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Background
Alternative splicing (AS) is recognized as an important intracellular mechanism of 
post-transcriptional regulation of gene expression [1, 2]. By splicing of the precursor 
messenger RNA (pre-mRNA) into a multitude of mRNA variants, the protein-coding 
potential of eukaryotic genes is expanded, thereby resulting in increased proteome 
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diversity. Over 95% of the human multi-exonic genes are alternatively spliced, and 
common splice event types include skipped exons (SE), intron retentions (IR), alter-
native 3’ splice sites (A3SS), alternative 5’ splice sites (A5SS), and mutually exclusive 
exons (MXE) [3, 4]. Exon skipping occurs when an exon is spliced out together with 
its flanking introns and this constitutes the most prevalent type of AS events (40% of 
all AS events). A5SS or A3SS designate events with alternative splice sites that may 
result in the inclusion or exclusion of alternatively spliced regions, i.e., of alternative 
parts of exons, while IR are AS events where an entire intron is not spliced out [4].

AS promotes functional diversity of gene regulation, changes in transcript stabil-
ity or localization as well as the removal or incorporation of post-translational modi-
fication sites [5]. As such, AS plays a part in many biological processes involved in 
normal cellular functions such as homeostasis, differentiation or sex determination 
[2, 6, 7], but also in disease pathogenesis and pharmacological processes underlying 
drug resistance [3, 8, 9]. With respect to the latter, AS has been proposed as a source 
of potential biomarkers or as a target for drug development [10–12]. For example, in 
childhood acute lymphoblastic leukemia (ALL), an A5SS selection in exon 8 of the 
folate metabolizing enzyme folylpolyglutamate synthetase (FPGS) was shown to be 
associated with the clinical response to methotrexate (MTX), an anchor drug in the 
treatment of ALL [13] and rheumatoid arthritis [14].

With the recent advances in RNA-sequencing (RNA-seq) technologies, whole-
transcriptome analysis of AS profiles has become feasible, requiring the development 
and application of up-to-date/state-of-the-art computational tools to reliably detect 
common and less common differential splicing (DS) events [6]. DS comprises the 
analysis of AS in which event or isoform abundance is compared across two or more 
conditions. Over the past decade, a plethora of different DS tools have been devel-
oped and evaluated, many of which harbors the ability to sensitively and accurately 
detect and quantify AS events [15]. While most tools are similar in execution, it is 
also important to distinguish tools that analyze isoform-level DS and event-level DS, 
the latter providing DS information on a specific event type rather than the relative 
expression of transcript isoforms/variants. Event-level DS tools need to accurately 
quantify the abundance of reads/transcripts pertaining (as determined by RNA-seq) 
specifically to the possible AS event types (SE, IR, A5SS, A3SS, MXE). While compar-
isons have been made between DS tools in general, these comparisons were often on 
the isoform-level, and also lacked in-depth analysis of unbiased output concordance 
[16–18].

In addition, comparative studies or tools publications can conceivably include limited 
comparisons (e.g. using only a set of SE events and not comparing relative splicing abun-
dances), comparisons of outdated versions, and/or a biased selection (e.g. handpicking 
a set of specific genes with a maximum of two isoforms) [19–21]. For example, selec-
tive reporting of just SE events for tool comparisons could raise an erroneous impres-
sion that event detection and measured splicing abundance is similar between event 
types, which may not reflect the complete account. This can result in bias towards tools 
adept at detecting SE, but not RI/A5SS/A3SS events. Finally, the use of receiver operat-
ing curve (ROC) curve analysis to compare DS tools does not inform on the overlap 
between tool outputs or concordance between quantifications of AS events.
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To address these issues, we here aimed to compare three commonly used event-level 
DS tools (rMATS [19], MISO [20], and SUPPA2 [21]) based on their computational 
performance as well as to compare concordance between quantification of differential 
splicing (Percent Spliced In [PSI], or equivalent) of a cell line and its drug-resistant sub-
clone [13].We selected these three tools due to their relative popularity, their use without 
knowledge of separate programs such as R, and the ability to analyze on the splicing 
event-level. Furthermore, we compared each tool for its ability to detect a validated AS 
event involved in drug resistance across various conditions. Finally, we aim to specify the 
differences in usability of the different DS tools, analyze their (dis)similarities in output 
as well as provide practical insights for (inexperienced) biomedical researchers intend-
ing to investigate DS with one of the available tools.

