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Background
Autoimmune diseases (ADs) are a group of complex and heterogeneous disorders char-
acterized by immune responses to self-antigens leading to tissue damage and dysfunction 
in several organs. The pathogenesis of ADs is not fully understood, but both environ-
mental and genetic factors have been linked to their development [1]. Although these 
disorders cause damage to different organs and their clinical outcomes vary between 
them, they share many risk factors and molecular mechanisms [2]. Some examples of 
ADs are systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syn-
drome (SjS), systemic sclerosis (SSc), considered systemic autoimmune diseases (SADs) 
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and type 1 diabetes (T1D), which is considered an organ-specific autoimmune disease. 
Most of these diseases are classified as rare given their prevalence, but altogether ADs 
affect up to 3% of the population considering conservative estimates [3].

In ADs patients, the pathology is developed during several years but it is only detected 
when tissue damage is significant. For that reason, early diagnosis is important and 
complicated. Additionally, some ADs often show a non-linear outcome that alternates 
between active and remission stages thus making their study even more difficult. Despite 
huge efforts have been made to develop ADs biomarkers and therapies, these do not fit 
for every patient and their clinical responses differ greatly [4].

During the past decade, the use of omics technologies has provided new insights into 
the molecular mechanisms associated with the development of ADs, opening new sce-
narios for biomarkers and treatments discovery [5]. In this context, it is remarkable the 
characterization of the type I interferon (IFN) gene expression signature as a key factor 
in the pathology of some SADs, especially in SLE and SjS [6], which has improved our 
knowledge of the underlying molecular mechanisms and has opened new therapeutic 
strategies based on blocking the pathways related to this signature.

Regardless of the large amount of omics studies describing new biomarkers and thera-
peutic strategies in ADs [7–10], in most cases these biomarkers are not consistent across 
different studies or have not fully accomplished their diagnostic goals. Indeed, the widely 
studied IFN signature is highly variable between patients [11] and it is associated with 
differences in response to treatments which target it, as has been reported for example 
in the phase-II results of Sifalimumab clinical trial for SLE patients [12]. In addition, in 
most of the cases, biomarkers are defined from the analysis of a single type of omic data 
(commonly gene expression), but multi-omics data integration can provide a more com-
plete understanding of molecular mechanisms and more robust and biologically relevant 
biomarkers.

Most of the omics datasets generated from different cohorts and studies in ADs pub-
lished to date have been deposited and are available in public repositories such as Gene 
Expression Omnibus (GEO) [13] or ArrayExpress [14]. Although all these valuable data 
can be used in retrospective analyses in order to generate new knowledge and acceler-
ate drug discovery and diagnosis, it is not easy to compare neither to integrate available 
data because they are generated from different platforms and/or processed with differ-
ent analytic pipelines. In this context, there are great efforts from the bioinformatics 
community to develop standardized data analysis workflows and resources that facili-
tate data integration and reproducible analysis. For example, Lachmann et al. [15] have 
recently reprocessed a large collection of raw human and mouse RNA-Seq data from 
GEO and Sequence Read Archive (SRA) using a unified pipeline and they have devel-
oped the ARCHS4 as a resource to provide direct access to these data through a web-
based user interface. Other singular projects such as The Cancer Genome Atlas (TCGA) 
[16] or the Genotype-Tissue Expression project (GTEx) [17] provide also large and 
homogeneously processed datasets for tumor samples and human tissues respectively. 
These unprecedented resources motivate the development of applications and data por-
tals to help researchers gather information with the aim of improving diagnosis and 
treatment in multiple diseases, most notably in cancer research, where such information 
is actually being used in the clinical practice [18].
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Despite such enormous potential, in the context of ADs there is a lack of a centralized 
and dedicated resource that facilitates the exploration, comparison and integration of 
available omics datasets. This is indeed an area in which this type of application would 
be tremendously beneficial, given that the low prevalence of each individual disease 
makes difficult the recruitment of large patients cohorts [4].

