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Abstract

Background: Convenient and precise assessment of the severity in coronavirus disease 2019 (COVID-19)
contributes to the timely patient treatment and prognosis improvement. We aimed to evaluate the ability of CT-
based radiomics nomogram in discriminating the severity of patients with COVID-19 Pneumonia.

Methods: A total of 150 patients (training cohort n = 105; test cohort n = 45) with COVID-19 confirmed by reverse
transcription polymerase chain reaction (RT-PCR) test were enrolled. Two feature selection methods, Max-Relevance
and Min-Redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO), were used to extract
features from CT images and construct model. A total of 30 radiomic features were finally retained. Rad-score was
calculated by summing the selected features weighted by their coefficients. The radiomics nomogram
incorporating clinical-radiological features was eventually constructed by multivariate regression analysis.
Nomogram, calibration, and decision-curve analysis were all assessed.

Results: In both cohorts, 40 patients with COVID-19 pneumonia were severe and 110 patients were non-severe. By
combining the 30 radiomic features extracted from CT images, the radiomics signature showed high discrimination
between severe and non-severe patients in the training set [Area Under the Curve (AUC), 0.857; 95% confidence
interval (CI), 0.775–0.918] and the test set (AUC, 0.867; 95% CI, 0.732–949). The final combined model that integrated
age, comorbidity, CT scores, number of lesions, ground glass opacity (GGO) with consolidation, and radiomics
signature, improved the AUC to 0.952 in the training cohort and 0.98 in the test cohort. The nomogram based on
the combined model similarly exhibited excellent discrimination performance in both training and test cohorts.

Conclusions: The developed model based on a radiomics signature derived from CT images can be a reliable
marker for discriminating the severity of COVID-19 pneumonia.
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Background
Coronavirus disease 2019 (COVID-19) has become a
global pandemic since it started in December 2019
[1]. Although most of the confirmed patients with
COVID-19 are mild, about 20% cases can still be se-
vere [1]. Pneumonia can be developed in COVID-19
patients [2] . In some severe patients with COVID-19,
dyspnea was observed more than 1 week after the on-
set of symptoms [3]. Septic shock, acute respiratory
distress syndrome, difficulty in correction of metabolic
acidosis, and coagulation dysfunction are often devel-
oped rapidly in severe patients [4]. The critical factor
for decreasing complication and mortality is the ef-
fective diagnosis of severe patients. In other words,
convenient and precise assessment of the severity in
COVID-19 will contribute to the timely patient treat-
ment and prognosis improvement.
CT examination can be severed as an important

assistant tool for diagnosing COVID-19 [4–7]. As
the literature reveals [4, 5], the sensitivity of imaging
examination, especially CT imaging, is relatively
high, and the imaging signs can manifest earlier than
the clinical symptoms, thus CT examination is sig-
nificant in preclinical screening, primary diagnosis,
and evaluation of disease severity. Although recent
studies have reported CT findings of the COVID-19
pneumonia [5, 6], the value of CT imaging in asses-
sing the severity of the patients with COVID-19
were scarcely reported, which, however, may be
more conducive to our in-depth comprehensive and
accurate understanding of this new infectious dis-
ease. Radiomics, as an emerging technique involved
with the extraction of high-throughput data from
quantitative imaging features and the subsequent as-
sociation of this parameter with clinical data, has
been applied in various diseases. For example, radio-
mics have often been applied in discrimination of tu-
mors and prediction of histologic grade, tumor
recurrence and metastasis [7, 8]. Presumably, CT-
based radiomics has great advantage in the diagnosis
and follow-up of COVID-19 pneumonia. As far as
we know, the existing literature mainly focused on
identification and diagnosis of COVID-19 [9, 10].
Some studies [11–13] have identified CT-based
radiomics as a superior tool for discriminating
COVID-19 and other types of viral pneumonia or
non-COVID-19 pneumonia. Few literature has re-
ported the application of CT-based radiomics for
evaluation of the severity of COVID-19.
Therefore, the purpose of this study was to apply the

CT-based radiomics nomogram, combining radiomics
signatures and clinical factors, for the discrimination of
the severity of COVID-19 pneumonia, helping to
optimize therapeutic regiment.

