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Abstract
In this paper, we study the central limit theorem for a perturbed stochastic heat
equation in the whole space Rd , d ≥ 1. This equation is driven by a Gaussian noise,
which is white in time and correlated in space, and the differential operator is a
fractional derivative operator. Burkholder’s inequality plays an important role in the
proof.
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1 Introduction
In this paper, we study the central limit theorem for a fractional stochastic heat equation
in spatial dimension R

d driven by a spatially correlated noise:

⎧
⎨

⎩

∂uε

∂t (t, x) = Dα

δ uε(t, x) + b(uε(t, x)) +
√

εσ (uε(t, x))Ḟ(t, x),

uε(0, x) = 0,
(1)

where ε > 0, (t, x) ∈ [0, T] ×R
d , d ≥ 1, α = (α1, . . . ,αd), δ = (δ1, . . . , δd), and we will assume

that αi ∈ ]0, 2] \ {1} and |δi| ≤ min{αi, 2 – δi}, i = 1, . . . , d, Ḟ is the “formal” derivative of
the Gaussian perturbation and Dα

δ denotes a non-local fractional differential operator on
R

d defined by Dα

δ :=
∑d

i=1 Dαi
δi

. Here, Dαi
δi

denotes the fractional differential derivative with
respect to the ith coordinate defined via its Fourier transform F by

F
(
Dα

δ φ
)
(ξ ) = –|ξ |αi exp

(

–ıδi
π

2
sgn ξ

)

F (φ)(ξ ),

with ı2 + 1 = 0. The noise F(t, x) is a martingale measure in the sense of Walsh [12] and
Dalang [4]. From now on, we shall refer to Eq. (1) as Eqα

δ,ε(d, b,σ ). See Sect. 2 for details.
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As the parameter ε tends to zero, the solutions uε of (1) will tend to the solution of the
deterministic equation defined by

⎧
⎨

⎩

∂u0

∂t (t, x) = Dα

δ u0(t, x) + b(u0(t, x)),

u0(0, x) = 0.
(2)

It is always interesting to investigate deviations of uε from u0, as ε decreases to 0, that
is, the asymptotic behavior of the trajectory

Xε(t, x) :=
1√

ελ(ε)
(
uε – u0)(t, x), (t, x) ∈ [0, T] ×R

d,

where λ(ε) is some deviation scale which strongly influences the asymptotic behavior of
Xε (see Freidlin and Wentzell [8]):

• The case λ(ε) = 1/
√

ε provides some large deviation estimates. El Mellali and Mellouk
[7] proved that the law of the solution uε satisfies a large deviation principle.

• When the deviation scale satisfies

λ(ε) → +∞,
√

ελ(ε) → 0 as ε → 0,

it is the moderate deviations. Li et al. [11] proved that 1√
ελ(ε) (uε – u0) satisfies a

moderate deviation principle by the weak convergence method.
• When the deviation scale satisfies λ(ε) = 1, we are in the domain of the central limit

theorem. In this paper, we prove that the process (uε – u0)/
√

ε converges to a random
field.

The central limit theorem is a traditional topic in the theory of probability and statistics.
Recently, the study of the central limit theorem for stochastic (partial) differential equation
has been carried out, see e.g. [2, 9, 11, 13] etc.

The rest of this paper is organized as follows. In Sect. 2, the precise framework is stated.
In Sect. 3, we state the central limit theorem and prove it by establishing some moment
convergence results of SPDE.

Throughout the paper, Cp is a positive constant depending on the parameter p, and
C, C1, . . . are constants depending on no specific parameter (except T and the Lipschitz
constants), whose value may be different from line to line by convention.

2 Framework
In this section, let us give the framework taken from Boulanba et al. [1], El Mellali and
Mellouk [7].

2.1 The operator Dα

δ

According to [6, 10], Dα
δ can be represented for 1 < α < 2 by

Dα
δ =

∫ +∞

–∞
φ(x + y) – φ(x) – yφ′(x)

|y|1+α

(
κδ

–1(–∞,0)(y) + κδ
+1(0,+∞)(y)

)
dy,

and for 0 < α < 1 by

Dα
δ =

∫ +∞

–∞
φ(x + y) – φ(x)

|y|1+α

(
κδ

–1(–∞,0)(y) + κδ
+1(0,+∞)(y)

)
dy,
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where κδ
– and κδ

+ are two non-negative constants satisfying κδ
– + κδ

+ > 0 and φ is a smooth
function for which the integral exists, and φ′ stands for its derivative.

