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The monodromy pairing and
discrete logarithm on the Jacobian of finite graphs
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Abstract. Every graph has a canonical finite abelian group attached to it. This group has
appeared in the literature under a variety of names including the sandpile group, critical
group, Jacobian group, and Picard group. The construction of this group closely mirrors
the construction of the Jacobian variety of an algebraic curve. Motivated by this analogy,
it was recently suggested by Norman Biggs that the critical group of a finite graph is a
good candidate for doing discrete logarithm based cryptography. In this paper, we study a
bilinear pairing on this group and show how to compute it. Then we use this pairing to find
the discrete logarithm efficiently, thus showing that the associated cryptographic schemes
are not secure. Our approach resembles the MOV attack on elliptic curves.
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1 Introduction

1.1 Overview

Every graph has a canonical finite abelian group whose order is the number of
spanning trees of the graph. This group has appeared in the literature under many
different names; in theoretical physics it was first introduced as the “abelian sand-
pile group” or “abelian avalanche group” in the context of self-organized critical
phenomena [3, 16, 19]. In arithmetic geometry, this group appeared as the “group
of components” in the study of degenerating algebraic curves [22]. In algebraic
graph theory this group appeared under the name “Jacobian group” or “Picard
group” in the study of flows and cuts in graphs [2]. The study of a certain chip-
firing game on graphs led to the definition of this group under the name “critical
group” [8, 9].
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The construction of this group closely mirrors the construction of the Jacobian
variety of an algebraic curve. Motivated by this analogy, Norman Biggs in [10]
suggests that the Jacobian of a finite graph (which he calls the “critical group”)
might be suitable for discrete logarithm based cryptography.

In this paper, we study the discrete logarithm problem on the Jacobian of finite
graphs. Our main result is an algorithm to efficiently compute discrete logarithms
on these groups. Therefore, unlike elliptic curves and Jacobian varieties, one can
not use the Jacobian of finite graphs for cryptographic purposes. It is an intriguing
problem whether the fact that discrete logarithm can be done efficiently might have
any algorithmic applications. Our algorithm uses a bilinear pairing, which we call
the monodromy pairing, on this group. This approach is similar to the MOV attack
on elliptic curves. For our application, we study the monodromy pairing and show
how to compute it.

1.2 Related work

The order of the Jacobian group is the number of spanning trees of the graph [8].
Hence, the order of the group can be computed by the famous Matrix-Tree formula
of Kirchhoff.

Finite graphs and algebraic curves behave similarly in many respects. Recently,
there have been an increasing number of papers pursuing this analogy. Some rela-
tionship between elliptic curves and chip-firing games on graphs is noticed in [26].
In [4,5] a version of the famous Riemann-Roch theorem is proved for finite graphs,
a discrete analogue of holomorphic maps between Riemann surfaces is introduced,
and a graph-theoretic Riemann-Hurwitz formula is proved. A Torelli’s theorem for
graphs is proved in [1, 14]. The relationship between graph theory and algebraic
geometry goes beyond a simple analogy. For example, Mikhalkin and Zharkov
in [25] prove that an (abstract) “tropical curve” is simply a connected “metric
graph”.

1.3 Previous work.

Norman Biggs in [10] constructs a family of graphs with cyclic Jacobian groups,
to be potentially used for cryptography. The problem of finding families of graphs
with cyclic Jacobian groups is subsequently studied in [15, 23, 26]. These provide
examples of cyclic Jacobian groups with appropriate order, so that discrete loga-
rithm problem cannot be solved by the known purely group-theoretic methods.

In [11] Blackburn addresses the discrete logarithm problem for the particular
family of graphs constructed by Biggs in [10]. It is fairly clear that methods pre-
sented in [11], with some minor modifications, can also be applied to the general
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case. Our method is quite different from Blackburn’s method, and our algorithm
in §4 works for any graph.

To our knowledge, the monodromy pairing was first introduced by Bosch and
Lorenzini in [13]. We have not found an easy-to-compute formula, like (3.4), in
the literature.

The paper proceeds as follows. In §2 we provide the relevant definitions. The
monodromy pairing is studied in §3. Using the monodromy pairing, we give our
discrete logarithm algorithm in §4. Further remarks and results are outlined in §5.
Appendix A contains a new proof of Theorem 3.4.