Results
Job times

Three different Microsoft Azure cloud-based virtual machines (VMs) were used to sim-
ulate low (D2), medium (D8), and high (D16) computational power (Table 1).

Total job times were calculated for analyzing 2 versus 2 comparisons of different size 
input files (30 M, 100 M, and 300 M reads) (Fig. 1). Regardless of VM type used, MISO 
required the longest time to perform the job for each size. Furthermore, both rMATS 
and MISO showed linear increases in job times when increasing file size in all VMs. Job 
times for SUPPA2 were consistent regardless of file size, since PSI calculations were per-
formed on transcript expression files, which are identical for each analysis. No differ-
ence was seen for rMATS analysis for D8 or D16. In addition, MISO analysis with 300 M 
reads input did not decrease job time when increasing VM size from D8 to D16.

Table 1  Microsoft Azure Virtual Machines

vCPUs: max number of virtual CPUs. RAM (GB): Max RAM. Max IOPS: max input/output operations per second

Virtual machine name vCPUs RAM (GB) Max IOPS

D2s_v3 2 8 3200

D8s_v3 8 32 12,800

D16s_v3 16 64 25,600

Fig. 1  Job times per analysis. Runtime of the different analyses (size (A) and replicate (B) comparisons) per 
tool and virtual machine in the simulated dataset. A Input size and B amount of replicates were varied (x-axis) 
and time in seconds (y-axis) is shown. Values are in log scale. SUPPA2—blue, rMATS—red, MISO—green
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When analyzing replicates, exponential increases were observed in all rMATS and 
SUPPA2 analyses. For 10 versus 10 comparisons, D8 rMATS analysis was shown to take 
the least amount of time at 6719 s (1.9 h). For rMATS, increasing VM size from D8 to 
D16 increased job times substantially, implying less efficient job performance for D16 
than D8 VMs.  Job times for SUPPA2 were similar over all analyses regardless of the 
number of replicates.

CPU load averages and RAM

VM performance metrics for 2 versus 2 size comparisons are shown in Fig. 2. Maximum 
load averages of both rMATS and SUPPA2 were relatively low, with a maximum load 
average of 4.4 for the D16 300 M analysis for rMATS and 1.25 for SUPPA2. In contrast, 
MISO shows load averages exceeding maximum thread counts for all VM sizes, indicat-
ing inefficient CPU utilization. Especially for D2 VM analyses, load averages exceeded 
CPU numbers substantially, indicating severe CPU thread demand. RAM usage is rela-
tively stable in both rMATS as well as SUPPA2 when using larger VMs, but not when 
increasing file size (Fig.  2). For MISO, RAM usage in the D2 VM was at maximum 

Fig.  2  CPU/RAM performance per read depth. A Max CPU load averages are plotted for each read depth 
and VM (max vCPUs: D2–2 (blue dotted line), D8–8 (red dotted line), D16–16 (green dotted line)). B Max RAM 
usage is plotted as percentage of total available RAM. Max RAM per VM: D2–8 GB (blue dotted line), D8–32 GB 
(red dotted line), D16–64 GB (green dotted line)
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(> 95%) for each file size while absolute RAM usage increased with file size for the D8 
and D16 VM, not reaching maximum and percentage RAM usage decreased (max 40% 
and max 20%, respectively (Fig. 2). For replicate analysis, rMATS and SUPPA2 showed 
increased RAM and CPU load average usage with increased replicate size (Fig. 3), with 
rMATS using more RAM than SUPPA2 in all analyses. Similar to Fig. 2, rMATS showed 
limited RAM usage over all analyses, not exceeding 30% of total RAM. Idle RAM usage 
varied between 1–5%, attributing to non-linear RAM usage in both tools.