Methods
Demographic data
Between January and February 2020, a total of 213
patients from 2 hospitals in Anhui, China diagnosed as
COVID-19 pneumonia were enrolled. This retrospective
study was approved by the Ethics of Committees of the
First Affiliated Hospital of Bengbu Medical College and
informed consent for this retrospective study was
waived. All of the procedures were performed in accord-
ance with the Declaration of Helsinki in 1964 and
relevant policies in China.
Our inclusion criteria were: (a) confirmed positive

by real-time reverse-transcriptase polymerase-chain-
reaction (RT-PCR) assay from nasal and pharyngeal
swab specimens; (b) scanned with thin-section CT; (c)
CT images demonstrated pneumonia; (d) CT examin-
ation was done at the patient’s first visit. Exclusion
criteria were as follows: (a) lack of complete medical
data (n = 31); (b) patients without thin-section CT or
lack of CT images (n = 32). Finally, 150 patients were
collected and divided into severe group and non-
severe group. According to the guideline of American
Thoracic Society Criteria, the severe patient was de-
fined as meeting any of the following conditions [14]:
a) respiratory rate ≥ 30 breaths/min; b) respiratory dis-
tress; c) finger oxygen saturation ≤ 93% in resting
state; d) arteria oxygen tension (PaO2)/inspiratory
oxygen fraction (FiO2) ≤ 300 mmHg; e) mechanical
ventilation required and respiratory failure occurred;
f) the presence of shock; g) patients with other organ
failures required ICU monitoring and treatment. The
complete medical data including demographic charac-
teristics, epidemiological information, laboratory data,
symptoms, comorbidity, and medical treatment data
were recorded.

CT acquisition
Patients underwent chest CT imaging on two 64-
detector CT scanners (LightSpeed, GE and Aquilion,
TOSHIBA). The protocols were as follows: 120 kV; auto-
matic tube current (350 mA for LightSpeed, GE and
440mAs for Aquilion, TOSHIBA); detector width, 40
mm (Light Speed, GE) and 43mm (Aquilion,
TOSHIBA); rotation time, 0.8 s (Light Speed, GE) and
1.0 s (Aquilion, TOSHIBA); section thickness, 5 mm;
interlayer spacing, 5 mm; matrix, 512 × 512; and breath
hold at full inspiration. The following windows were
used for image display: a mediastinal window with win-
dow width of 350 HU and window level of 40 HU and a
lung window with a width of 1200 HU and window level
of − 600 HU. The acquired images were subsequently re-
constructed using iterative reconstruction technique
with a slice thickness of 0.625 mm (LightSpeed, GE) and
1.25 mm (Aquilion, TOSHIBA), respectively. To
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minimize discrepancies in the image acquisition parame-
ters attributable to the different CT machines, all images
were resampled to a 1 × 1 × 1mm3 voxel size before
image analysis and feature extraction.

Clinical findings and laboratory tests
The confirmed COVID-19 patients must be treated in
isolation. Patients underwent symptomatic treatment, in-
cluding electrolyte turbulence correction, anti-infection
treatment, nutritional support and bed rest. When the
patient was perceived to have difficulty in breathing, they
were placed to the ventilator.
The time course (defined as the interval between the

onset of symptoms and the initial CT examination),
main clinical features (age, gender, fever and cough), co-
morbidity (such as diabetes, hypertension, chronic liver
disease, cardiac disease and chronic obstructive pulmon-
ary disease) and main laboratory tests (C-reactive pro-
tein; lymphocyte count, and blood leukocyte count) were
independently reviewed by two clinicians.