Let Gα,δ(t, x) denote the fundamental solution of the equation Eqα
δ,1(1, 0, 0), that is, the

unique solution of the Cauchy problem

⎧
⎨

⎩

∂u
∂t (t, x) = Dα

δ u(t, x),

u(0, x) = δ0(x), t > 0, x ∈R,

where δ0 is the Dirac distribution. Using Fourier’s calculus, one gets

Gα,δ(t, x) =
1

2π

∫ ∞

–∞
exp

(

–ızx – t|z|α exp

(

–ıδ
π

2
sgn(z)

))

dz. (3)

Here, α ∈ ]0, 2] and |δ| ≤ min{α, 2 – α}.
For higher dimension d ≥ 1 and any multi index α = (α1, . . . ,αd) and δ = (δ1, . . . , δd), let

Gα,δ(t, x) be the Green function of the deterministic equation Eqα

δ (d, 0, 0). Clearly,

Gα,δ(t, x) =
d∏

i=1

Gαi ,δi (t, xi)

=
1

(2π )d

∫

Rd
exp

(

–ı〈ξ , x〉 – t
d∑

i=1

|ξi|αi exp

(

–ıδi
π

2
sgn(ξi)

))

dξ , (4)

where 〈·, ·〉 stands for the inner product in R
d .

2.2 The driving noise F
Let S(Rd+1) be the space of Schwartz test functions. On a complete probability space
(Ω ,G,P), the noise F = {F(φ),φ ∈ S(Rd+1)} is assumed to be an L2(Ω ,G,P)-valued Gaus-
sian process with mean zero and covariance functional given by

J(ϕ,ψ) := E
[
F(φ)F(ψ)

]
=

∫

R+

ds
∫

Rd

(
φ(s,�) ∗ ψ̃(s,�)

)
(x)Γ (dx) ds, φ,ψ ∈ S

(
R

d+1),

where ψ̃(s, x) := ψ(s, –x) and Γ is a non-negative and non-negative definite tempered mea-
sure, therefore symmetric. The symbol ∗ denotes the convolution product and � stands
for the spatial variable.

Let μ be the spectral measure of Γ , which is a tempered measure, that is, μ = F–1(Γ ),
and this gives

J(φ,ψ) =
∫

R+

ds
∫

Rd
μ(dξ )Fφ(s,�)(ξ )Fψ(s,�)(ξ ), (5)

where z̄ is the complex conjugate of z.
As in Dalang [4], the Gaussian process F can be extended to a worthy martingale mea-

sure, in the sense of Walsh [12],

M :=
{

Mt(A), t ∈R+, A ∈ Bb
(
R

d)},
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where Bb(Rd) denotes the collection of all bounded Borel measurable sets in R
d . Let Gt

be the completion of the σ -field generated by the random variables {F(s, A); 0 ≤ s ≤ t, A ∈
Bb(Rd)}.

Boulanba et al. [1] gave a rigorous meaning to the solution of equation Eqα

δ,ε(d, b,σ ) by
means of a joint measurable and Gt-adapted process {uε(t, x); (t, x) ∈ R+ ×R

d} satisfying,
for each t ≥ 0 and for almost all x ∈R

d , the following evolution equation:

uε(t, x) =
√

ε

∫ t

0

∫

Rd
Gα,δ(t – s, x – y)σ

(
uε(s, y)

)
F( ds dy)

+
∫ t

0
ds

∫

Rd
Gα,δ(t – s, x – y)b

(
uε(s, y)

)
dy. (6)

In order to prove our result, we are going to give another equivalent approach to the so-
lution of Eqα

δ,ε(d, b,σ ), see [5]. To start with, let us denote by H the Hilbert space obtained
by the completion of S(Rd) with the inner product

〈φ,ψ〉H :=
∫

Rd
Γ (dx)(φ ∗ ψ̃)(x)

=
∫

Rd
μ(dξ )Fφ(ξ )Fψ(ξ ), φ,ψ ∈ S

(
R

d).

