Lemma 2 and inequality (16)
in inequality (15), we obtain

‖N z‖M ≤ μ	 ,

which shows that N is uniformly bounded. To derive equicontinuity of N , let t1, t2 ∈ [0, T]
such that t1 ≤ t2, then

∣
∣N z(t2) – N z(t1)

∣
∣ ≤ 1

Γ (α)

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]∣∣f

(
s, z(s), z(λs),βz(s)

)∣∣ds

+
∫ t2

t1

(t2 – s)α–1

Γ (α)
∣
∣f

(
s, z(s), z(λs),βz(s)

)∣∣ds

+
Γ (2 – p)(t2 – t1)

T1–pΓ (α – p)

∫ T

0
(T – s)α–p–1∣∣f

(
s, z(s), z(λs),βz(s)

)∣∣ds

+
Γ (3 – q)(t2 – t1)Tq–1

(2 – p)Γ (α – q)

∫ T

0
(T – s)α–q–1∣∣f

(
s, z(s), z(λs),βz(s)

)∣∣ds

+
Γ (3 – q)(t2 – t1)2

2Γ (α – q)T2–q

∫ T

0
(T – s)α–q–1∣∣f

(
s, z(s), z(λs),βz(s)

)∣∣ds

≤ μ(2(t2 – t1)α + (tα
2 – tα

1 ))
Γ (α + 1)

+
μΓ (2 – p)(t2 – t1)Tα–1

Γ (α – p + 1)

+
μΓ (3 – q)(t2 – t1)Tα–1

(2 – p)Γ (α – q + 1)
+

μΓ (3 – q)(t2 – t1)2Tα–2

2Γ (α – q + 1)
. (17)

From (17), we see that as t1 → t2, the right-hand side tends to zero. Therefore

∣∣N z(t2) – N z(t1)
∣∣ → 0, as t1 → t2.
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Since N is uniformly bounded, so we can also get that

∥∥N z(t2) – N z(t1)
∥∥
M → 0, as t1 → t2,

which confirms the equicontinuity of the operator N . Analogously N (B) ⊂ B. Thus, by
Arzelá–Ascoli theorem, N is completely continuous. �

Theorem 3 Under the complete continuity of operator N and hypotheses (F1), (F2), prob-
lem (1) has at least one solution.

Proof We define a set E as

E =
{

z ∈M : z = ρN (z),ρ ∈ (0, 1)
}

.

The operator N : Ē →M as defined in (14) is completely continuous by Theorem 2. Take
z ∈ E . Then, by definition of the set E and (F2), we have

∣∣z(t)
∣∣ =

∣∣ρN (z)(t)
∣∣

≤ ρ max
t∈[0,T]

∫ T

0

∣∣W(t, s)
∣∣∣∣f

(
s, z(s), z(λs),βz(s)

)∣∣ds

≤ max
t∈[0,T]

∫ T

0

∣
∣W(t, s)

∣
∣θ

∗
0 + 2θ∗

1 r
1 – θ∗

2
ds,

from which we have

‖z‖M ≤ 	μ. (18)

Hence the set E is bounded. So the operator N has at least one solution. Consequently,
problem (1) maintains at least one solution. �

Theorem 4 If hypothesis (F1) and the condition Lf
1–Kf

	 < 1 hold, where 	 is given in (13),
then problem (1) has the unique solution in M.

Proof Here we shall use the Banach theorem to prove the required result. Let z, z̄ ∈ M.
Then for t ∈ [0, T] consider

∣∣N z(t) – N z̄(t)
∣∣ =

∣
∣∣
∣

∫ T

0
W(t, s)

(
βz(s) – βz̄(s)

)
ds

∣
∣∣
∣

≤
∫ T

0

∣
∣W(t, s)

∣
∣
∣
∣βz(s) – βz̄(s)

∣
∣ds, (19)

where

βz(t) = f
(
t, z(t), z(λt),βz(t)

)
,

βz̄(t) = f
(
t, z̄(t), z̄(λt),βz̄(t)

)
.
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By (F1), we get

∣
∣βz(t) – βz̄(t)