Image interpretation
Main CT signs were analyzed as follows: pure ground
glass opacity (GGO), GGO with consolidation; consoli-
dation; interlobular septal thickening; crazy-paving pat-
tern; halo sign; reversed halo sign; air bronchogram;
pleural effusion. Lesion distribution was described as
left, right or bilateral lungs. The CT scoring was based
on the involvement of the lung segment using 18 lung
segments model from 1 to 4: 1, 1–4 lung segments in-
volvement; 2, 5–8 lung segments involvement; 3, 9–12
lung segments involvement; 4, 13–18 lung segments in-
volvement. Number of lesions was defined by reference
to previous literature [15]. For instance, it is counted as
one when the lesion only occupies one lung segment.
When a large lesion involves more than one lung seg-
ment, it is counted as the number of affected lung seg-
ments. All radiological data were independently
reviewed by two radiologists (with 6 and 13 years of ex-
perience in chest CT imaging, respectively). The radiolo-
gists were blinded to the clinical data of all the patients.
If there was a disagreement, a third observer (with 18
years of experience in chest CT imaging) was asked for
an opinion and a majority decision was reached.

CT images segmentation and features extraction
Two radiologists (R1, 6 years’ and R2, 13 years’ experi-
ence in chest imaging) segmented lesions using ITK-
SNAP software. A 2D region of interest (ROI) was used
to delineate lesions in coronal slice with the largest sec-
tion of lesions. In order to improve model robustness,
one radiologist segmented lesions 2 times with a time
interval of a week, and the other one segmented once.

The images were firstly preprocessed using resampling,
intensity discretion methods. All images were resampled
into 1 × 1 × 1mm3 of voxel size. Resampling aimed to
transform the image into the isotropic voxel spacing to
ensure the texture features were rotationally invariant
and comparable between the images coming from differ-
ent scanners. The intensity discretion was conducted to
change the gray-level into 128 bins to reduce the com-
plexity of calculation and make features tractable.
We used AK software (Artificial intelligence Kit, GE

Healthcare) to extract the radiomic features based on
the preprocessed image. We finally got three classes of
features: the histogram features, texture features (355,
based on GLCM, RLM, GLSZM) and geometry features.
A total of 396 radiomic features were extracted. In order
to construct a robust model, the inter-observer agree-
ment and intra-observer agreement tests were performed
to acquire the reproducible features. Each lesion has 3
ROIs, 2 ROIs from R1, 1 from R2. The features extracted
based on the ROIs of R1 were used to test the intra-
observer agreement, meanwhile, the first ROI of R1 and
the ROI of R2 were acquired to test the inter-observer
agreement. The feature that met the two tests were
retained for constructing the diagnosis model and the
R1’s first ROI was adopted [8].

Radiomics model construction
The cohorts were grouped into training cohort and test
cohort using stratified random resampling method with
a ratio of 7:3. Unless the emphasis of using the valid-
ation cohort, the following operation were all performed
in training cohort. Before constructing the radiomic
model, the feature engineering was conducted. Three
feature selection steps were adopted. The first step was
to exclude the zero-variance features. Zero-variance
meant the values of the feature were same across train-
ing cohort, and couldn’t be used for discrimination. The
second step was using mRMR method to exclude the re-
dundant features and kept the most relevant features
with targets. After mRMR, 30 features were retained.
The last step was using LASSO regression method to
find the most predictive feature subset, which included
two steps. We initially determined the optimized hyper-
parameter λ using 10-fold cross validation with binomial
deviance as criterion. After the λ was determined, the
features with non-zero coefficient were the last chosen
features. LASSO regression was conducted to construct
the radiomics model, which also meant to get the Rad-
score. The Rad-score could be calculated by summing
the features multiplied their corresponding coefficients.

Clinical and morphologic risk features
In addition to the radiomic features, we also collected
the radiological features and clinical data (collectively
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named “clinical feature” later). The clinical feature was
used to construct the clinical model. Firstly, we used two
samples’ or κ2 test to assess whether the clinical features
were significantly different between two groups. The sig-
nificantly different features were subsequently analyzed
using the univariate logistic regression, the features with
non-zero coefficients in univariate logistic regression
analysis were integrated into backward stepwise selec-
tion multivariable logistic regression analysis [16]. Mean-
while, the clinical model was built.

Nomogram construction
After the Rad-score was calculated and clinical factors
were selected using backward step-wise multivariate lo-
gistic regression, the Rad-score and the remaining clin-
ical features were subsequently combined to construct
the nomogram using multivariate logistic regression.