2 Definitions

2.1 Notation and terminology

Throughout this paper, a graph means a finite, unweighted multigraph with no
loops. All graphs are assumed to be connected. For a graph G, the set of vertices
is denoted by V.G/, and the set of edges is denoted by E.G/. Throughout this
paper, n and m denote the number of vertices and edges, respectively.

Let ¹v1; : : : ; vnº be an ordering of V.G/. With respect to this ordering, the
Laplacian matrix Q associated to G is the n � n matrix Q D .qij /, where qi i is
the degree of vertex vi , and �qij (i ¤ j ) is the number of edges connecting vi

and vj . It is well-known (and easy to verify) that Q is symmetric, has rank n � 1,
and the kernel of Q is spanned by 1, the all-one vector1 (see, e.g., [7, 12]).

2.2 The Jacobian of a finite graph

Let Div.G/ be the free abelian group generated by V.G/. One can think of ele-
ments of Div.G/ as formal integer linear combination of vertices

Div.G/ D
° X

v2V .G/

av.v/ W av 2 Z
±
:

By analogy with the algebraic curve case, elements of Div.G/ are called divisors
on G. For a divisor D, the coefficient av of .v/ in D is denoted by D.v/.

We define by M.G/ D Hom.V .G/; Z/ the abelian group consisting of all
integer-valued functions on the vertices. One can think of M.G/ as analogous
to the group M.X/� of nonzero meromorphic functions on an algebraic curve X .

For f 2 M.G/, div.f / 2 Div.G/ is given by the formula

div.f / D
X

v2V .G/

ordv.f /.v/;

1 Remember that G has no loops.
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where
ordv.f / D

X
¹v;wº2E.G/

.f .v/ � f .w//:

Consider the group homomorphism deg W Div.G/ ! Z defined by deg.D/ DP
v2V .G/ D.v/. Denote by Div0.G/ the kernel of this homomorphism, consisting

of divisors of degree zero. Define Prin.G/ D ¹div.f / 2 Div.G/ W f 2 M.G/º
to be the group of principal divisors.

Lemma 2.1. Prin.G/ � Div0.G/, and both Prin.G/ and Div0.G/ are free Z-
modules of rank n � 1.

A proof is given in [8]. As a corollary, the quotient group

Jac.G/ D Div0.G/= Prin.G/

is well-defined and is a finite abelian group. Following [2], it is called the Jacobian
or the Picard2 group of G.

The following lemma is a direct consequence of Kirchhoff’s famous Matrix-
Tree Theorem [21] (see also [2, 8]).

Lemma 2.2. The order of the group Jac.G/ is equal to the number of spanning
trees in G, which we denote by �.G/.

Following [4], for D1; D2 2 Div.G/, we say that D1 is equivalent to D2, and
write D1 � D2, if D1 � D2 is a principal divisor.

3 A bilinear pairing on the Jacobian of finite graphs

3.1 Generalized inverses

A matrix can have an inverse only if it is square and its columns (or rows) are
linearly independent. But one can still get “partial inverse” of any matrix.

Definition 3.1. Let A be a matrix (not necessarily square). Any matrix L satisfying
ALA D A is called a generalized inverse of A.

It is somehow surprising that for every matrix A there exists at least one gen-
eralized inverse. In fact, more is true; every matrix has a unique Moore–Penrose
pseudoinverse3.

2 Another appropriate notation is Pic0.G/.
3 The Moore–Penrose pseudoinverse of A is a generalized inverse of A with three extra proper-

ties; see [6] for an extensive study of the subject.
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Let Q be the Laplacian matrix of a connected graph. Since its rank is n � 1, it
cannot have an inverse. But there are many ways to obtain generalized inverses:

Example 3.2. Fix an integer 1 � i � n. Let Qi be the .n � 1/ � .n � 1/ matrix
obtained from Q by deleting i th row and i th column. Then Qi is a full rank matrix
and has an inverse Q�1

i . Let L.i/ be the n � n matrix obtained from Q�1
i by

inserting a zero row after the .i � 1/th row and inserting a zero column after the
.i � 1/th column. Then L.i/ is a generalized inverse of Q. One can check that

QL.i/ D I C R.i/;

where I is the identity matrix, and R.i/ has �1 entries in the i th row and is zero
everywhere else. As R.i/Q D 0, we get QL.i/Q D Q.