∣
∣ =

∣
∣f

(
t, z(t), z(λt),βz(t)

)
– f

(
t, z̄(t), z̄(λt),βz̄(t)

)∣∣

≤ Lf
(∣∣z(t) – z̄(t)

∣∣ +
∣∣z(λt) – z̄(λt)

∣∣) + Kf
∣∣βz(t) – βz̄(t)

∣∣

≤ 2Lf

(1 – Kf )
∣∣z(t) – z̄(t)

∣∣,

which implies

‖βz – βz̄‖ ≤ 2Lf

(1 – Kf )
‖z – z̄‖.

Using this result and property (P2), from (19), we have

‖N z – N z̄‖M ≤ max
t∈[0,T]

∫ T

0

∣∣W(t, s)
∣∣ 2Lf

1 – Kf
‖z – z̄‖M ds

≤ 2Lf 	

1 – Kf
‖z – z̄‖M.

Since 2Lf 	
1–Kf

< 1, the operator N is contraction, and thus by the Banach contraction theo-
rem, problem (1) has the unique solution. �

4 Stability results
The present part of our article addresses stability results for the proposed problem.

Lemma 3 For the given problem of pantograph implicit fractional order differential equa-
tions with t ∈ [0, T]

⎧
⎨

⎩

C
0 Dα

t z̄(t) = f (t, z̄(t), z̄(λt), C
0 Dα

t z̄(t)) + ϑ(t), 2 < α ≤ 3,

z̄(0) = –z̄(T), C
0 Dr

t z̄(0) = –C
0 Dr

t z̄(T), C
0 Dq

t z̄(0) = –C
0 Dq

t z̄(T),
(20)

we have the following inequality:

∣∣
∣∣z̄(t) –

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

∣∣
∣∣ ≤ 	ε, (21)

where ε > 0.

Proof Thanks to Corollary 1 the solution of perturbed problem (20) is given by

z̄(t) =
∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), cDα z̄(s)

)
ds +

∫ T

0
W(t, s)ϑ(s) ds,

from which we have, by using (i) of Remark 1 and property (P2) of W ,

∣
∣∣
∣z̄(t) –

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), cDα z̄(s)

)
ds

∣
∣∣
∣ ≤

∫ T

0

∣∣W(t, s)
∣∣∣∣ϑ(s)

∣∣ds

≤ 	ε, t ∈ [0, T]. �
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Theorem 5 If the conditions Kf + 2Lf 	 < 1 and Kf < 1 hold, then the solution of (1) is
Hyers–Ulam stable and generalized Hyers–Ulam stable.

Proof Let z ∈ M be the unique solution of problem (1) and z̄ ∈ M be any solution of
inequality (21). Then consider

‖z̄ – z‖M = max
t∈[0,T]

∣∣
∣∣z̄ –

∫ T

0
W(t, s)f

(
s, z(s), z(λs), C

0 Dα
t z(s)

)
ds

∣∣
∣∣

≤ max
t∈[0,T]

∣
∣∣
∣z̄ –

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

∣
∣∣
∣

+ max
t∈[0,T]

∣∣
∣∣

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

–
∫ T

0
W(t, s)f

(
s, z(s), z(λs), C

0 Dα
t z(s)

)
ds

∣∣∣
∣.

By the application of assumption (F1) and Lemma 3, we get

‖z̄ – z‖M ≤ 	ε +
2Lf 	

1 – Kf
‖z̄ – z‖M. (22)

Upon simplification (22) yields

‖z̄ – z‖ ≤ Cf ε; Cf =
	 (1 – Kf )

1 – (Kf + 2Lf 	 )
. (23)

Hence problem (1) is Hyers–Ulam stable. Further, if there exists a nondecreasing function
ζ : (0, 1) → (0,∞) such that ζ (ε) = ε with ζ (0) = 0, then from (22) we have

‖z̄ – z‖ ≤ Cf ζ (ε). (24)

Thus problem (1) is generalized Hyers–Ulam stable. �

Lemma 4 For the given problem (20), the following inequality holds:

∣∣
∣∣z̄(t) –

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

∣∣
∣∣ ≤ 	ξ (t)ε, t ∈ [0, T]. (25)

Proof Thanks to Corollary 1 the solution of the perturbed problem (20) is given by

z̄(t) =
∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds +

∫ T

0
W(t, s)ϑ(s) ds.

Using (i) of Remark 2 and property (P2), we have

∣
∣∣
∣z̄(t) –

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

∣
∣∣
∣ ≤

∫ T

0

∣∣W(t, s)
∣∣∣∣ϑ(s)

∣∣ds

≤ 	ξ (t)ε, t ∈ [0, T]. �
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Theorem 6 If hypothesis (F1) together with the conditions Kf + 2Lf 	 < 1, Kf < 1 holds,
then problem (1) is Hyers–Ulam–Rassias stable.

Proof Let z̄ be any solution of inequality (25) and z ∈M be the unique solution of problem
(1). Then

‖z̄ – z‖M = max
t∈[0,T]

∣
∣∣
∣z̄ –

∫ T

0
W(t, s)f

(
s, z(s), z(λs), C

0 Dα
t z(s)

)
ds

∣
∣∣
∣

≤ max
t∈[0,T]

∣∣
∣∣z̄ –

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

∣∣
∣∣

+ max
t∈[0,T]

∣
∣∣
∣

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

–
∫ T

0
W(t, s)f

(
s, z(s), z(λs), C

0 Dα
t z(s)

)
ds

∣∣
∣∣.

By the application of assumption (F1) and Lemma 4, we get

‖z̄ – z‖M ≤ 	ξ (t)ε +
2Lf 	

1 – Kf
‖z̄ – z‖M. (26)

Upon simplification (26) gives

‖z̄ – z‖M ≤ Cf ξ (t)ε, Cf =
	 (1 – Kf )

1 – (Kf + 2Lf 	 )
. (27)

Thus problem (1) is Hyers–Ulam–Rassias stable. �

Lemma 5 The solution of the perturbed problem given in (20) produces the given relation

∣∣
∣∣z̄(t) –

∫ T

0
W(t, s)f

(
s, z̄(s), z̄(λs), C

0 Dα
t z̄(s)

)
ds

∣∣
∣∣ ≤ 	ξ (t), t ∈ [0, T]. (28)

Proof For the proof, follow Lemma 3. �

Theorem 7 Under hypothesis (F1) and the inequalities Kf + 2Lf 	 < 1, Kf < 1, the solution
of problem (1) is generalized Hyers–Ulam–Rassias stable.

Proof Just like Theorem 6, we have

‖z̄ – z‖M ≤ Cf ξ (t), Cf =
	 (1 – Kf )

1 – (Kf + 2Lf 	 )
. (29)

�

Hence problem (1) is generalized Hyers–Ulam–Rassias stable.

5 Test problems
To test our theoretical results, we present some problems here.
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Problem 1 Consider the following problem of pantograph implicit fractional order dif-
ferential equations with given anti-periodic boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 D

5
2
t z(t) = 1

150 [t cos z(t) – z( 1
7 t) sin(t)] +

C
0 Dt

5
2 z(t)

100+C
0 D

5
2
t z(t)

, t ∈ [0, T] = [0, 1],

z(0) = –z(1), C
0 D

1
2
t z(0) = –C

0 D
1
2
t z(1), C

0 D
3
2
t z(0) = –C

0 D
3
2
t z(1).

(30)

Here,

f
(
t, z(t), z(λt), C

0 Dα
t z(t)

)
=

1
150

[
t cos z(t) – z

(
1
7

t
)

sin(t)
]

+
C
0 D

5
2
t z(t)

100 + C
0 D

5
2
t z(t)

,

with α = 5
2 , p = 1

2 , q = 3
2 , λ = 1

7 , T = 1. The continuity of f is obvious.
By hypothesis (F1), for any z, z̄ ∈ R, we have

∣∣f
(
t, z(t), z(λt), C

0 Dα
t z(t)

)
– f

(
t, z̄(t), z̄(λt), C

0 Dα
t z̄(t)

)∣∣ ≤ 1
150

[∣∣z(t) – z̄(t)
∣∣ +

∣∣z(t) – z̄(t)
∣∣]

+
1

100
∣∣C
0 D

5
2
t z(t) – C

0 D
5
2
t z̄(t)

∣∣

=
1

150
[
2
∣
∣z(t) – z̄(t)

∣
∣]

+
1

100
∣∣C
0 D

5
2
t z(t) – C

0 D
5
2
t z̄(t)

∣∣.