Concordance

To assess concordance, (significant) events of each tool output have been extrapolated, 
and matched based on their respective coordinates. Correlation coefficients were calcu-
lated through linear regression analysis of all (significant) matched splice events. Cor-
relation coefficients shown in Fig.  4 show a general pattern of concordance between 
tools for SE, A3SS and A5SS events (R2 > 0.8 for most comparisons). Notably, rMATS 
versus MISO comparisons show high similarity in measured PSI for matched SE events 
(R2 > 0.9). However, poor concordance (R2 < 0.5) was noted for RI events in the MISO 

Fig. 3  CPU load and RAM usage per replicate. A Max CPU load averages are plotted for each amount of 
replicates and VM (max vCPUs: D2–2 (blue dotted line), D8–8 (red dotted line), D16–16 (green dotted line)). B 
Max RAM usage (in GB) for each replicate and virtual machine. Max RAM per VM: D2–8 GB (blue dotted line), 
D8–32 GB (red dotted line), D16–64 GB (green dotted line)
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versus rMATS and rMATS versus SUPPA2 comparisons, due to differing relative PSI 
values for matched RI events, shown in Fig. 5. A similar pattern is seen when including 
non-significant events (Additonal file 1:  Fig. 4). When comparing all events (including 
non-significant ones) between the splicing tools, correlation coefficients between MISO 
and rMATS and SUPPA2 and rMATSwere 0.24 and 0.23, respectively (Fig. 6D, E).

No significant differences were observed when comparing outputs between differ-
ent VM types. However, small differences in significant events were visible when MISO 
analysis was performed on different VMs, reflected in the slightly different R2 values for 
rMATS versus MISO and MISO versus SUPPA2. This was not observed in the rMATS 
versus SUPPA2 comparison. Of the RI comparisons, MISO versus SUPPA2 (R2 > 0.7) 

Fig. 4  Correlation matrix of concordance of significant matched events between tools. Linear regression 
coefficients are shown for each read depth (A) or amount of replicates (B) for each VM per tool combination 
(rMATS/MISO, MISO/SUPPA2, and rMATS/SUPPA2). Event types: SE–spliced exon, RI–retained intron, A5–
alternative 5’splice site, A3–alternative 3’ splice site. D2–D2 virtual machine; D8–D8 virtual machine; D16–D16 
virtual machine
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show the best concordance over all sizes or replicates, while rMATS versus MISO and 
rMATS versus SUPPA2 were the most discordant (R2 > 0.4). As a biologically relevant 
example,  a known  RT-PCR-validated  differentially spliced A5SS event in FPGS  (FPGS 
8PR), being associated with MTX resistance in CEM/R30dm cells [22], was investigated 
(Additonal file 1: Fig.  2)  and found as significantly differentially spliced in all MISO 
analyses (Bayes factor > 10) and in the 10 versus 10 rMATS comparisons. The event was 
found in all other rMATS analyses as well as all SUPPA2 analyses, although statistical 
significance was not reached (Additonal file 1: Tables 1 and 2).

Discussion
In this report, we compared three commonly used event-level AS tools with regard to 
their computational performance metrics as well as whether the tools produce similar 
output (Table 2). We aimed to inform wet-lab researchers who want to start working in 
this field and discuss on the possibilities and pitfalls of splicing analysis of RNA-seq data 
by applying commonly used tools. Obviously, a plethora of other tools exist that could 
have been added to the current study. We purposefully did not include R-based tools, 
since that would require knowledge on a separate programming language to operate.