Model validation
The receiver operating characteristic (ROC) analysis was
performed to evaluate the performance of the radiomic
model, clinical model and nomogram. Accuracy, sensi-
tivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV) were obtained from the
cohorts. Besides, the calibration curves were plotted to
assess the agreement between the predicted event prob-
ability and observed event probability, and Hosmer-
Lemeshow statistic was applied to test the difference be-
tween the predicted event probability and observed
event probability. Decision curve analysis (DCA) was fi-
nally utilized to determine the clinical utilities. The flow-
chart of segmentation, feature extraction, and model
building is depicted in Fig. 1.

Statistical analysis
The statistical analyses were all performed using R
software (version 3.6.1, R Core Team (2019). R: A
language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.
URL www.r-project.rog). The inter-observer and intra-
observer agreement tests were performed using ‘Desc-
Tools’ package to calculate the intraclass correlation
coefficient (ICC). The features with ICC > 0.75 was
treated as reproducibility (7). The ‘caret’ package was
used to split the cohort, preprocess the features, build
the confusion matrix to get the accuracy, sensitivity,
specificity, PPV and NPV. mRMR feature selection
was conducted using the ‘mRMRe’ package. ‘pROC’
package was used to perform ROC analysis, while
‘ModelGood’ package and ‘rmda’ package was used to
perform calibration curve analysis and decision curve
analysis, respectively. Two-sided p < 0.05 indicated
statistical significance.

Results
Clinical and radiological features
A total of 150 patients (68 men and 82 women) con-
firmed with COVID-19 was classified into a training co-
hort (n = 105, 28 were severe and 77 were non-severe; 43
men and 62 women) and a test cohort (n = 45, 12 were
severe and 33 were non-severe; 25 men and 20 women).
Comparisons of clinical features, laboratory, and CT
image features in training and test cohorts are shown in
Tables 1 and 2, respectively.
Of the 150 COVID-19 patients, 40 (26.7%) were severe

and 110 (73.3%) were non-severe (Fig. 2). All parameters
between the training and test datasets showed no statis-
tically significant difference. By multivariable analysis,

Fig. 1 Flowchart of radiomics procedure in this study
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we found age [odds ratio (OR):1.073; 95% CI: 1.001–
1.172; p = 0.069)], number of lesions (OR:1.100; 95% CI:
1.005–10,239; p = 0.066), CT scores (OR: 13.223; 95%
CI: 2.718–141.341; p = 0.008), GGO with consolidation
(OR: 31.084; 95% CI: 0.272–1033.61; P = 0.018), and co-
morbidity (OR: 20.104; 95% CI: 3.765–183.208; p =
0.002) were significant independent predictors of sever-
ity of COVID-19 patients (Table 3). The ROC curves
were performed in the training cohort and test cohort,
whose AUCs were 0.96 (0.93–1.00) and 0.95 (0.89–1.00),
respectively. The accuracy, sensitivity, specificity, PPV
and NPV were 0.89, 0.96, 0.87, 0.73, 0.95 in the training
cohort, while they were 0.87, 0.73, 0.95, 0.83, 0.88, 0.71
in the test cohort.

Radiomics model
As shown in Fig. 3, by LASSO regression analysis, the
optimized hyperparameter λ was 0.00677, and 7 radiomic
features remained, which included GLCMEntropy_AllDir-
ection_offset1_SD, VoxelVolume, MajorAxisLength, Run-
LengthNonuniformity_AllDirection_offset7_SD, sumAver-
age, HaraEntroy and LongRunHighGreyLevelEmphasis_
angle0_offset1. The formula of rad-score was as following:

Radscore = 1.46 × HaraEntroy+ 1.98 × LongRunHigh-
GreyLevelEmphasis_Angle0_offset1 + 0.68*MajorAxi-
sLength+ 0.761 × RunLengthNonuniformity_AllDirec-
tion_offset7_SD-0.38 × GLCMEntropy_AllDirection_
offset1_SD + 0.89 × sumAverage-0.28 × VoxelVolume-
1.82. The ROCs of the radiomics model in training
cohort and test cohort are shown in Fig. 4. The
AUCs were 0.95 (0.91–0.99) and 0.92(0.85–1.00) in
training and test cohorts, respectively. The accuracy,
sensitivity, specificity, PPV and NPV in the training
cohort were 0.86, 0.96, 0.82, 0.66, 0.98, and were
0.87, 1.00, 0.82, 0.67, 1.00 in the test cohort.