To bridge this gap, in this work we have compiled and curated most of the publicly 
available gene expression and methylation datasets for five ADs: SLE, RA, SjS, SSc and 
T1D. To this end, we have reprocessed raw data applying homogeneous analysis pipe-
lines. Furthermore, we developed ADEx (Autoimmune Diseases Explorer), a data portal 
where these processed data can be downloaded and exploited through multiple explora-
tory and statistical analyses. ADEx facilitates data integration and analysis to potentially 
improve diagnosis and treatment of ADs.

In order to demonstrate the potential of ADEx, we queried the database to explore the 
expression pattern of IFN regulated genes across all autoimmune diseases. This analysis 
revealed that the IFN signature is consistent in SLE and SjS but it shows heterogeneity 
in RA samples. In a second analysis, we integrated all datasets in order to define a set of 
consistent biomarkers for each disease considering the expression data from multiple 
studies.

Construction and content
We have prepared five different pipelines to process data for each platform (RNA-Seq, 
Affymetrix and Illumina gene expression microarrays, and Illumina methylation arrays 
27K and 450K). All these workflows are written in R language and are publicly available 
in GENyO Bioinformatics Unit GitHub (https://​github.​com/​GENyO-​BioIn​forma​tics/​
ADEx_​public). Figure 1 contains an overview of the different steps performed to prepare 
the data for ADEx application.
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Fig. 1  Processing pipeline for ADEx data. Black arrows indicate intermediate processing steps. Red arrows 
indicate the inputs to ADEx application

https://github.com/GENyO-BioInformatics/ADEx_public
https://github.com/GENyO-BioInformatics/ADEx_public
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Data collection

Collection of the datasets included in ADEx was carried out by searching in the GEO 
web page with ADs names as key terms. We filtered the results by study type (expression 
profiling by array, expression profiling by high throughput sequencing and methylation 
profiling by array), organism (Homo sapiens) and platform manufacturer (Affymetrix or 
Illumina).

We downloaded the metadata for these initial datasets with GEOquery [19] R package 
in order to apply our inclusion criteria and exclude those studies and samples that do not 
meet them. We only included case-control studies from samples, which were not treated 
with drugs in vitro. Exclusively datasets with available raw data were considered. Studies 
whose controls and cases belong to different tissues were discarded. We only selected 
datasets with 10 samples at least. The datasets containing more than one disease, plat-
form, tissue or cell type were divided into subsets of samples from the same source.

82 datasets containing 5609 samples passed our filtering criteria (see Additional file 1 
for complete information about all included datasets). Then, we downloaded their raw 
data with GEOquery [19]. For expression microarrays, we downloaded CEL files and 
raw text files for Affymetrix and Illumina platforms respectively. For RNA-Seq, we 
downloaded the fastq files from the European Nucleotide Archive. For methylation 
microarrays, we downloaded raw methylation tables if they were available and idat files 
otherwise.

Metadata curation

GEO does not require submitters to use either a fixed structure or standard vocabulary 
to describe the samples of an experiment. For that reason, it was necessary to manually 
homogenize the information provided within all the selected datasets using standard-
ized terms. There are some methods for automatic curation of GEO metadata, but man-
ual curation is still necessary to get high-quality metadata [20]. This metadata curation 
was an essential step for the following analyses and permits an easy exploration of the 
information from each study.