Example 3.3. Let J be the n � n all-one matrix. Then Q C 1
n

J is nonsingular and
QC D .Q C 1

n
J /�1 � 1

n
J is a generalized inverse of Q. In fact it is the unique

Moore–Penrose pseudoinverse of Q; it is easy to check QQC D QCQ D I � 1
n

J

and QCQQC D QC.

These examples show that computing a generalized inverse L takes time at most
O.n!/, where ! is the exponent for matrix multiplication.

3.2 The monodromy pairing

A kind of graph-theoretic analogue of Weil pairing on the (principally polarized)
Jacobian of an algebraic curve is provided by a certain bilinear pairing on Jac.G/,
which we define in this section4.

For D1; D2 in Div0.G/, let m1 and m2 be integers such that m1D1 D div.f1/

and m2D2 D div.f2/ are principal; these exist because Jac.G/ is a finite group.
One can easily show that

1

m2

X
v2V .G/

D1.v/f2.v/ D 1

m1

X
v2V .G/

f1.v/D2.v/: (3.1)

The pairing h� ; �i W Div0.G/ � Div0.G/ ! Q defined by

hD1; D2i D 1

m2

X
v2V .G/

D1.v/f2.v/ (3.2)

is symmetric and bilinear. This pairing descends to a well-defined pairing on
Jac.G/. We use the notation D for an element of Jac.G/, if D is a lift of that
element in Div0.G/.

4 The monodromy pairing is symmetric, while the Weil pairing is skew-symmetric.
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Theorem 3.4. The pairing h� ; �i W Jac.G/ � Jac.G/ ! Q=Z defined by

hD1; D2i D 1

m2

X
v2V .G/

D1.v/f2.v/ .mod Z/; (3.3)

where m2D2 D div.f2/, is a well-defined, symmetric, bilinear, non-degenerate
pairing on Jac.G/.

This theorem, in a slightly different language, is proved in [13]. We give a more
elementary proof in Appendix A.

Definition 3.5. We call the pairing described in Theorem 3.4 the monodromy pair-
ing (see remark 1 in §5 for this terminology).

Remark 3.6. Let ˆ be a finitely generated abelian group. A symmetric bilinear
pairing h � ; �i W ˆ � ˆ ! Q=Z is called non-degenerate (or regular) if the group
homomorphism ˆ ! HomZ.ˆ; Q=Z/ defined by x 7! hx; �i is injective. If it is
an isomorphism, it is called perfect (or unimodular). If a pairing on a finitely gen-
erated abelian group is non-degenerate, then it is automatically perfect5 (see [18]).
For a finite abelian group ˆ, this fact is immediate; there exists a (non-canonical)
isomorphism between ˆ and its Pontryagin dual HomZ.ˆ; Q=Z/ (see, e.g., page
167 of [17]).

Let ¹v1; : : : ; vnº be an ordering of V.G/. Let Q be the Laplacian matrix with re-
spect to this ordering. This ordering gives an isomorphism between abelian groups
Div.G/, M.G/, and the Z-module of n � 1 column vectors having integer coor-
dinates. Under these isomorphisms the operator div W M.G/ ! Div.G/ coincides
with the Z-module homomorphism Q W Zn ! Zn. More specifically, if ŒD�

denotes the column vector corresponding to D 2 Div.G/, and Œf � denotes the
column vector corresponding to f 2 M.G/, then Œdiv.f /� D QŒf �.

The given definition of the monodromy pairing in (3.3) is canonical. However,
the following proposition simplifies the proof of Theorem 3.4. Moreover, it shows
how one can compute the monodromy pairing in practice.

