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Abstract
The promise of collaboration between humans and algorithms in producing good decisions is stimulating much experimen-
tation. Drawing on research in organization design can help us to approach this experimentation systematically. I propose 
typologies for considering different forms of division of labor between human and algorithm as well as the learning con-
figurations they are arranged in, as basic building blocks for this endeavor.
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Introduction

In this brief Point of View article, I offer some thoughts on 
how we may conceptualize collaborative decision-making 
between humans and AI algorithms as a problem in organi-
zation design.

While there are many possible forms of interaction 
between humans and AI algorithms, the arguments here are 
most relevant to knowledge work in which humans and AI 
algorithms through some form of collaboration, together 
produce a decision that is implemented by a third party (for 
instance stock picking, investment, sentencing, screening 
candidates). I refer to these as situations of “Human–AI Col-
laborative Decision-Making” (or HACD). The arguments 
may also apply to situations which involve a human train-
ing an AI algorithm (e.g., self-driving cars that learn from 
observing humans drive) or vice versa (e.g., chatbot-based 
language learning applications), or the use of algorithms to 
improve matches between humans (e.g., friend suggestions 
on social media platforms), but will require additional con-
siderations that I do not address here.

In what follows, I use the terms “AI” and “algorithm” 
interchangeably with “machine learning” (ML). I am aware 
that not all algorithms are AI, and not all AI is machine 
learning (Broussard 2018; Raj and Seamans 2019), but my 

usage avoids tedium. Human–ML collaboration for deci-
sion-making is different from other forms of human inter-
action with/adoption of technology for at least two reasons. 
First, the outputs of decision tasks unlike physical produc-
tion tasks can sometimes be aggregated in a manner that 
improves their accuracy through error cancellation. This 
means that division of labor without specialization is fea-
sible in HACD. Second, there is the potential for mutual 
adjustment: both humans and AI based on machine learning 
algorithms are adaptive systems that change how they make 
decisions over time through learning from experience (i.e., 
past data). Organizational scientists understand the dynam-
ics of mutual adaptation and know them to be distinctive 
from one sided-adaptation or static collaboration (Knudsen 
and Srikanth 2014; Lave and March 1993; Lounamaa and 
March 1987; Puranam and Swamy 2016).

I make two main points in this article. First, I note that 
from the perspective of organization design, there are mul-
tiple possible configurations of division of labor in HACD 
besides the one that is most intuitive and currently domi-
nates popular discourse, namely one based on specialization 
(human and AI each do different sub-tasks they are relatively 
best at). Second, organization design research also suggests 
that there are multiple learning configurations to consider in 
which humans and AI may “learn together”. I express these 
possibilities in terms of simple typologies. Together they 
describe a design space which may not yet be completely or 
densely populated, but which may serve to guide our explo-
rations in terms of both practice and theory.
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How HACD can be valuable

Taking an organization design perspective on the problem 
of human–AI collaborative decision-making (henceforth 
HACD) requires us to view the combination of the human 
and the algorithm as an organization—i.e., a multi-agent, 
goal-oriented system. The goal of an HACD organization is 
to produce a decision. The design of the organization con-
stitutes the choices about division of labor (task division and 
task allocation) and integration of effort (information and 
reward provision, exception handling) that characterize the 
organization (Puranam 2018).

Why should an organization that involves HACD ever be 
superior to an organization comprising only humans or only 
algorithms? A first cut at the problem is shown in Fig. 1.

At any point in time, given the prevailing state of tech-
nology, we can speak of three types of tasks: Type A tasks 
are those in which algorithms equal or outperform humans 
(e.g., today that would include image or handwriting recog-
nition). Type B tasks are the ones that humans outperform 
algorithms on (e.g., evaluating a job applicant’s integrity 
remains a Type B task, even though reading the CV might 
be a Type A task) and must remain in the hands of humans. 
However, by appropriate division of labor—including 
breaking up aggregate tasks into smaller ones which can 
be differentiated into Type A and Type B1—the human and 
algorithm each can do what they are better at. This unlocks 
gains from specialization (net cost of coordination between 
agents) through HACD. This logic lies at the heart of a lot 

of contemporary workflow and process automation. It is not 
fundamentally different from the calculus of outsourcing or 
offshoring or gains from trade as set out by Adam Smith 
and David Ricardo; and it applies to tasks in general, not 
only decisions.