Construction and validation of the developed nomogram
The final statistically significant clinical features and
Rad-score were used to construct the nomogram
(Fig. 5a). The AUCs were 0.99 (0.98–1.00) and 0.98
(0.94–1.00) for the training and test cohorts, respect-
ively. The performance of nomogram was shown as fol-
lows: the accuracy, sensitivity, specificity, PPV and NPV
were 0.95, 1.00, 0.94, 0.85, 1.00 in the training cohort
and were 0.89, 0.71, 1.00, 1.00, 0.85 in the test cohort.
The calibration curve of the model in training and test

Table 1 Comparison of severity and clinical characteristics in both training and test cohort

Clinical characteristics Training cohort p value Test cohort p value p value*

Non-severe (n = 77) Severe (n = 28) Non-severe (n = 33) Severe (n = 12)

Age 43.4 ± 14.6 55.6 ± 12.6 < 0.001 43.4 ± 12.4 59.9 ± 19.8) 0.001 0.674

Gender 0.828

Male 34 (44.2) 9 (32.1) 0.377 16 (48.5) 9 (75.0) 0.214

Female 43 (55.8) 19 (67.9) 17 (51.5) 3 (25.0)

Fever 0.999 (86.2%) 0.269 0.439

Absence 9 (11.6%) 3 (10.7%) 5 (15.2%) 1 (8.3%)

Presence 72 (86.7%) 22 (88.0%) 28 (84.8%) 11 (91.7%)

Cough 0.054 0.999 0.521

Absence 43 (55.8) 9 (32.1) 14 (42.4) 5 (41.7)

Presence 34 (44.2) 19 (67.9) 19 (57.6) 7 (58.3)

C-reaction protein 0.447 0.448 0.853

Absence 15 (19.5) 3 (10.7) 8 (24.2) 1 (8.3)

Presence 62 (80.5) 25 (89.3) 25 (75.8) 11 (91.7)

Blood leukocyte count 0.088 0.999 0.805

< 4 × 109/L 26 (33.8) 16 (57.1) 21 (63.6) 6 (50.0)

(4–10) × 109/L 50 (64.9) 12 (42.9) 12 (36.4) 6 (50.0)

> 10 × 109/L 1 (1.3) 0 (0.0) 0 (0.0) 0 (0.0)

Lymphocyte count (< 1.5 × 109/L) 31 (40.3) 7 (25.0) 0.227 13 (39.4) 1 (8.3) 0.104 0.680

Comorbidity < 0.001 0.228 0.103

Absence 61 (79.2) 10 (35.7) 29 (87.9) 8 (66.7)

Presence 16 (20.8) 18 (64.3) 4 (12.1) 4 (33.3)

Time course (day) 6.8 ± 3.8 9.0 ± 4.9 0.016 6.8 ± 4.0 5.5 ± 3.9 0.345 0.209

*Represents the comparisons of features between training and test cohorts
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Table 2 Comparison of severity and radiological characteristics in both training and test cohort

radiological characteristics Training cohort p value Test cohort p value p value*

Non-severe (n = 77) Severe (n = 28) Non-severe (n = 33) Severe (n = 12)

Number of lesions 11.7 ± 7.9 21.8 ± 10.1 < 0.001 11.6 ± 8.5 18.6 ± 6.6 0.009 0.576

CT score < 0.001 < 0.001 0.982

1 20 (26.0) 0 (0.0) 9 (27.3) 0 (0.0)

2 20 (26.0) 0 (0.0) 8 (24.2) 0 (0.0)

3 21 (27.3) 2 (7.1) 10 (30.3) 1 (8.3)

4 16 (20.8) 26 (92.9) 6 (18.2) 11 (91.7)