Fig. 5  Scatterplots of D16 300 M analyses (significant events) for each event type. Scatterplots show relative 
splicing abundance for each tool (rMATS–InclusionLevelDifference; MISO–diff; SUPPA2–dPSI) and each event 
type (SE–spliced exon; RI–retained intron; A5–alternative 5’ splice site; A3–alternative 3’ splice site). Regression 
coefficient is depicted as R2. Linear regression line is shown in black. 5A-C–SE; 5D-F–RI; 5G-I–A5; 5 J-L–A3. Left 
column–rMATS versus SUPPA2; middle column–MISO versus rMATS; right column–SUPPA2 versus MISO
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Our results show that different splicing tools are often concordant, but show differ-
ent outputs per each type of event and the measured relative splicing abundance can be 
different between tools. Therefore, presenting SE-only analyses or plots representative 

Fig. 6  Scatterplots of D16 300 M analyses (all events) for each event type. Scatterplots show relative splicing 
abundance for each tool (rMATS–InclusionLevelDifference; MISO–diff; SUPPA2–dPSI) and each event type 
(SE–spliced exon; RI–retained intron; A5–alternative 5’ splice site; A3–alternative 3’ splice site). Regression 
coefficient is depicted as R2. Linear regression line is shown in black. 6A-C–SE events; 6D-F–RI events; 6G-I–
A5 events; 6J-L–A3 events. Left column–rMATS versus SUPPA2; middle column–MISO versus rMATS; right 
column–SUPPA2 versus MISO

Table 2  Summarizing features of the 3 splicing analyses tools

 ++ , very good; + , good;  +/− , average; –, poor; ––, very poor

rMATS MISO SUPPA2

Version 4.0.2 0.5.4 2.3

Release Date May 2018 July 2017 February 2018

Other required tools None Samtools Kalisto/Salmon

Reference GTF GFF3 GTF

Input file FASTQ/BAM BAM TPM

Supported experiments Two groups, paired 1 versus 1 comparison Two groups, paired

Job time  ++  – –  + 

RAM  + +  – –  + + 

CPU  + +  – –  + + 

Ease of use  + +  – – –

FPGS 8PR detection +/−  +   +/−
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of the most abundant and easily detectable type of splicing event does not reveal the 
complete picture. For example, assessing rMATS requires SE events as well as RI events, 
since it is observed that relative splicing abundance for RI is underestimated compared 
to MISO/SUPPA2 (Fig. 5D, E). This information is not revealed in ROC curve analyses, 
and future comparisons of splicing tools should include investigation of multiple splicing 
event types as well as explore relative splicing abundance.

Furthermore, our results showed that both rMATS and SUPPA2 were superior to 
MISO with regards to their performance (job times, CPU load averages, and RAM 
usage). Although MISO—like rMATS and SUPPA2—applies multithreading to its analy-
ses, high load averages indicate high CPU demand while RAM usage is relatively high.

The use of load average over CPU usage can be argued. We reasoned that information 
on whether a tool reached maximum CPU usage is less valuable than whether requested 
CPU threads exceeded CPU availability (which would show as 100% CPU). Load aver-
ages exceeding the maximum CPU capacities can therefore not be demonstrated by 
using CPU usage, such as in a study by Ding et al. [16]. In our analysis, MISO would usu-
ally be at 100% CPU usage in D2 VM analyses, which is little informative on actual CPU 
utilization. One significant caveat in the assessment of performance of the splicing tools 
relates to the decision to exclude pre-processing jobs in the performance calculations. In 
particular, SUPPA2 relies on transcript expression calculations performed by a separate 
tool like Kalisto or Salmon [23, 24].

In addition, a possible risk of using virtual CPUs over physical computers is the lack 
of control over using the exact same instance of VM for each analysis. Although we did 
not experience adverse effects on our analysis, it is known that Azure Cloud users can 
get a VM assigned with different specifications as requested, potentially influencing 
job times/performance.

Due to the majority of job time and CPU/RAM usage being necessary in these prior 
calculations, SUPPA2 obtains a strong advantage over rMATS and MISO. However, 
when comparing 10  versus  10 analyses with 3  versus  3  analyses, the increase in CPU 
load averages and RAM for SUPPA2 was markedly higher than for rMATS, indicating a 
poorer efficiency when increasing sample sizes. Indeed, this is confirmed in a study by 
Mehmood et al. [18], where SUPPA2 showed the largest increase in RAM usage when 
increasing the amount of replicates per analysis.