Hence we have Lf = 1
150 , Kf = 1

100 . On computation, we have 	 = 1.26098028. Now, thanks
to Theorem 4, we see that

2Lf 	

1 – Kf
= 1.6982 × 10–2 < 1.

Thus the given problem (1) has at most one solution. Further, on using Theorem 5, we see
that

Kf + 2Lf 	 = 0.0168130 + 0.01 = 0.0268130704 < 1.

Hence the solution is Hyers–Ulam stable. Further, it is also generalized Hyers–Ulam sta-
ble. For Hyers–Ulam–Rassias stability, we apply Theorem 6 by taking a nondecreasing
function ξ (t) = t for t ∈ (0, 1). One has Cf = 	 (1–Kf )

1–(Kf +2Lf 	 ) = 1.2828. Hence we see that, for
the unique solution z̄ ∈M and any solution z ∈M, the following relation holds true:

‖z – z̄‖M ≤ 1.2828εt for all t ∈ [0, 1].

Hence the solution of (1) is Hyers–Ulam–Rassias stable. Consequently, it is obviously gen-
eralized Hyers–Ulam–Rassias stable on using Theorem 7.
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Problem 2 Here we take another problem of pantograph implicit fractional order differ-
ential equations

⎧
⎨

⎩

C
0 Dt

5
2 z(t) = e–π t

10 + e–t

40+t2 (sin(|z(t)|) + z( 1
4 t) + sin(|C0 Dt

5
2 z(t)|)), t ∈ [0, 1],

z(0) = –z(1), C
0 D

1
2
t z(0) = –C

0 D
1
2
t z(1), C

0 D
3
2
t z(0) = –C

0 D
3
2
t z(1).

(31)

Here,

f
(
t, z(t), z(λt), C

0 Dα
t z(t)

)
=

exp(–π t)
10

+
exp(–t)
40 + t2 sin

(∣∣z(t)
∣∣) + z

(
1
4

t
)

+
exp(–t)
40 + t2 sin

(∣∣C
0 Dt

5
2 z(t)

∣
∣),

with α = 5
2 , p = 1

2 , q = 3
2 , λ = 1

4 , T = 1. The continuity of f is obvious.
Now, for any z, z̄ ∈M, and t ∈ [0, 1], we have

∣∣f
(
t, z(t), z(λt), C

0 Dα
t z(t)

)
– f

(
t, z̄(t), z̄(λt), C

0 Dα
t z̄(t)

)∣∣ ≤ 1
40

[
2
∣∣z(t) – z̄(t)

∣∣

+
∣
∣C
0 Dt

5
2 z(t) – C

0 Dt
5
2 z̄(t)

∣
∣].

Hence f satisfies hypothesis (F1) with Lf = Kf = 1
40 . The function f also satisfies hypothesis

(F2) with θ0(t) = exp(–π t)
10 , θ1(t) = θ2(t) = exp(–t)

40+t , where θ∗
0 (t) = 1

10 , θ∗
1 (t) = θ∗

2 (t) = 1
40 . Upon

calculation, we get

	 =
1

Γ ( 5
2 + 1)

+
Γ (2 – 1

2 )
2Γ ( 5

2 – 1
2 + 1)

+
( 1

2 + 2)(Γ (3 – 3
2 ))

2(2 – 1
2 )Γ ( 5

2 – 3
2 + 1)

= 1.26098028.