Proposition 3.7. Let L be any generalized inverse of the Laplacian matrix Q.
Then the monodromy pairing is given by

hD1; D2i D ŒD1�T LŒD2� .mod Z/: (3.4)

5 Moreover, the group is torsion in this situation.
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Proof. By definition mi ŒDi � D Œdiv.fi /� D QŒfi � for i D 1; 2. The result follows
from the following computations. All equalities are mod Z

hD1; D2i D 1

m2

X
v2V .G/

D1.v/f2.v/

D 1

m2
ŒD1�T Œf2�

D 1

m1m2
.QŒf1�/T Œf2�

D 1

m1m2
Œf1�T QŒf2�

D 1

m1m2
Œf1�T QLQŒf2�

D 1

m1m2
.QŒf1�/T L.QŒf2�/

D ŒD1�T LŒD2� .mod Z/:

We emphasize that any generalized inverse of the Laplacian matrix can be used
in (3.4).

4 Discrete logarithm problem on the Jacobian of a finite graph

Let .ˆ; C/ be a cyclic group. The Discrete Logarithm Problem (DLP) can be
stated as:

Given g; h 2 ˆ with x � g D h for some integer x, compute x mod ord.g/.

In this section we use the monodromy pairing to solve the DLP for the Jacobian
of a finite graph G when Jac.G/ is cyclic.

In our context, we assume the elements of Jac.G/ are presented by some (arbi-
trary) lifts in Div0.G/. Also, we assume6 a generator g of the cyclic group Jac.G/

is known. We can compute and save a generalized inverse L of Q as outlined in
§3.1.

6 There are several efficient methods to find a generator; we omit the details here.
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Algorithm 4.1 (DLP on Jac.G/).
Input: D; D0 2 Div0.G/ such that D0 D x � D in Jac.G/

Output: x mod ord.D/, the order of D 2 Jac.G/.

(1) Compute hD; gi D r C Z and hD0; gi D r 0 C Z using formula (3.4)

(2) Solve the Diophantine equation r 0 D rx C y (for variables x; y 2 Z) by
clearing the denominators of r and r 0 and using the extended Euclidean al-
gorithm, to get x mod ord.D/.

Analysis of the algorithm. Since the monodromy pairing is bilinear, we have
hD0; gi D xhD; gi , or r 0 D rx in Q=Z. We still need to prove that solving the
Diophantine equation precisely gives x modulo the order of D in Jac.G/.

Lemma 4.2. Let g be a generator of the cyclic group Jac.G/. Let h be any element
of Jac.G/. If hh; gi D a

b
C Z (a; b 2 Z, gcd.a; b/ D 1) then b is precisely the

order of h in Jac.G/.

Proof. Let � be the order of h in Jac.G/. By bilinearity of the monodromy pairing,
�a
b

C Z D �hh; gi D h� � h; gi D h0; gi D Z, and therefore bj� .
On the other hand, hb � h; gi D bhh; gi D a C Z D Z. Since Jac.G/ is cyclic

and the monodromy pairing is bilinear, all elements of Jac.G/ must pair trivially
with b � h. By non-degeneracy of the monodromy pairing we get b � h D 0, which
means � jb. Therefore � D b.

Now we can show that the algorithm precisely gives x mod the order of D in
Jac.G/; since D0 D xD, order of D0 divides the order of D. By Lemma 4.2, for
r D a

b
(a; b 2 Z, gcd.a; b/ D 1), b is the order D in Jac.G/. Multiplying by b

clears the denominators in r 0 D rx Cy, and we get ax Cby D c, for some integer
c. It is an elementary fact that the linear Diophantine equation ax C by D c (with
gcd.a; b/ D 1) has solution, and x is determined mod b.

Running time. The monodromy pairings in step (1) can be computed using the
formula (3.4) given in Proposition 3.7. For this, we need to have a generalized
inverse L; this takes time at most O.n!/, where ! is the exponent for matrix
multiplication. Notice that this computation is done only once. Each monodromy
computation in step (1) can be done using O.n2/ operations (multiplication and
addition). Step (2) can also be done in O.n2/ operations.