Overall, we observed a significant increase in performance when using a D8 VM over a 
D2 VM, while the performance of a D16 did not differ greatly from a D8 VM. Of course, 
this is highly dependent on the input size of the sample sets and quite likely, larger data-
sets (50 per group or more) would benefit from larger VM usage. We considered a D8 
VM similar to standard office workstations, making most analyses possible without the 
use of a high-end computer system or expensive cloud solutions. However, it must be 
noted that some pre-processing tools, such as STAR require large amounts of RAM 
not present in a D8 VM or lower as well as taking significantly more time than splicing 
analysis.

The underlying statistical frameworks of each tool are different and filtering on p-value 
in SUPPA2 is more stringent than filtering on FDR in rMATS (e.g. at D16 300M com-
parison:  11074 significant events for SUPPA2 versus 14868 for rMATS). In addition, 
if an FDR cut-off of < 0.01 for rMATS (14069 events) is applied, it would still filter less 
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events than p-value filtering for SUPPA2 and the difference in significant events between 
p-value and FDR in rMATS is merely 1% (14868 versus 14068 events). Aligning each 
tool for their statistical cut-off to be equally stringent is challenging since MISO uses 
a Bayesian framework, which does not use p-values at all. In our analyses, we there-
fore chose the most stringent filtering at an alpha of 5% for rMATS and SUPPA2 and 
used the cutoffs recommended in the respective software manuals. While concordance 
between measured PSI values between the tools was high in SE, A3SS and A5SS event 
types, rMATS showed poor concordance with both SUPPA2 and MISO in RI event 
types. Which of the tools is closer to the actual RI splicing abundance in these compari-
sons is not possible to assess without independent validation.

In addition, an A5SS event in FPGS (FPGS 8PR), associated with MTX resistance in 
CEM/R30dm cells [22], was observed (Additonal file 1: Fig. 2) as significantly differen-
tially spliced in all MISO analyses (Bayes factor > 10) and in the 10 versus 10 rMATS 
comparisons (FDR < 0.05). The event was also identified in all other rMATS analyses as 
well as all SUPPA2 analyses, although statistical significance was not reached (Additonal 
file 1: Tables 1 and 2). However, more validated splice events should be investigated to 
attempt to infer superiority of a splicing tool and this result indicates the need for cau-
tion when performing analysis with a single splicing tool.

Interestingly, R2 values differed slightly when increasing the VM size during MISO 
analyses (e.g. D8 30  M MISO versus SUPPA2; R2 = 0.81 and D16 30  M MISO versus 
SUPPA2; R2 = 0.80) although it is unclear what is the cause.

Finally, we assessed whether a particular tool is easy to work with. rMATS is relatively 
simple to use in our experience; only a single command was required to perform the 
entire analysis. Both SUPPA2 and MISO require substantial bioinformatics knowledge 
during the pre-processing steps and are multi-step, multi-command pipelines that are 
prone to errors. In particular, setting up a working MISO pipeline can take substantial 
time and effort and troubleshooting can be difficult.

In contrast, rMATS has a relatively active online troubleshooting community, and cre-
ators or users usually respond rapidly [25]. Also, while rMATS and SUPPA2 have been 
updated regularly in the past years, MISO has not, which is reflected in its poor ease-of-
use and its weak applicability to improved computer architecture.

Conclusions
Comparing three commonly used AS detection/quantification tools (rMATS, MISO and 
SUPPA2) revealed that rMATS and SUPPA2 are relatively easy to use and require stand-
ard computational processing power in contrast to MISO. A concluding overview of the 
features, strengths and weaknesses of the three tools is presented in Table 2. With the 
increase of widely available high performance computing resources, we would recom-
mend that researchers interested in performing splicing analysis on RNA-seq datasets 
combine both rMATS and SUPPA2 to quickly get results that are immediately indepen-
dently validated with a second tool.
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Methods
RNA‑sequencing