Thanks to Theorem 3, we see that μ = θ∗
0 	

1–(θ∗
2 +2θ∗

1 	 ) = 0.1383, and therefore the condition
θ∗

2 + 2θ∗
1 	 < 1 holds true. Thus the given problem (2) has at least one solution. Further,

using Theorem 4, we see that

2Lf 	

1 – Kf
= 6.46656 × 10–2 < 1.

So the criteria for unique solution have been followed. Further, by using Theorem 5, we
observe that

Kf + 2Lf 	 = 11.3048 × 10–2 < 1.

Hence the solution is Hyers–Ulam stable. Further, it is also generalized Hyers–Ulam sta-
ble. For Hyers–Ulam–Rassias stability, we use our Theorem 6 by taking a nondecreasing
function ξ (t) = t for t ∈ (0, 1). One has Cf = 	 (1–Kf )

1–(Kf +2Lf 	 ) = 1.38616. Hence we see that, for
any solution z̄ ∈M and the unique solution z ∈M, the following relation holds true:

‖z̄ – z‖M ≤ 1.38616εt for all t ∈ [0, 1].
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Hence the solution of (1) is Hyers–Ulam–Rassias stable. Consequently, it is obviously gen-
eralized Hyers–Ulam–Rassias stable on using Theorem 7.

Problem 3 Consider the third example of pantograph implicit fractional order differential
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 D

7
3
t z(t) = t

50 + (t2+3)
40

√|z(t)| + (t2+3)
40

√
|z( 1

5 t)|
+ (t2+3)

40
C
0 D

7
3
t (z(t)), t ∈ [0, 2],

z(0) = –z(2), C
0 D

1
3
t z(0) = –C

0 D
1
3
t z(2), C

0 D
4
3
t z(0) = –C

0 D
4
3
t z(2).

(32)

Here,

f
(
t, z(t), z(λt), C

0 Dα
t z(t)

)
=

t
50

+
(t2 + 3)

40

√∣
∣z(t)

∣
∣ +

(t2 + 3)
40

√∣∣
∣∣z

(
1
5

t
)∣∣

∣∣

+
(t2 + 3)

40
C
0 D

7
3
t
(
z(t)

)
,

with α = 7
3 , p = 1

3 , q = 4
3 , T = 2. For any z, z̄ ∈ R and t ∈ [0, 2], let us have

∣
∣f

(
t, z(t), z(λt), C

0 Dα
t z(t)

)
– f

(
t, z̄(t), z̄(λt), C

0 Dα
t z̄(t)

)∣∣ ≤ 1
9
[
2
∣
∣z(t) – z̄(t)

∣
∣

+
∣∣C
0 Dt

7
3 z(t) – C

0 Dt
7
3 z̄(t)

∣∣].

Hence f satisfies hypothesis (F1) with Lf = Kf = 1
9 . The function f also satisfies hypothesis

(F2) with θ0(t) = t
50 , θ1(t) = θ2(t) = t2+1

45 , where θ∗
0 (t) = 1

25 , θ∗
1 (t) = θ∗

2 (t) = 1
9 . Upon computa-

tion, we can arrive at θ∗
2 +θ∗

1 	 < 1 and 2Lf
1–Kf

	 < 1. Thus, on using Theorem 4, the required
results are followed. Moreover, it also satisfies the condition of Hyers–Ulam stability and
generalized Hyers–Ulam stability by computing Kf + 2Lf 	 < 1 and using Theorem 5. Tak-
ing a nondecreasing function ξ (t) = 1 + t, problem (3) is Hyers–Ulam–Rassias stable and
hence generalized Hyers–Ulam–Rassias stable upon the application of Theorem 6 and
Theorem 7 respectively.

6 Conclusion
In the present work we have established qualitative analysis of existence results regarding
the solution of nonlinear pantograph implicit fractional order differential equations sub-
ject to anti-periodic boundary conditions. The respective analysis has been carried out via
fixed point theory. Further some adequate results were also developed corresponding to
Hyers–Ulam type stability and its various forms. To testify the established theory, some
test problems were given in the last section. We concluded that nonlinear analysis is a
powerful tool to study applied problems.
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