The more interesting case is Type C, where despite no 
clear superiority of either human or algorithm, the combi-
nation through aggregation may outperform either alone. 
A distinctive feature of decisions is that their accuracy can 
sometimes be improved through pooling and error cancel-
lation (Larrick and Soll 2006; Rokach 2010; Surowiecki 
2004). Having a human and an algorithm (or indeed several 
algorithms—as is the case with ensemble learning models) 
make the same decision and then aggregating their outputs 
can produce improved quality in terms of greater decision 
accuracy. This is not possible usually with physical products. 
For decisions that involve predicting a continuous variable 
(e.g., quality), the “wisdom of crowds” provides the intui-
tion. For decisions that involve predicting a discrete category 
(e.g., hire or reject), Condorcet’s jury theorem provides a 
foundation, which illustrates how increasing the size of 
a jury of identically and modestly accurate members can 
increase the jury’s aggregate accuracy.

Possible divisions of labor between humans and AI 
in collaborative decision‑making

Building on this intuition of the differences between types 
of tasks, and by drawing on basic ideas in organization 
design, we can give a more comprehensive picture of the 
possible divisions of labor in HACD. Figure 2 illustrates the 
arguments below by giving hypothetical divisions of labor 
between humans and AI in the context of HACD for stock 
picking, such that an equity analyst and an algorithm might 
jointly make a recommendation on whether to buy a stock.

Fig. 1   Gains from human–algo-
rithm collaborative decision-
making (HACD)

1  I see the situations where algorithms handle routine cases (Type A) 
and humans the exceptions (Type B) also as an instance where a task 
can be partitioned into sub-tasks that fall into Type A or Type B cat-
egories.
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A division of labor involves (a) decomposition of the 
goal (the final decision) into tasks (decisions) that aggre-
gate into the final decision and (b) allocating sub-clusters of 
these tasks across the organization’s members. The resulting 
allocation of tasks to agents—a division of labor—can be 
described in two ways.

First, there will exist a structure of interdependence 
between tasks (and therefore between clusters of tasks allo-
cated to different agents). Two tasks are interdependent if 
the value created when both tasks are performed is differ-
ent from the sum of values created by performing each task 
alone. For instance, this could be because they draw on 
common rivalrous inputs, the value of outputs is super or 
sub-additive, or one is an input to another (Burton and Obel 
1984; Milgrom and Roberts 1990; Thompson 1967). Since 
decision tasks do not usually consume tangible inputs, the 
relevant forms of interdependence between two decisions 
are the cases where one is a sequential input to the other 
(perhaps repeatedly, as in reciprocal interdependence),2 or 
the value of their joint, parallelly produced outputs is super- 
(or sub) additive (also see Christensen and Knudsen 2013).

Second, the allocated tasks to agents may vary in the 
extent of heterogeneity of knowledge or skills needed in 
these tasks (Raveendran et al. 2020). Two workers who must 
produce dining tables may both produce a table each—a 
case of non-specialized task allocation—or focus differently 
and, respectively, on making legs and tops (an object-based 
division of labor) or in cutting and fixing wood (an activity-
based division of labor). It is by no means obvious which of 
these arrangements is superior, as it depends on the gains 
from specialization (by each worker focusing on a narrow 
set of tasks they are distinctively good at) vs. the gains from 

customization (i.e., managing the dependencies between 
dissimilar task), as well as the cost of coordination among 
agents (Raveendran et al. 2015). The difference between 
craft and industrial production of furniture illustrates this 
point.

The gains from specialization in parts of a decision 
(splitting into Types A and B), whether in sequence or in 
parallel, thus constitute but one form of HACD. The gains 
from ensembling, i.e., allowing multiple agents to make the 
identical decision, may apply to Type C tasks. Of course, 
tasks might change from one Type to another over time as 
technology advances, perhaps inevitably in the direction of 
Type A by depleting Types B and C—but it is enough for my 
arguments that each Type exists at any point in time. Persis-
tent data limitations and the possible non-stationarity of the 
underlying data generation processes can prevent algorithms 
(or humans) from accomplishing outright superiority, pos-
sibly making Type C a stable category. For instance strategic 
decisions may have these attributes.

In sum, the division of labor in HACD can be described 
along two dimensions: the nature of interdependence—
whether the decisions of the human and algorithm are related 
sequentially (only one of their outputs matters directly for 
final output) or can occur in parallel (human and algorithm 
outputs both directly matter for final output), and the nature 
of specialization—whether they engage in different or iden-
tical decision tasks.