Platforms curation

We have used a total of 12 different gene expression platforms from microarray and 
RNA-Seq technologies. Microarray platforms quantify expression levels in probes. In 
order to match probe identifiers to gene names, platforms annotation files are available 
from GEO. However, we found that some of these annotation files match probes to inap-
propriate gene names. On the one hand, some platforms save gene names with errors 
due to the conversion of gene names such as MARCH1 or SEPT1 into dates, a common 
error that has been reported previously [21]. In these cases, we fixed manually these 
genes in the annotation files. On the other hand, some platforms use obsolete or differ-
ent aliases to refer to the same genes. We used human genes’ information from NCBI 
repository in order to match aliases with actual official gene symbols and substituted 
them in the platform annotations.
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Data processing

Raw data from Illumina expression microarrays were loaded by reading the plain text 
files. In order to remove background noise, we kept only the probes that had a Detection 
P value lower than 0.05 in at least 10% of the samples. Then we performed a background 
correction and quantile normalization [22] using neqc function from limma package 
[23].

CEL files from Affymetrix expression microarrays platforms were loaded to R environ-
ment with affy package [24]. To filter unreliable probes, we removed all probes with an 
intensity lower than 100 in at least 10% of the samples. Normalization was carried out 
computing Robust Multichip Average (RMA) normalization [25] with affy package [24].

For RNA-Seq datasets, fastq files were aligned to human transcriptome reference hg38 
using STAR 2.4 [26] and raw counts were obtained with RSEM v1.2.31 [27] with default 
parameters. Raw counts were filtered using NOISeq R package [28], removing those fea-
tures that have an average expression per condition lower than 0.5 counts per million 
(CPM) and a coefficient of variation (CV) higher than 100 in all conditions. Raw counts 
were normalized with TMM method [29].

We translated microarrays probes identifiers to gene symbols using our curated anno-
tation tables. For those genes targeted by two or more microarray probes, we calculated 
the median expression values of all their targeting probes. For RNA-Seq, we translated 
ENSEMBL identifiers to gene symbols using biomaRt package [30, 31].

Methylation raw data are available in GEO as idat or text files depending on the data-
set. Idat files were read with minfi package [32], while text files were read in the R envi-
ronment. In both cases, poorly performing probes with a detection P value above 0.05 
in more than 10% of samples were removed. Probes adjacent to SNPs, located in sexual 
chromosomes or reported to be cross-reactive [33] were also removed. We normalized 
the methylation signals using quantile normalization with lumi package [34]. Finally, 
for datasets generated with 450k platform, we applied BMIQ normalization [35] using 
wateRmelon package [36] in order to correct for the two types of probes contained in 
this platform.

Differential expression analysis

We performed a differential expression analysis in all datasets independently towards 
the identification of differential patterns among disease samples and healthy controls. 
These analyses were performed in different ways depending on the source of data. Gene 
expression profiles from microarray platforms were carried out by the standard pipe-
line of limma package [23]. We used lmFit function to fit a linear model to the gene 
expression values followed by the execution of a t-test by the empirical Bayes method for 
differential activity (eBayes function). On the other hand, gene expression profiles from 
RNA-Seq platforms were analyzed by the standard pipeline of DESeq2 package [37]. In 
both cases, differential expression analysis provided P values, adjusted P values by False 
Discovery Rate (FDR) and log2 Fold-Change (FC).
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Pathway analysis

Pathway enrichment analysis was precomputed for each expression dataset using dif-
ferential expression analysis results. We considered DEGs those genes with a FDR lower 
than 0.05 and we performed hypergeometric tests to check if each pathway contains 
more DEGs as expected by chance. We used KEGGprofile 1.24.0 R package to perform 
this analysis but beforehand we manually updated its dependency, KEGG.db, the data-
base used to perform the statistical test. The pathways were plotted using the KEGG 
mapper tool Search&Color Pathway, with the genes colored by their FC between case 
and control samples.

Signaling network analysis

We integrated signaling network analysis applying HiPathia software [38] to gene 
expression data so that changes in the activity of the network from different pathways 
can be detected. We precomputed this analysis for each gene expression dataset. Firstly, 
we translated the gene expression matrix and scaled it. Then, we calculated the trans-
duction signal and compared among conditions, cases and controls.