The norm induced by 〈·, ·〉H is denoted by ‖ · ‖H.
By Walsh’s theory of the martingale measures [12], for t ≥ 0 and h ∈ H, the stochastic

integral

Bt(h) =
∫ t

0

∫

Rd
h(y)F(ds, dy)

is well defined and the process {Bt(h); t ≥ 0, h ∈ H} is a cylindrical Wiener process on H.
Let {ek}k≥1 be a complete orthonormal system of the Hilbert space H, then

{

Bk
t :=

∫ t

0

∫

Rd
ek(y)F(ds, dy); k ≥ 1

}

defines a sequence of independent standard Wiener processes, and we have the following
representation:

Bt :=
∑

k≥1

Bk
t ek . (7)

Let {Ft}t∈[0,T] be the σ -field generated by the random variables {Bk
s ; s ∈ [0, t], k ≥ 1}. We

define the predictable σ -field in Ω × [0, T] generated by the sets {]s, t] × A; A ∈Fs, 0 ≤ s ≤
t ≤ T}. In the following, we can define the stochastic integral with respect to cylindrical
Wiener process {Bt(h)}t≥0 (see e.g. [3] or [5]) of any predictable square-integrable process
with values in H as follows:

∫ t

0

∫

Rd
g · dB :=

∑

k≥1

∫ t

0

〈
g(s), ek

〉

H dBk
s .
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In the sequel, we shall consider the mild solution to equation Eqα

δ,ε(d, b,σ ) given by

uε(t, x) =
√

ε
∑

k≥1

∫ t

0

〈
Gα,δ(t – s, x – ·)σ (

uε(s,�)
)
, ek

〉

H dBk
s

+
∫ t

0

[
Gα,δ(t – s) ∗ b

(
uε(s,�)

)]
(x) ds (8)

for any t ∈ [0, T], x ∈R
d .

2.3 Existence, uniqueness, and Hölder regularity to equation
For a multi-index α = (α1, . . . ,αd) such that αi ∈ ]0, 2] \ {1}, i = 1, . . . , d, and any ξ ∈ R

d ,
let Sα(ξ ) =

∑d
i=1 |ξi|αi . Assume the following assumptions on the functions σ , b and the

measure μ:
(C): The functions σ and b are Lipschitz, that is, there exists some constant L such that,

for all x, y ∈R,

∥
∥σ (x) – σ (y)

∥
∥ ≤ L|x – y|, ∣

∣b(x) – b(y)
∣
∣ ≤ L|x – y|. (9)

(Hα
η ): Let α be as defined above and η ∈ ]0, 1], it holds that

∫

Rd

μ(dξ )
(1 + Sα(ξ ))η

< +∞.

From Boulanba et al. [1], we know the following result.

Proposition 2.1 ([1, Theorem 3.1]) Under assumptions (C) and (Hα
η ), Eq. (8) admits a

unique continuous solution uε , which satisfies

sup
t∈[0,T],x∈Rd

E
[∣
∣uε(t, x)

∣
∣p] < +∞. (10)

2.4 Convergence of solutions
The next result is concerned with the convergence of uε as ε → 0.

Proposition 2.2 Assume (C) and (Hα
η ). Then, for any T > 0, there exists some constant

C(p, K , T) depending on p, K , T such that

sup
0≤t≤T ,x∈Rd

E
[∣
∣uε(t, x) – u0(t, x)

∣
∣p] ≤ ε

p
2 c(p, L, T). (11)

Proof For any (t, x) ∈ [0, T] ×R
d , we have

uε(t, x) – u0(t, x) =
√

ε
∑

k≥1

∫ t

0

〈
Gα,δ(t – s, x – ·)σ (

uε(s,�)
)
, ek

〉

H dBk
s

+
∫ t

0

[
Gα,δ(t – s) ∗ (

b
(
uε(s,�)

)
– b

(
u0(s,�)

))]
(x) ds

=: Aε
1 + Aε

2. (12)
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Let

J (t) :=
∫

Rd
μ(dξ )

∣
∣FGα,δ(t)(ξ )

∣
∣2. (13)

For the first term Aε
1, by Burkholder’s inequality, the Lipschitz property of σ , and (10),

we have that, for any (t, x) ∈ [0, T] ×R
d , p ≥ 2,

E
[∣
∣Aε

1(t, x)
∣
∣p] ≤ ε

p
2 c(p)E

[∣
∣
∣
∣

∫ t

0

∥
∥Gα,δ(t – s, x – �)σ

(
uε(s,�)