Distribution of lesions 0.085 0.450 0.767

Left lung 4 (5.2) 0 (0.0) 2 (6.1) 0 (0.0)

Right lung 8 (10.4) 0 (0.0) 2 (6.1) 0 (0.0)

Both lungs 65 (84.4) 28 (100.0) 29 (87.9) 12 (100.0)

Pure GGO 0.445 0.669 0.999

Absence 8 (13.4) 5 (17.9) 4 (13.2) 2 (16.7)

Presence 69 (89.6) 23 (82.1) 29 (87.8) 10 (83.3)

Consolidation 0.213 0.204 0.999

Absence 61 (79.2) 28 (100.0) 26 (78.8) 12 (100.0)

Presence 16 (20.8) 0 (0.0) 7 (21.2) 0 (0.0)

GGO with consolidation 0.013 0.027 0.482

Absence 22 (28.6) 1 (3.6) 13 (39.4) 0 (0.0)

Presence 55 (71.4) 27 (96.4) 20 (60.6) 12 (100.0)

Crazy-paving pattern 0.005 0.344 0.089

Absence 36 (46.8) 4 (14.3) 9 (27.3) 1 (8.3)

Presence 41 (53.2) 24 (85.7) 24 (72.7) 11 (91.7)

Halo sign 0.012 0.228 0.823

Absence 11 (14.3) 11 (39.3) 4 (12.1) 4 (33.3)

Presence 66 (85.7) 17 (60.7) 29 (87.9) 8 (66.7)

Reversed halo sign 0.861 0.576 0.999

Absence 63 (81.8) 24 (85.7) 26 (78.8) 11 (91.7)

Presence 14 (18.2) 4 (14.3) 7 (21.2) 1 (8.3)

Interlobular septal thickening 0.072 0.109 0.148

Absence 30 (39.0) 5 (17.9) 9 (27.3) 0 (0.0)

Presence 47 (61.0) 23 (82.1) 24 (72.7) 12 (100.0)

Air bronchogram 0.087 0.344 0.546

Absence 26 (33.8) 4 (14.3) 9 (27.3) 1 (8.3)

Presence 51 (66.2) 24 (85.7) 24 (72.7) 11 (91.7)

Pleura effusion 0.999 0.593 0.999

Absence 74 (96.1) 27 (96.4) 33 (100.0) 11 (91.7)

Presence 3 (3.9) 1 (3.6) 0 (0.0) 1 (8.3)

Rad-scorea −3.5 (−4.2, −1.9) 1.2 (0.3, 2.1) < 0.001 −2.9 [−3.7, −1.7] −0.1 (−1.2, 1.5) < 0.001 0.613

*Represents the comparisons of features between training and test cohorts
a Data are showed as medians (IQR 25–75)
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cohorts and a non-statistical Hosmer-Lemeshow test
(P > 0.05) both indicated well discrimination of the con-
structed nomogram (Fig. 5b). By decision curve analysis
(Fig. 5c), with the risk thresholds ranged from 0 to 0.6
and 0.8 to 1, the nomogram represented higher net
benefit in clinical practice.

Discussion
In the present study, we developed and validated a
predictive nomogram incorporating radiomics

signatures and clinical data for further precisely dis-
criminating the severity of COVID-19 patients. The
results uncovered that the addition of radiomic char-
acteristics to clinical model could get better perform-
ance in discriminating the severity of patients with
COVID-19, with an elevated AUC (from 0.895 to
0.952) and a relatively higher sensitivity, specificity,
PPV, and NPV in the test cohort. Moreover, the high
NPV and specificity indicated that the developed
model was reliable and could minimize the number