From static to dynamic considerations: learning 
configurations within HACD

So far, we have considered a rather static picture of the divi-
sion of labor between humans and AI for decision-making—
which simply assumes differences in what they are good 
at. As Adam Smith pointed out division of labor not only 
exploits existing differences in skill in allocating different 
components of labor to different actors, but the different 

Fig. 2   Possible divisions of 
labor for stock picking with 
HACD

2  Note that the notion of decision rights (which agent can choose to 
accept/reject output of other) can be treated the same as who is last in 
a sequence.
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allocations themselves produce difference in skill over time 
(also see Mintzberg 1983 for an elaboration of this point in 
the context of organization design). Further, the distinctive 
feature of HACD, as opposed to other forms of technol-
ogy adoption or even automation, is the potential for mutual 
adjustment: both humans and algorithms not only learn on 
their tasks from feedback, they also learn to adjust to each 
other and from each other.

Learning here  refers to a change in beliefs or behav-
ior (not necessarily performance improvement) as a con-
sequence of experience (Argote 2013). Learning in the 
context of decision-making implies that given the same 
input at two different points in time, a decision-maker 
(either human or algorithm) may produce different outputs 
(i.e., take different decisions), because of changes to how 
the inputs are processed that occurred in the intervening 
period. These changes are the result of feedback conditional 
on the output, which is itself conditional on inputs. For an 
isolated human decision-maker, the data needed to learn 
how to make decisions should therefore necessarily include 
feedback/evaluation of past decisions conditional on the out-
put (the actual decision they made) as well as the inputs they 
based their decision on, and possibly the process they used 
to arrive at a decision (the last may not be necessary given 
sub-conscious decision-making and associative learning).

Therefore, to understand how members of a HACD 
organization learn, it is useful to ask what might be differ-
ent about the data available to them in terms of feedback 
conditional on inputs, outputs and process, compared to the 
case where they acted as isolated decision-makers. I use the 
term learning configurations to characterize situations that 
vary in terms of the nature of information available for learn-
ing. The organization design literature suggests two dimen-
sions (Table 1) on which learning configurations might vary 
in situations of multi-agent learning.

The first is interdependence between the decision-makers. 
Organization designers recognize the important distinc-
tion between interdependence between tasks (in this case, 
decisions which we have described in terms of parallel or 
sequential) vs interdependence between agents (Puranam 
et al. 2012). Given two tasks undertaken by agents A and B, 
(symmetric) interdependence between agents exists when 
the value of A’s actions to A depend on B’s actions and 
vice versa (Emerson 1962; Kelley and Thibaut 1978; Pfeffer 
and Salancik 1978; von Neumann and Morgenstern 2007). 

We can observe interdependence between agents even when 
there is none between the task they perform or vice versa. 
In HACD, if the feedback to A on A’s decisions depends on 
B’s decisions and vice versa, then they are interdependent—
and their learning will be coupled (Lave and March 1993; 
Lounamaa and March 1987; Knudsen and Srikanth 2014; 
Puranam and Swamy 2016).

For instance, in a HACD organization of one human 
and one algorithm that together produce an equity research 
report, we might provide feedback separately on the com-
ponents of the report that the human and the algorithm con-
tributed or on the report as a whole (was it good or bad). In 
the second situation, the human and algorithm are coupled 
in their learning, because the feedback they receive is on the 
aggregate output but not in the first (though the decisions 
they make are interdependent in both cases). This is akin to 
the distinction between carpenters who receive feedback on 
the whole table they produce (“how much did the customer 
pay?”) or on the parts they contributed (“beautiful finish on 
the surface! rickety legs though”).

Second, situations vary in the ease with which agents can 
communicate—exchange information on the inputs and pro-
cess they use to decide, as well as the decision themselves. 
This is not necessarily a matter of all or nothing. Communi-
cation is particularly difficult even among human decision-
makers who specialize in different tasks (Dougherty 2001). 
Between humans and algorithms, it may be difficult because 
the sheer volume of information overloads human capaci-
ties—for instance, when the algorithm is used as a screening 
device, making it difficult for the human to process even the 
inputs and outputs that algorithm produced. It may also be 
hard to exchange information on the processes used to decide 
as highlighted by the literature on the challenges of build-
ing explainability into AI (Samek et al. 2017). However, to 
keep the exposition simple, I consider all cases where some 
communication between human and algorithm is possible 
as instances of vicarious learning: one agent learns from 
the experience of another, where experience may be any 
combination of past inputs, process, outputs and feedback 
(Bandura 1977; Cyert and March 1963). For instance in a 
HACD team of one human and one algorithm that produce a 
recommendation on an equity, the human may have access to 
the inputs (data) and outputs (results) produced by the algo-
rithm and vice versa, or not; the latter represents a situation 
of communication constraints (these need not be symmetric 

Table 1   Learning 
configurations in human–AI 
collaborative decision-making 
(HACD)

Communication constraints Communication is feasible 
on inputs/process/outputs/
feedback

Independent feedback Isolated learning Vicarious learning
Interdependent feedback Coupled learning Coupled + vicarious learning
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of course). In our example of physical good production, the 
carpenters might see the feedback each receives as well as 
the inputs and raw materials each uses (or not).