To compare AS tools, we used RNA-seq datasets from two human T-cell acute lympho-
blastic leukemia (T-ALL), CCRF-CEM (ATCC, Manassas, VA) and its subclone CEM/
R30dm (provided by Dr. J. McGuire [26]). The cell line CEM/R30dm has been made 
resistant to MTX by repeated exposure to MTX and has been shown to harbor specific 
splice variants in FPGS, an enzyme critically involved in metabolism and intracellular 
retention of MTX [27–29]. Loss of FPGS function, e.g. due to AS, is implicated in MTX 
resistance [13, 30]. The choice for this cell line model for the simulation experiments was 
based on the proven clinical and pathological relevance of the validated AS event impli-
cated in (MTX) therapy resistance [13, 22, 26, 29, 30]. These cell lines provide a practical 
case for laboratory researchers providing perspective on tool applicability and output 
variation in a controlled setting. Using this cell  line model we were able to construct 
datasets of different sizes and number of replicates with similar expression levels.

From these two cell lines, RNA was isolated using the RNeasy Mini Kit (Qiagen), 
and RNA-seq libraries were constructed with TruSeq mRNA Stranded Kit (Illumina). 
Samples were run in biological duplicates on a Hiseq2500 RNA-seq system using a sin-
gle-read 100 base pair protocol [9, 31]. Resulting FASTQ files were trimmed using trim-
momatic [32], followed by transcript quantification (in transcript per kilobase million 
(TPM)) with Stringtie [33].

Flux simulator

Using Flux Simulator [34], expression files in FASTQ format were simulated by using the 
transcript expression files generated from Stringtie. Using default settings for Flux Simu-
lator, duplicates of both cell lines with different sizes (30, 100 and 300 million reads) 
were created, and in addition, ten replicates of 30 million reads each were created in 
order to simulate different differential splicing experiments.

STAR​

Alignment was performed using the default settings of STAR (Version 2.4 [35]) with the 
exception of –alignEndsType EndToEnd to remove soft-clipping of the reads, -outSAM-
type BAM to produce  .bam files and –sdjbOverhang 100 for optimal splice junction 
overhang length.

rMATS

rMATS (Version 4.0.2 [19]) detects differential splicing by using a hierarchical frame-
work to model exon inclusion levels [denoted as ψ, or PSI], and takes into account esti-
mation uncertainty in individual replicates and variability among replicates. rMATS 
does this by first calculating the inclusion and exclusion levels of the exons with the 
read counts of mapped reads. The PSI is defined as the “percentage of the exon inclusion 
transcripts that splice from the upstream exon into the alternative exon and then into 
the downstream exon, among all such exon inclusion transcripts plus exon skipping tran-
scripts that splice from the upstream exon directly into the downstream exon.” [19]
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MISO

MISO (Version 0.5.4 [20]) calculates the expression levels of alternatively spliced genes 
from RNA-seq data, and analyses differentially-expressed isoforms or exons across sam-
ples. MISO computes the probability that a mapped read originated from a particular 
isoform using a Bayesian inference framework. MISO has a multithreading option and 
was given the maximum amount of threads for each analysis, which is utilized com-
pletely by dividing the job into batch jobs equivalent to the thread number. MISO can 
only analyze single datasets and as such, replicate analysis was not possible.

SUPPA2

SUPPA2 (Version 2.2 [21]) generates events from a .GTF file and looks at every tran-
script that contributes to each event. For each transcript, SUPPA2 calculates the PSI. 
Separately, SUPPA2 uses the transcript per million (TPM) values of each transcript to 
calculate differential splicing per event. An overview of the features of the three tools is 
provided in Additonal file 1: Fig. 1.