Causal networks inference

We used the CARNIVAL [39] R package pipeline to analyze the causal networks archi-
tectures from gene expression data. For that aim, we followed the instructions published 
by their creators at https://​github.​com/​saezl​ab/​trans​cript​utori​al. Briefly, differential 
expression analyses were performed with limma [23] and the results were used to cal-
culate the transcription factor activities with DoRothEA [40] and the pathways activi-
ties with PROGENy [41]. These results were the input of CARNIVAL to calculate the 
upstream regulatory signaling pathways for each expression dataset. Finally, the results 
were stored in interactive html reports.

Database architecture

Pursuing an optimal data organization and quick access to all the data in ADEx, we have 
enabled an internal database with PostgreSQL. We chose this technology since it is open 
source and it is best suited to the huge dimensionality of omics datasets.

Webtool

ADEx user interface was designed with RStudio Shiny package. The application uses a set 
of external packages to perform analysis and graphics on demand. Most of the plots are 
generated with ggplot2 [42]. All the computations in the Meta-analysis section are per-
formed whenever users request them. Biomarkers analysis is performed with the Rank 
Products algorithm integrated in RankProd R package [43]. The tool runs on our own 
server with CentOS 7.0 operating system, 16 processors and 32 Gb of RAM memory.

Utility and discussion
Data collection and processing

ADEx contains data from 5609 samples. We have processed 82 expression and meth-
ylation datasets from case-control studies for SLE, RA, SjS, SSc and T1D diseases (see 
Table 1 for a summary and Additional file 1 for complete information about all included 

https://github.com/saezlab/transcriptutorial
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datasets). We have manually curated all metadata in order to standardize the nomencla-
ture of phenotypes, cell types, etc. from different studies and discard samples or data-
sets that do not meet the selection criteria (see “Construction and content” section). The 
processed datasets are available from the Download data section in the application.

The ADEx application

ADEx data portal can be used to download and analyze the processed data. ADEx is 
freely available at https://​adex.​genyo.​es. The tool is divided in 6 different sections 
arranged in different tabs (Fig. 2a).

Section 1: data overview

Information about the available datasets can be found in both table or pie plot formats 
in this section. In tables, information about the sample phenotype and their data ori-
gin is provided. In pie plots, quantitative information is provided regarding the clinical 
and phenotype information. All this information has been extracted from GEO or from 
the associated published articles whenever supplied. This information can be presented 
individually for each dataset or grouped by disease. While a single dataset is being 
explored, the experiment summary is shown. Users can use this section to identify data-
sets of their interest to be analyzed in the following sections.

Section 2: gene query

This section was created in order to explore the expression and methylation of a specific 
gene, or the correlation between them, within a single dataset. Users can explore the 
different gene expression values for each dataset comparing case and control samples 
with a boxplot. Meanwhile, methylation data is presented at CpG level, so that users can 
select a region of the gene (e.g. promoter) and the mean methylation value for cases and 
controls is plotted for every CpG probe contained in the selected region.

It has been demonstrated the strong relationship of gene expression and methyla-
tion levels [44]. That is why, in this section, users can also integrate both expression 
and methylation values to search for direct or inverse correlations. Finally, gene expres-
sion correlation analysis can be performed in order to get insight into the relationship 
between different genes and to find groups of coexpressed genes.

Table 1  Summary of accessible studies and samples by disease and data type in ADEx

Disease Expression Methylation Total
Datasets–samples Datasets–samples Datasets–samples

SLE 20–2053 13–628 33–2681

RA 17–1122 3–835 20–1957

SjS 9–400 1–29 10–429

SSc 5–229 1–37 6–266

T1D 11–176 2–100 13–276

https://adex.genyo.es
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Section 3: gene set query