Learning configurations in HACD can therefore range 
from isolated learning (independent feedback, no commu-
nication with other members) to situations involving both 
coupled and vicarious learning (interdependent feedback, 
with communication between members), or either alone. 
However, it is important to highlight that in all cases, the 
decisions themselves could be interdependent. Further, in 
all cases (including isolated learning), mutual adjustment 
between human and algorithm could be taking place, if the 
division of labor between humans and algorithms affects 
what data are available to each. For instance, two bank offic-
ers who decide on mortgage applications and learn from 
individual feedback on past cases with no communication 
between them, may still be tacitly adjusting to each other 
when placed in a serial division of labor, because the learn-
ing opportunities of the downstream agent depend on the 
actions of the upstream agent (Christensen and Knudsen 
2020).

Combining division of labor and learning 
configurations: the design space for HACD

Considering HACD organizations with a joint emphasis on 
the nature of division of labor and the learning configura-
tion can help us understand and design them better, both 
in terms of expanding the space of possibilities, as well as 
the precision with which we characterize particular points 
within them.

Some models already exist in the organization design lit-
erature for each of the types of possible division of labor in 
HACD in at least some of the possible learning configura-
tions. These models typically use adaptive reinforcement 
learning algorithms to simulate human decision-makers—
but that should not prevent us from re-interpreting them as 
models of HACD, particularly once heterogeneity between 
agents is added to the picture.

For instance, when the division of labor in decision-mak-
ing involves specialization, feedback is often on group level 
output. Models of coupled learning have highlighted that the 
key design challenge in such situations is to avoid supersti-
tious learning from false negatives and false positives (Lave 
and March 1993; Lounamaa and March 1987). Common pri-
ors and vicarious learning in the case of parallel specialized 
decisions (Puranam and Swamy 2016; Knudsen and Srikanth 
2014; Aggarwal et al. 2017), and the stability of personnel 
in the case of sequential specialized decisions (Denrell et al. 
2004) have been argued to mitigate the challenge. Coupled 
learning might also arise without specialization. Piezunka 
et al. (2020) study learning by participation, in which paral-
lel unspecialized decision-makers receive feedback only on 

their aggregate decisions derived from voting. They point 
out that the quality of decisions over time depend on how 
the contrarians—those whose beliefs did not align with the 
majority vote at a point in time—influence future decisions. 
We also know that serial and parallel architectures lead to 
different learning dynamics even with isolated learners, 
because the inputs and therefore opportunities for learning 
are censored in serial architectures (Christensen and Knud-
sen 2013, 2020).

However, these hardly exhaust the combinatorial space 
obtained by crossing possible divisions of labor with learn-
ing configurations. There is much to do in terms of complet-
ing our conceptual understanding of these possibilities, and 
even more to do in confronting the models with data. A part-
nership between organization design researchers and prac-
titioners interested in HACD seems ripe with opportunity.

Acknowledgements  I thank Bart Vanneste, Marlo Raveendran, San-
ghyun Park, Yash Raj Shreshtha and Thorbjorn Knudsen for helpful 
suggestions.

Authors’ contributions  Phanish Puranam is the sole author. The author 
read and approved the final manuscript.

Funding  Funding from INSEAD R&D Committee is gratefully 
acknowledged for research assistance.

Availability of data and materials  Data sharing not applicable to this 
article as no datasets were generated or analyzed during the current 
study.

Competing interests  The author declares that there are no competing 
interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aggarwal VA, Posen HE, Workiewicz M (2017) Adaptive capacity 
to technological change: a microfoundational approach. Strateg 
Manag J 38(6):1212–1231. https://​doi.​org/​10.​1002/​smj.​2584

Argote L (2013) Organizational learning: creating, retaining and trans-
ferring knowledge. Springer US, New York

Bandura A (1977) Social learning theory. Prentice Hall, Englewood 
cliffs

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/smj.2584


80	 Journal of Organization Design (2021) 10:75–80

1 3

Broussard M (2018) Artificial unintelligence: how computers misun-
derstand the world. MIT Press, Cambridge

Burton RM, Obel B (1984) Designing efficient organizations: modeling 
and experimentation.