Fig. 2 Thin-section CT images for severe and non-severe patients. a-c Images of a 25-year-old woman with non-severe COVID-19 pneumonia (CT
score = 2) who had the symptoms of dry cough and fever. The axial, coronal and sagittal CT images all presented subpleural GGO (with craving
stone sign) in the lower lobes of both lungs (white arrows). d-f Images of a 55-year-old woman with non-severe COVID-19 pneumonia (CT
score = 1) who had the symptom of fever. The axial, coronal and sagittal CT images all presented GGO in the anterior segment of the upper lobe
of the right lung, containing air bronchogram (white arrowheads) and vascular thickening (white arrow). g-i Images of a 52-year-old man with
severe COVID-19 pneumonia (CT score = 4) who had the features of fever and comorbidity (diabetes, hypertension). The axial, coronal and sagittal
CT images showed diffuse large regions of GGO with partial consolidation and interlobular septal thickening (white arrow). j-l Images of a 64-
year-old man with severe COVID-19 pneumonia (CT score = 4) who had the symptoms of fever and cough. The axial, coronal and sagittal CT
images showed diffuse large regions of GGO, accompanying consolidation (black arrows), and beaded air bronchogram (black arrowheads)
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of false-positive and false-negative patients, which is
valuable in present clinical work [17]. The relatively
high PPV implied that the clinical-radiomics model
contributed to discriminating true high-risk patients.
Based on our research, those high-risk patients could
be recommended to receive more follow-up imaging
to monitor changes in the condition. Furthermore, in
this study, we constructed a clinical-radiomics nomo-
gram as an individualized and visualized model to
optimize the accuracy of assessing the severity of con-
firmed COVID-19 patients. The novel radiomics

nomogram manifested favorable calibration and clin-
ical benefit, verified by calibration curves and DCA.
As we know, radiomics has been widely applied in

tumor research due to its merits of unwatched filter of
comprehensive data obtained from an image. For ex-
ample, radiomics could differentiate tumor heterogeneity
and has often been performed to predict the prognosis
of various cancers [18, 19]. Hence, radiomics, a noninva-
sive, fast, reproducible, and low-cost technic, was uti-
lized in COVID-19 for identifying the severity, so as to
avoid unnecessary treatment and decrease patients’

Table 3 Univariate and Multivariate Analyses of Factors for assessing severity of COVID-19 Pneumonia

Risk factors Univariate Analysis Multivariate Analysis

OR 95%CI P value OR 95%CI P value*

Age 1.072 1.033–1.12 0.001 1.073 1.001–1.172 0.069

Time course 1.126 1.018–1.254 0.024

Number of lesions 1.134 1.072–1.215 0.001 1.100 1.005–1.239 0.066

CT scores 19.222 5.715–123.482 0.001 13.223 2.718–141.341 0.008

GGO with consolidation 10.800 2.09–198.469 0.023 31.084 2.727–1033.61 0.018

Crazy-paving pattern 5.268 1.826–19.205 0.005

Halo sign 0.258 0.094–0.694 0.007

Interlobular septal thickening 2.936 1.073–9.488 0.049

Cough 2.670 1.097–6.901 0.035

Comorbidity 6.862 2.718–18.362 0.001 20.104 3.765–183.208 0.002

OR odds ratio, CI confidence interval
*Multivariable logistic regression analysis utilized backward stepwise selection and AIC as criterion

Fig. 3 Feature selection via the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. aThe LASSO regression
method was utilized to select radiomic features. A 10-fold cross-validation method was utilized to screen hyperparameter (λ) of the LASSO
regression model and choose the model with the smallest error (λ), b LASSO coefficient profiles of the features represent vertical lines that are
drawn at the value selected via 10-fold cross-validation, and the optimized hyperparameter λ was determined to be 0.00677, and 7 radiomic
features were remained. c By LASSO logistic regression analysis, 7 optimal radiomic features were identified for reconstructing the
prediction model
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anxiety, especially when human and material resources
are extremely precious. According to our experience, it
took about 4–5 days to extract the radiomic features for
all CT images and the model construction and validation
only took 1 h. Once the model was established, we only

needed to deploy the model in CT reading platform.
Compared with the “traditional” CT reading, the radiolo-
gists simply needed to outline the lesion, and the ma-
chine would subsequently provide them with an
objective result for their reference. Huang et al. [11]

Fig. 4 Receiver operating characteristic (ROC) curves of Radiomic features for the training (a) and test cohorts (b). The AUC for the training
cohort and the test cohort was 0.95 and 0.92, respectively