Here, users can select several datasets and genes in order to explore the FC between 
patients and controls across studies. All datasets from a disease can be automatically 
selected by clicking the left buttons, or individual studies can be selected by click-
ing directly on the table. Users can introduce a list of genes to explore their expres-
sion, although there are several preloaded gene lists covering the coexpression modules 
reported by Chaussabel et al. [45]. These modules consist of sets of coexpressed genes 
among hundreds of samples from different diseases. Each transcriptional module is 
associated with different pathways and cell types, most of them related to the immune 
system [45]. See our use case 1 for an example of this type of analysis (Fig. 2b, c).
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Fig. 2  Overview of the ADEx application and analysis of IFN signature across diseases. a ADEx has six main 
sections. Section 1 provides information about available datasets. In Section 2, users can explore expression 
and methylation for individual genes. Section 3 implements a module to explore data for a gene list, such 
as gene module or genes from a biological pathway, across several datasets. Section 4 allows researchers 
to perform analysis on individual datasets retrieving differential expression signatures and pathways and 
cell signaling enrichment analyses. Section 5 implements meta-analysis methods to integrate multiple 
datasets in order to define common biomarkers. Section 6 is for data download. b Gene Set Query section 
screenshot. Datasets and gene set input is shown. Users select data there to plot a heatmap. c IFN signature 
expression generally separates SLE and SjS from other ADs. Heatmap with the IFN genes generated in 
ADEx. Color represents the log2 FC of disease versus healthy samples (red for overexpression and blue for 
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Section 4: analyze dataset

In this section, we focus the analysis on whole datasets instead of individual genes. 
By default, a heatmap with the expression of the top 50 differentially expressed genes 
(DEGs) sorted by FDR is displayed. It is also possible to sort them by FC and cutoffs can 
be applied to both statistics. Additionally, differential expression analysis results can be 
downloaded as an excel table.

Furthermore, users can also study the KEGG [46] enriched pathways associated with 
the dataset selected. These results are precomputed using all the DEGs that have an FDR 
value below 0.05. A table gathers the significantly enriched KEGG pathways along with 
their associated hypergeometric test statistics and an interactive plot shows detailed 
information of the participant genes in the pathway colored according to their FC.

Beyond conventional pathway enrichment methods, we have implemented more 
sophisticated mechanistic models of cell signaling activity which have demonstrated to 
be very sensitive in deciphering disease mechanisms [38, 47] as well as the mechanisms 
of action of drugs [48, 49]. To offer this functionality we have applied HiPathia software 
[38] to gene expression data. This method estimates changes in the activity of signal-
ing circuits defined into different pathways. With this approach, it becomes possible to 
study in detail the specific signaling circuits altered in ADs within the different signaling 
pathways. We precomputed this analysis for each dataset and the results are available as 
tables and interactive reports.

Finally, in this section the results of causal pathways analyses are available. We used 
CARNIVAL [39] software to construct the network topologies from the gene expres-
sion datasets in order to identify upstream alterations propagated through signaling net-
works in autoimmune diseases.

Section 5: meta‑analysis

ADEx also implements meta-analysis functionalities based on gene expression data to 
integrate and jointly analyze different and heterogeneous datasets. We implemented a 
meta-analysis approach to search for biomarkers and common gene signatures across 
different datasets from the same or different pathologies [50] based on the FCs of 
each dataset and gene. Datasets have to be selected similarly to Section 3 to launch 
the meta-analysis. See our use case 2 for examples of this type of analysis (Fig. 3).

Section 6: download data

In this section, users can select one or several datasets and download them. Curated 
data is obtained with the aim of performing additional analyses externally to the 
ADEx application.