Christensen M, Knudsen T (2013) How decisions can be organized- 
and why it matters. J Organ Des 2(3):41–50

Christensen M, Knudsen T (2020) Division of roles and endogenous 
specialization. In: Industrial and Corporate Change, pp 105–124

Cyert RM, March JG (1963) A behavioural theory of the firm. Wiley, 
Hoboken

Denrell J, Fang C, Levinthal DA (2004) From T-mazes to labyrinths: 
learning from model-based feedback. Manage Sci 50(10):1366–
1378. https://​doi.​org/​10.​1287/​mnsc.​1040.​0271

Dougherty D (2001) Reimagining the differentiation and integration of 
work for sustained product innovation. Organ Sci 12(5):612–631. 
https://​doi.​org/​10.​1287/​orsc.​12.5.​612.​10096

Emerson RM (1962) Power-dependence relations. Am Sociol Rev 
27(1):31–41

Kelley HH, Thibaut JW (1978) Interpersonal relations: a theory of 
interdependence. Wiley, Hoboken

Knudsen T, Srikanth K (2014) Coordinated exploration: organizing 
joint search by multiple specialists to overcome mutual confusion 
and joint myopia. Adm Sci Q 59(3):409–441. https://​doi.​org/​10.​
1177/​00018​39214​538021

Larrick RP, Soll JB (2006) Intuitions about combining opinions: misap-
preciation of the averaging principle. Manage Sci 52(1):111–127

Lave CA, March JG (1993) An introduction to models in the social 
sciences. The University Press of America, Lanham

Lounamaa PH, March JG (1987) Adaptive coordination of a learning 
team. Manage Sci 33(1):107–123

Milgrom P, Roberts J (1990) The economics of modern manufac-
turing: technology, strategy, and organization. Am Econ Rev 
80(3):511–528

Mintzberg H (1983) Structure in fives: designing effective organiza-
tions. Prentice Hall PTR, Upper Saddle River

Pfeffer J, Salancik GR (1978) The external control of organizations: 
a resource dependence perspective. Stanford University Press, 
Palo Alto

Piezunka H, Aggarwal VA, Posen HE (2020) Learning-by-participat-
ing: the dual role of structure in aggregating information and shap-
ing learning. Organ Sci (forthcoming)

Puranam P (2018) The microstructure of organizations. Oxford Uni-
versity Press, Oxford

Puranam P, Swamy M (2016) How initial representations shape cou-
pled learning processes. Organ Sci 27(2):323–335. https://​doi.​org/​
10.​1287/​orsc.​2015.​1033

Puranam P, Raveendran M, Knudsen T (2012) Organization design: 
the epistemic interdependence perspective. Acad Manag Rev 
37(3):419–440. https://​doi.​org/​10.​5465/​amr.​2010.​0535

Raj M, Seamans R (2019) Primer on artificial intelligence and robotics. 
J Organ Des 8(11):1–14

Raveendran M, Puranam P, Warglien M (2015) Object salience in divi-
sion of labor: experimental evidence. Manage Sci 9:337–392

Raveendran M, Silvestri L, Gulati R (2020) The role of interdepend-
ence in the micro-foundations of organization design: task, goal, 
and knowledge interdependence. Acad Manag Ann 14(2):828–868

Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1–
2):1–39. https://​doi.​org/​10.​1007/​s10462-​009-​9124-7

Samek W, Montavon G, Vedaldi A, Hansen LK, Müller KR (eds) 
(2017) Explainable AI: interpreting, explaining and visualizing 
deep learning. Springer Nature, New York

Surowiecki J (2004) The wisdom of crowds: Why the many are smarter 
than the few and how collective wisdom shapes business, econo-
mies, societies, and nations. Doubleday & Co, New York

Thompson JD (1967) Organizations in action: social science bases of 
administrative theory. Transaction Publisher, Piscataway

von Neumann J, Morgenstern O (2007) Theory of games and economic 
behavior. Princeton University Press, Princeton

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1287/mnsc.1040.0271
https://doi.org/10.1287/orsc.12.5.612.10096
https://doi.org/10.1177/0001839214538021
https://doi.org/10.1177/0001839214538021
https://doi.org/10.1287/orsc.2015.1033
https://doi.org/10.1287/orsc.2015.1033
https://doi.org/10.5465/amr.2010.0535
https://doi.org/10.1007/s10462-009-9124-7

	Human–AI collaborative decision-making as an organization design problem
	Abstract
	Introduction
	How HACD can be valuable
	Possible divisions of labor between humans and AI in collaborative decision-making
	From static to dynamic considerations: learning configurations within HACD
	Combining division of labor and learning configurations: the design space for HACD

	Acknowledgements 
	References