Fig. 5 a Radiomics nomogram for identifying severity of COVID-19. b calibration curves of the radiomics nomogram in the training set and test
cohort. The calibration curves represented calibration of the nomogram on the basis of fitting the predicted probabilities and observed
probabilities. The 45° line uncovers the perfect discrimination and the dotted lines reveals the discriminative ability of the nomogram. The nearer
the dotted line fits to the ideal line, the better the discriminative accuracy of the developed nomogram. c Decision-curve analysis for the
radiomics nomogram. The y-axis and x-axis represent the net benefit and threshold probability, respectively. The horizontal black line indicates
the assumption of all severe COVID-19 patients, while the green line indicates the assumption of all non-severe COVID-19 patients
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analyzed 154 viral pneumonia patients (including 89
cases of COVID-19 and 65 cases of influenza pneumo-
nia) to establish a CT-based radiomics model, whose re-
sults showed radiomics model had a satisfactory
performance in distinguishing COVID-19 and influenza
pneumonia. Liu et al. [12] reported CT-based radiomics
model could facilitate a rapid and accurate detection in
differentiation of COVID-19 and Non-COVID-19 pneu-
monia. Fang et al. [13] summarized 136 patients with
COVID-19 and developed a CT-based radiomics model
for discriminating COVID-19 and other types of viral
pneumonia, which showed a good performance for pre-
dicting COVID-19 pneumonia. Homayounieh et al. [20]
summarized 315 patients with COVID-19 and developed
a CT-based whole lung radiomics model, which showed
a better performance in predicting outcome and disease
severity of patients with COVID-19 compared with sub-
jective assessment by radiologists.
Our study also showed that clinical data including age

and comorbidity were associated with the severity of
COVID-19. These results were in line with the facts that
the elderly patients with other diseases are more likely
to suffer from severe pneumonia, in accordance with the
other studies [4]. It may be due to poor immune func-
tion of the elderly patients. Ruan et al. [3] verified that
age and underlying diseases are predictors of a worse
outcome in COVID-19. Wang et al. [21] also found eld-
erly age complicated with underlying diseases might
serve as important risk factors for the severity of
COVID-19. However, several researchers found that
multiple laboratory indicators may be linked with the se-
verity of patients [22]. Cytokine storm, comorbid various
infections and inhibited immune function may lead to
increased ratio of neutrophil, decreased lymphocytes, el-
evated C-reactive protein and procalcitonin. However,
these were not significant factors in the present study.
The possible reasons may be the differences in sample
size and statistical methods. In addition, radiological
findings, including CT scores, number of lesions and
GGO with consolidation were also independent indi-
cators of the severity of COVID-19. Compared with
non-severe cases, severe patients were more likely to
involve a wider range of both lungs, signifying more
lesions and higher CT scores (number of lung seg-
ments involved). Several studies suggested that as the
course of the disease increases, lesions in the lungs
increase and worsen [23], which is also in line with
our results. Moreover, GGO with consolidation ap-
peared more frequent in severe/critical patients, im-
plying that the alveoli damage is more filled by
inflammatory exudation, such as fibromyxoid exudates
[24]. The rest of CT findings in our study were not
significantly different between severe and non-severe
groups.

Our study has some limitations. First, this retrospect-
ive study posed inevitable selection bias. Second, ROI
delineation was manual, and the irregularities of lesions
might cause differences in the manual selection. In
addition, the study used 2D ROI selection due to time
and technical constraints, yet 3D ROI selection should
be used for further research in the future. The sample
size in our cohort was relatively small. Third, the rela-
tionship between prognosis and clinical-radiological
characteristics has not been studied. Thus, further stud-
ies with more cases and prolonged period should be
studied to further verify our results.
In conclusion, we introduced a CT-based radiomics

nomogram to evaluate the feasibility of radiomics signa-
ture and clinical factors in discriminating the severity of
COVID-19 patients. Besides, we developed and validated
the radiomics nomogram incorporating radiomics signa-
tures, age, comorbidity, CT scores, number of lesions
and GGO with consolidation, which improved the diag-
nostic performance in severity stratification of COVID-
19 patients.
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