Performance

To benchmark the AS tools, technical performance indicators were tracked throughout 
the different pipelines: job time, CPU load average, and RAM usage. During the entire 
process, load averages (1 min) were extrapolated from Linux top command every 10 s, 
and maximum load averages were calculated to show whether each VM could provide 
the requested CPU threads during the process.  Load averages indicate the requested 
CPU utilization within a certain timeframe (1  min, 5  min or 15  min). Using the load 
averages, we  assessed whether a process requires more CPU power than is currently 
available (and whether jobs are waiting to be processed). For a D2 VM, with 2 virtual 
CPUs, a load average above 2 means that there are more threads waiting to process than 
there are available virtual CPUs and this implies inefficient CPU usage (and latency). By 
examining the tools for exceeding maximum load averages during jobs, we infer ineffi-
cient CPU utilization over the entire tool process.

RAM usage was similarly obtained by dividing the used physical memory parameter 
by the total physical memory parameter in Linux free command. Pipeline components 
that were part of pre-processing (such as GFF indexing for MISO) or used a different 
tool (Samtools for MISO or Salmon for SUPPA2) were excluded, resulting in timing the 
pipelines specific for each tool and essential for each run (Additonal file 1: Fig. 1). All 
comparisons are executed on Linux virtual machines (VMs, specifically referred to as 
D2, D8 and D16) using Microsoft Azure Cloud Services (Table 2). For all analyses, maxi-
mum number of threads was specified for each tool and VM and load averages exceed-
ing maximum thread counts were considered inefficient.

Concordance

Splice events were matched (based on event coordinates) between tools and splicing 
values (rMATS, inclusion level difference; MISO, diff; SUPPA2, PSI) were plotted. Sig-
nificance (rMATS, FDR < 0.05; MISO, Bayes factor > 10; SUPPA2, p-value < 0.05) was 
considered based on the tool respective manuals. While rMATS uses multiple testing 
correction to calculate FDR, SUPPA2 does not perform multiple testing correction. The 
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most stringent statistics was used for each tool. Linear regression was performed for 
each combination of tools per splice event type (SE, RI, A5SS, and A3SS). MXE were 
excluded. Regression coefficients were calculated and plotted.

(RT‑)PCR

After RNA isolation (according to manufacturer’s protocol, RNeasy Mini Kit (Qiagen)), 
cDNA was synthesized using reverse transcriptase Moloney Murine Leukemia Virus 
(M-MLV; Invitrogen). cDNA synthesis reaction mixture (total volume 40 µl) contained: 
1.5  μl  M-MLV, 1  μg RNA, 0.8  μl random hexamer primers (Roche), 1.6  μl of 25  mM 
dNTPs (Roche), and 1  μl RNAse OUT (Invitrogen). For end-point PCR, sample reac-
tion mixture was made by adding 12.5 µl GoTaq G2 Master Mix (Promega), 1 µl forward 
primer, 1 µl reverse primer (forward primer 5’-CGC​CTC​TAC​CAC​CGG​CTG​GA-3’ and 
reverse primer 5’-GCT​CGG​TCC​CTC​AGC​ACT​GC-3’), 1 µl of cDNA and 9.5 µl H2O to 
a total of 25 µl. Samples were run in a standard thermocycler using the following pro-
gram: 5 min at 95°C, then 31 cycles of: 1 min at 95°C, 1 min at annealing temperature, 
and 1 min at 72°C, followed by 10 min at 72°C and cooling down to 4°C.

To perform RT-PCR, LightCycler® 480 SYBR Green I Master kit (Roche) was used 
(total reaction volume of 20 μl) including 10 μl Master Mix 2 × concentrated, 0.25 μM 
forward/reverse primer (Primer sequences were as follows: 8WT Forward: ACT​GCA​
CCA​ACA​TCA​TCA​GGAA. 8WT Reverse: AGG​GAC​ACC​TTG​CTT​AAA​GATG. 8PR 
Forward: ACT​GCA​CCA​ACA​TCA​TCA​GGAA. 8PR Reverse: AGT​CTG​CCT​GGT​CAC​
CTT​AAA​GAT​.) and 12.5  ng cDNA.  RT-PCR was performed using a LightCycler®480 
Instrument II (Roche). Relative expression of the genes was calculated using LightCy-
cler® 480 Software (Version 1.5.1.62, Roche) with β-glucuronidase (GUSB) as reference 
gene.
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