For bit complexity, note that if L D L.i/ as in Example 3.2, one can easily see
that the denominators appearing in the generalized inverse are annihilated by the
exponent of the Jacobian group. The exponent is bounded above by the number of
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spanning trees of the graph. If we allow at most c parallel edges then there are at
most cn�1 � nn�2 spanning trees. Therefore, the denominators can be represented
by O.n � log cn/ bits. Moreover, one can also show that the absolute value of
the entries of L.i/ are bounded above by Rmax, the maximum effective resistance
between any two vertices of the graph7. Therefore all integers in the algorithm can
be represented in O.n � log cn/ bits.

Remark 4.3.

(i) The number of spanning trees of a graph on n vertices can be exponential
(or more) in n. For example, Biggs in [10] constructs a family of graphs
with cyclic Jacobian groups of order exponential in n. Therefore, our algo-
rithm truly beats the known group-theoretic methods of solving DLP on finite
groups.

(ii) It follows from the above discussion that, for any finite cyclic group ˆ,
whenever one can construct an efficiently computable perfect bilinear pairing
h � ; �i W ˆ � ˆ ! Q=Z, then the DLP is easy on ˆ.

Remark 4.4 (DLP on the Critical group of finite graphs). Fix a vertex q. In [10]
each element of the Jacobian group is presented by a canonical (relative to the
base vertex q) lift in Div0.G/, which is called the critical configuration (based
at q), and is defined by a certain chip-firing game on the graph. It is known that in
each equivalence class of divisors there is a unique such critical configuration. q-
reduced divisors (or G-parking functions based at q) provide another set of canoni-
cal elements for equivalence classes (see, e.g., [29] and references therein). Hence,
the group law on the Jac.G/ D Div0.G/= Prin.G/ induces a group law on the set
of q-critical configurations, or the set of q-reduced divisors8. Biggs ( [9]) calls
the former set with the induced group law the critical group K.G/ of the graph,
and suggests in [10] that the DLP is hard on the critical group. We note that the
algorithm given in this paper works for any lift of elements of Jac.G/ to Div0.G/,
and therefore it also solves the DLP on the critical group, as well as the “reduced
divisors group”. Some related algorithmic questions are studied in [29] and [20].

5 Concluding remarks

We conclude with some remarks.

7 Rmax is always bounded above by the diameter of the graph, but often is much smaller than the
diameter.

8 In particular, cardinality of these sets are equal to the number of spanning trees.
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1. The pairing described in Theorem 3.4 is called the monodromy or Grothen-
dieck’s pairing for the following reason. If K is the field of fractions of a strictly
Henselian discrete valuation ring R, then a theorem of Raynaud [28] asserts that
the component group ˆJ of the Néron model of the Jacobian J of a semistable
curve X=K is isomorphic to the Jacobian of the dual graph G of the special fiber of
any semistable regular model for X over R. Under the isomorphism provided by
Raynaud’s theorem, the pairing on Jac.G/ which we described in §3.2 corresponds
to Grothendieck’s monodromy pairing on ˆJ (see [13]).

2. By Abel’s theorem for graphs (see [2]), there is a canonical isomorphism

Div0.G/= Prin.G/ Š H1.G; Z/#=H1.G; Z/

where H1.G; Z/# denotes the dual of the cycle lattice H1.G; Z/ with respect to
the standard inner product on the 1-chain group C1.G; Z/. It can be shown that
under this canonical isomorphism, the monodromy pairing on Div0.G/= Prin.G/

corresponds to the negative of the discriminant form9 on H1.G; Z/#=H1.G; Z/.
This and some relevant results will appear in a subsequent paper by the author.

3. Our approach to solve the DLP on the Jacobian of finite graphs resembles the
MOV attack of Menezes, Okamoto, and Vanstone [24] for the DLP on elliptic
curves. However, because the target group of the monodromy pairing is Q=Z
(instead10 of Fq˛ ), and because of Lemma 4.2, we get a deterministic polynomial-
time solution for cyclic Jacobian (instead of a probabilistic polynomial-time re-
duction to the DLP in the group F�

q˛ ).