Use case 1: exploring the IFN signature across diseases

Using as a query a set of genes (a gene expression signature, genes from the same 
pathway, etc.), it becomes straightforward to explore how the signature is expressed 
across different datasets or diseases. In order to demonstrate the potential of ADEx, 
we explored the IFN signature expression status in different diseases given its impor-
tance in the autoimmune disorders [11]. To address this goal, we evaluated the expres-
sion level across all datasets of the IFN signature previously defined [51] (Fig.  2b). 
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We observed that IFN signature is strongly overexpressed in SLE and SjS patients 
(Fig.  2c), as previously described [52, 53]. These two diseases are clearly separated 
from the other pathologies based on these IFN-regulated modules. RA IFN signature 
is highly heterogeneous, which is coherent with previous studies [54]. Interestingly, 
IFN modules are overexpressed in most of the RA studies that used synovial mem-
brane tissue, while this effect is absent or very subtle in most of the RA blood studies. 
This is expected because the primary inflammation sites in this disease are the syno-
vial joints [55].

Use case 2: biomarker discovery in ADs

To show the functionality of ADEx for biomarker discovery, we also performed a dis-
ease-centered meta-analysis with all the datasets included in the database in order to 
define candidate biomarkers for each disease. We removed those genes with NA val-
ues in more than 75% of the samples and we used RankProd package [43] to calculate 
the Rank Product statistics and the adjusted P value. We considered significant those 
genes with adjusted P value < 0.05. Since there are datasets from different cell types, 
tissues or platforms, our aim was to find global biomarkers independently of all those 
variables. We discovered 1703 consistently deregulated genes in SLE, 367 in SjS, 743 
in RA, 45 in SSc and 294 in T1D (Fig. 3 and Additional file 2). We used the informa-
tion from Interferome database [56] to annotate each gene depending on how each 
type of IFN affects its expression (upregulation or downregulation). For that aim, we 
queried the Interferome database, searching for genes with an absolute log2 FC > 2 
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after IFN addition. Given that this database contains different experimental condi-
tions, we averaged the log2 FC and considered as genes upregulated by IFN those with 
an average log2 FC > 0 and as downregulated those with an average log2 FC < 0. As can 
be observed in Fig. 3, most of SLE, SjS and RA biomarkers are expressed accordingly 
to the observed IFN effect on them, supporting the major role of IFN action in these 
diseases. It is notable the contribution of type II IFN (IFN II) to the observed expres-
sion changes. IFN II role in ADs is frequently underestimated in favor of type I IFN 
(IFN I) and, in fact, IFN signature definitions commonly focus on genes regulated by 
IFN I [6, 10, 52]. However, it has been demonstrated that Type II IFN has a key role in 
ADs pathogenesis [57]. Our findings support such importance and the need to focus 
the attention on IFN II regulation pathways to design new therapeutic strategies.

In RA, the strongest biomarker signals come from synovial tissue studies, and these 
datasets are perfectly separated from the blood studies. This is coherent with the IFN 
signature expression results (Fig. 2c).

Conclusions
Despite that the heterogeneity of ADs is evident, there are common molecular mech-
anisms involved in the activation of immune responses. In this context, integrative 
analyses of multiple studies are crucial to discover shared and differential molecu-
lar signatures [58]. Nowadays there are many ADs datasets publicly available, but a 
strong computational knowledge is necessary in order to analyze them properly. With 
the aim of filling this gap between experimental research and computational biology, 
interactive easy-to-use software are valuable tools to perform exploratory and sta-
tistical analysis without strong computational expertise. This type of tool has been 
developed for other diseases and has helped to reuse public data and generate new 
knowledge and hypotheses [59–61].

A resource of this type is urged in the field of ADs to: (1) Compile available ADs’ 
public data in a single data portal, (2) Access to integrable data processed with uni-
form pipelines, and (3) Perform both individual and integrated analysis interactively. 
We developed ADEx database to accomplish all those objectives. Then, we used 
ADEx data and functions to illustrate our tool potential exploring the IFN signature 
in different diseases and revealing genes consistently over- and underexpressed which 
could be good biomarkers for these diseases.

As far as we know, ADEx is the first ADs omics database and we expect it to be a 
reference in this area. During the coming years, ADEx will be expanded including 
data from more ADs and other omics. Furthermore, additional datasets will be added 
upon request from users.
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