)∥
∥2
H ds

∣
∣
∣
∣

p
2
]

≤ ε
p
2 c(p, T)E

[∫ t

0

∥
∥Gα,δ(t – s, x – �)σ

(
uε(s,�)

)∥
∥p
H ds

]

≤ εc(p, L, T)
∫ t

0
J (t – s)

(
1 + sup

(r,y)∈[0,s]×Rd
E

[∣
∣uε(r, y)

∣
∣p]

)
ds

≤ εc(p, L, T). (14)

For the second term Aε
2, by the Lipschitz property of b and Fubini’s theorem, we have

E
[∣
∣Aε

2(t, x)
∣
∣p] ≤ c(p, T)E

[∫ t

0

∫

Rd
Gα,δ(t – s, x – y)

∣
∣uε(s, y) – u0(s, y)

∣
∣p dy ds

]

≤ c(p, L, T)
∫ t

0

∫

Rd
Gα,δ(t – s, x – y)E

[
sup

0≤l≤s,z∈Rd

∣
∣uε(l, z) – u0(l, z)

∣
∣p

]
dy ds

≤ c(p, L, T)
∫ t

0
E

[
sup

0≤l≤s,z∈Rd

∣
∣uε(l, z) – u0(l, z)

∣
∣p

]
ds. (15)

Set ζ ε(t) := sup0≤s≤t,x∈Rd E[|uε(s, x) – u0(s, x)|p]. By (12), (14), and (15), we have that, for
any t ∈ [0, T],

ζ ε(t) ≤ ε
p
2 c1(p, L, T) + c2(p, L, T)

∫ t

0
ζ ε(s) ds.

Hence, by Gronwall’s lemma, there exists a constant c(p, L, T) independent of ε such that

ζ ε(T) ≤ ε
p
2 c(p, L, T).

The proof is complete. �

3 Central limit theorem
To study the central limit theorem for uε , we furthermore suppose that

(D): The function b is differentiable, and its derivative b′ is Lipschitz. More precisely, there
exists a positive constant L′ such that

∣
∣b′(y) – b′(z)

∣
∣ ≤ L′|y – z| for all y, z ∈ R. (16)

Combined with the Lipschitz continuity of b, we conclude that

∣
∣b′(z)

∣
∣ ≤ L, ∀z ∈R. (17)
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Consider the stochastic partial differential equation

∂X
∂t

(t, x) = Dα

δ X(t, x) + b′(u0(t, x)
)
X(t, x) + σ

(
u0(t, x)

)
Ḟ(t, x), (18)

with X(0, x) ≡ 0. Using the same strategy in the proof of the existence and uniqueness for
the solution to Eq. (1), one can obtain the following result. Here we omit its proof.

Proposition 3.1 Assuming conditions (C), (Hα
η ), and (D), there exists a unique continuous

solution X to Eq. (18) in the following form: for any t ∈ [0, T], x ∈R
d ,

X(t, x) =
∑

k≥1

∫ t

0

〈
Gα,δ(t – s, x – ·)σ (

u0(s,�)
)
, ek

〉

H dBk
s

+
∫ t

0

[
Gα,δ(t – s) ∗ [

b′(u0(s,�)
)
X(s,�)

]]
(x) ds. (19)

Our main result is the following central limit theorem.

Theorem 3.2 Assuming conditions (C), (Hα
η ), and (D), for any (t, x) ∈ [0, T] ×R

d , the pro-
cess (uε(t, x) – u0(t, x))/

√
ε converges in L2 to a random field X(t, x).

Proof Let

Xε =
(
uε(t, x) – u0(t, x)

)
/
√

ε.