4. If Jac.G/ is not cyclic, then one can still use the monodromy pairing, and
solve the DLP efficiently. Given a set ¹g1; : : : ; gsº generating Jac.G/, the idea is
to compute hD; gi i D ri C Z and hD0; gi i D r 0

i C Z for 1 � i � s, and then
solve all Diophantine equations r 0

i D ri xCyi (for variables x; yi 2 Z) by clearing
the denominators of ri and r 0

i and using the extended Euclidean algorithm, to get x

mod bi (where ri D ai =bi , gcd.ai ; bi / D 1 ). Eventually, using Chinese Remain-
der Theorem, one can compute x mod .ord.D/ D lcm .b1; : : : ; bs//. Interested
reader can work out the details.

9 If ƒ is an integral lattice (i.e., a free Z-module of finite rank endowed with a non-degenerate
Z-valued symmetric bilinear form), then the dual lattice ƒ# contains ƒ as a finite index sub-
group, and the quotient group ƒ#=ƒ (called the discriminant group of the lattice) inherits in
a natural way a non-degenerate Q=Z-valued symmetric bilinear form, called the discriminant
form (see [27] for more details).

10 We also note that the monodromy pairing is symmetric, while the Weil pairing is skew-
symmetric.
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5. We have found at least two other methods of solving the DLP in this context.
One method is essentially applying the independent work of Blackburn [11] to
arbitrary graphs.

6. It is worth investigating how the given solution to the DLP for the Jacobian of
finite graphs can relate to the DLP for the Jacobian of algebraic curves.

7. It is an intriguing problem whether the fact that discrete logarithm can be done
efficiently might have any algorithmic applications. Also the fact that the Jacobian
group is actually a bilinear group with an efficiently computable pairing might
have other algorithmic applications.

A Proof of Theorem 3.4

Here we outline an elementary proof of Theorem 3.4. We choose an ordering of
V.G/ and use the formula (3.4).
Pairing is bilinear. This is obvious!
Pairing is symmetric. This follows from (3.1). Alternatively, if L is any gen-
eralized inverse of Q then LT is also a generalized inverse of Q (because Q is
symmetric) and we have

hD2; D1i D ŒD2�T LŒD1� .mod Z/

D .ŒD1�T LT ŒD2�/T .mod Z/

D ŒD1�T LT ŒD2� .mod Z/

D hD1; D2i:

Pairing is well-defined. Let D2 and D0
2 in Div0.G/ be two different lifts of D2 2

Jac.G/. Then they differ by a principal divisor ŒD0
2� D ŒD2� C QŒg� for some

g 2 M.G/. Let m1ŒD1� D QŒf1�. Then

ŒD1�T LŒD0
2� D ŒD1�T LŒD2� C ŒD1�T LQŒg�

D ŒD1�T LŒD2� C 1

m1
Œf1�T QLQŒg�

D ŒD1�T LŒD2� C 1

m1
Œf1�T QŒg�

D ŒD1�T LŒD2� C ŒD1�T Œg�:

So ŒD1�T LŒD0
2� D ŒD1�T LŒD2� .mod Z/. By symmetry the same is true for

different lifts of D1.
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Pairing is non-degenerate. We should show that if D1 2 Div0.G/ be such that

hD1; �i � 0 .mod Z/

then D1 is a principal divisor. Let x D LT ŒD1� 2 Qn. If hD; �i � 0 .mod Z/,
then xT u 2 Z, for any zero-sum column vector u 2 Zn. Substituting ei � e1 for
u (where ei denotes the vector with a 1 in the i th coordinate and 0’s elsewhere),
we get x D r1 C v for some r 2 Q and v 2 Zn (1 denotes the all-one vector).
Multiplying by Q, we have Qx D rQ1 C Qv D Qv or QLT ŒD1� D Qv. Using
m1ŒD1� D QŒf1� and the fact that LT is also a generalized inverse of Q, we get

QLT ŒD1� D 1

m1
QLT QŒf1�

D 1

m1
QŒf1�

D ŒD1� :

Therefore we have shown ŒD1� D Qv for some v 2 Zn, which means D1 must be
a principal divisor.

Acknowledgments. I would like to thank Matthew Baker for recommending this
problem to me, and for many helpful discussions. Thanks also to Xander Faber,
Dino Lorenzini, and Prasad Tetali for their helpful comments.

Bibliography

[1] I. V. Artamkin, The discrete Torelli theorem, Mat. Sb. 197 (2006), 3–16.

[2] R. Bacher, P. de la Harpe and T. Nagnibeda, The lattice of integral flows and the
lattice of integral cuts on a finite graph, Bull. Soc. Math. France 125 (1997), 167–
198.

[3] P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A (3) 38
(1988), 364–374.

[4] M. Baker and S. Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph,
Adv. Math. 215 (2007), 766–788.

[5] , Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN
(2009), 2914–2955.

[6] A. Ben-Israel and T. N. E. Greville, Generalized Inverses, second ed, CMS Books
in Mathematics/Ouvrages de Mathématiques de la SMC, 15, Springer-Verlag, New
York, 2003, Theory and applications.



DLP on the Jacobian of finite graphs 55

[7] N. Biggs, Algebraic Graph Theory, second ed, Cambridge Mathematical Library,
Cambridge University Press, Cambridge, 1993.

[8] , Algebraic potential theory on graphs, Bull. London Math. Soc. 29 (1997),
641–682.

[9] , Chip-firing and the critical group of a graph, J. Algebraic Combin. 9 (1999),
25–45.

[10] , The critical group from a cryptographic perspective, Bull. Lond. Math. Soc.
39 (2007), 829–836.

[11] S. R. Blackburn, Cryptanalysing the critical group: efficiently solving Biggs’s dis-
crete logarithm problem, J. Math. Crypt. 3 (2009), 199–203.

[12] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics 184, Springer-
Verlag, New York, 1998.

[13] S. Bosch and D. Lorenzini, Grothendieck’s pairing on component groups of Jaco-
bians, Invent. Math. 148 (2002), 353–396.

[14] L. Caporaso and F. Viviani, Torelli theorem for graphs and tropical curves, Duke
Math. J. 153:1 (2010), 129–171.

[15] S. Chen and S. K. Ye, Critical groups for homeomorphism classes of graphs, Discrete
Math. 309 (2009), 255–258.

[16] D. Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett.
64 (1990), 1613–1616.

[17] D. S. Dummit and R. M. Foote, Abstract Algebra, third ed, John Wiley & Sons Inc.,
Hoboken, NJ, 2004.

[18] A. H. Durfee, Bilinear and quadratic forms on torsion modules, Advances in Math.
25 (1977), 133–164.

[19] A. Gabrielov, Abelian avalanches and Tutte polynomials, Phys. A 195 (1993), 253–
274.

[20] J. van den Heuvel, Algorithmic aspects of a chip-firing game, Combin. Probab. Com-
put. 10 (2001), 505–529.

[21] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Unter-
suchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem.
(1847), 497–508.

[22] D. Lorenzini, Arithmetical graphs, Math. Ann. 285 (1989), 481–501.

[23] , Smith normal form and Laplacians, J. Combin. Theory Ser. B 98 (2008),
1271–1300.

[24] A. J. Menezes, T. Okamoto and S. A. Vanstone, Reducing elliptic curve logarithms
to logarithms in a finite field, IEEE Trans. Inform. Theory 39 (1993), 1639–1646.



56 F. Shokrieh

[25] G. Mikhalkin and I. Zharkov, Tropical Curves, their Jacobians and Theta Functions,
Curves and abelian varieties, Contemp. Math. 465, Amer. Math. Soc., Providence,
RI, 2008, pp. 203–230.

[26] G. Musiker, The critical groups of a family of graphs and elliptic curves over finite
fields, J. Algebraic Combin. 30 (2009), 255–276.

[27] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applica-
tions, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 111–177, 238.

[28] M. Raynaud, Spécialisation du foncteur de Picard, Inst. Hautes Études Sci. Publ.
Math. (1970), 27–76.

[29] F. Shokrieh, Chip-Firing Games, G-Parking Functions, and an Ef-
ficient Bijective Proof of the Matrix-Tree Theorem, preprint (2009),
http://arxiv.org/abs/0907.4761.

Received 30 July, 2009; revised 2 March, 2010.

Author information

Farbod Shokrieh, Georgia Institute of Technology, Atlanta, Georgia 30332-0160, USA.
E-mail: shokrieh@math.gatech.edu, farbod@ece.gatech.edu

http://arxiv.org/abs/0907.4761


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