Then, for any (t, x) ∈ [0, T] ×R
d ,

Xε(t, x) – X(t, x)

=
∑

k≥1

∫ t

0

〈
Gα,δ(t – s, x – �)

[
σ
(
uε(s,�)

)
– σ

(
u0(s,�)

)]
, ek

〉

H dBk
s

+
∫ t

0

{

Gα,δ(t – s) ∗
[

b(uε(s,�)) – b(u0(s,�))√
ε

– b′(u0(s,�)
)
X(s,�)

]

(x)
}

ds

=
∑

k≥1

∫ t

0

〈
Gα,δ(t – s, x – �)

[
σ
(
uε(s,�)

)
– σ

(
u0(s,�)

)]
, ek

〉

H dBk
s

+
∫ t

0

{

Gα,δ(t – s) ∗
[

b(uε(s,�)) – b(u0(s,�))√
ε

– b′(u0(s,�)
)
Xε(s,�)

]

(x)
}

ds

+
∫ t

0

{
Gα,δ(t – s) ∗ [

b′(u0(s,�)
)(

Xε(s,�) – X(s,�)
)]

(x)
}

ds

=: Aε
1(t, x) + Aε

2(t, x) + Aε
3(t, x). (20)

For the first term Aε
1, by the Lipschitz continuity of σ and Proposition 2.2, we have

E
[∣
∣Aε

1(t, x)
∣
∣2] = E

[∫ t

0

∥
∥Gα,δ(t – s, x – �)

[
σ
(
uε(s,�)

)
– σ

(
u0(s,�)

)]∥
∥2
H ds

]

≤ L2
E

[∫ t

0

∥
∥Gα,δ(t – s, x – �)

∣
∣uε(s,�) – u0(s,�)

∣
∣
∥
∥2
H ds

]



Li Advances in Difference Equations        (2020) 2020:101 Page 8 of 9

≤ L2
∫ t

0
ds

(
sup

(r,y)∈[0,s]×Rd
E

∣
∣uε(r, y) – u0(r, y)

∣
∣2

)
×J (t – s)

≤ εc(L, T). (21)

By Taylor’s formula, there exists a random field ηε taking values in (0, 1) such that

b
(
uε

)
– b

(
u0) = b

(
u0 +

√
εXε

)
– b

(
u0) =

√
εb′(u0 +

√
εηεXε

)
Xε .

Since b′ is Lipschitz continuous, we have

∣
∣
∣
∣

1√
ε

[
b
(
u0 +

√
εXε

)
– b

(
u0)] – b′(u0)Xε

∣
∣
∣
∣ ≤ √

εL′∣∣Xε
∣
∣2.

Thus, by Proposition 2.2, we have

E
[∣
∣Aε

2(t, x)
∣
∣2] ≤ εL′2

E

[(∫ t

0
Gα,δ(t – s) ∗ ∣

∣Xε(s,�)
∣
∣2(x) ds

)2]

≤ εc
(
L′, T

)
∫ t

0

∫

Rd
Gα,δ(t – s, x – y)E

[∣
∣Xε(s, y)

∣
∣4]ds dy

≤ εc
(
L′, T

)
∫ t

0

∫

Rd
Gα,δ(t – s, x – y) sup

(r,z)∈[0,s]×Rd
E

[∣
∣Xε(r, z)

∣
∣4]ds dy

≤ εc
(
L, L′, T

)
. (22)

For the third term, by the boundedness of b′, we have

E
[∣
∣Aε

3(t, x)
∣
∣2] ≤ c(L, T)E

[∫ t

0

∫

Rd
Gα,δ(t – s, x – y)

∣
∣Xε(s, y) – X(s, y)

∣
∣2(x) ds dy

]

≤ c(L, T)
∫ t

0

∫

Rd
Gα,δ(t – s, x – y) sup

(r,z)∈[0,s]×Rd
E

[∣
∣Xε(r, z) – X(r, z)

∣
∣2]ds dy

≤ c(L, T)
∫ t

0
sup

(r,z)∈[0,s]×Rd
E

[∣
∣Xε(r, z) – X(r, z)

∣
∣2]ds. (23)

By (20)–(23), we have that, for any t ∈ [0, T],

sup
(r,x)∈[0,t]×Rd

E
[∣
∣Xε(r, x) – X(r, x)

∣
∣2]

≤ εc
(
L, L′, T

)
+

∫ t

0
sup

(r,z)∈[0,s]×Rd
E

[∣
∣Xε(r, z) – X(r, z)

∣
∣2]ds.

Hence, by Gronwall’s lemma, there exists a constant c(L, L′, T) independent of ε such that

sup
(t,x)∈[0,T]×Rd

E
[∣
∣Xε(t, x) – X(t, x)

∣
∣2] ≤ εc

(
L, L′, T

)
.

The proof is complete. �
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