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1 Introduction

The group-based cryptography attracted a lot of attention after invention of the
Anshel-Anshel-Goldfeld [1] and Ko-Lee et al. [20] key-exchange protocols in
1999. Since then a number of new cryptographic protocols, including public-key
authentication protocols, based on infinite groups were invented and analyzed.
One may consult [24] and [11] to learn more about general group-based cryptog-
raphy. In this paper we consider a particular interactive group-based authentication
scheme, Sibert et al. protocol (see [11,34]).

Recall that any interactive proof of knowledge system is a multi-round random-
ized protocol for two parties, in which one of the parties (the Prover) wishes to
convince another party (the Verifier) of the validity of a given assertion. Every
interactive proof of knowledge should satisfy completeness and soundness proper-
ties [14,16]:
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Completeness: If the assertion is true, it should be accepted by the Verifier with
high probability.

Soundness: If the assertion is false, then the Verifier rejects it with high probability.

If the Prover does not trust the Verifier and does not want to compromise any
private information in the process of providing the proof of identity, then the fol-
lowing property, concerned with the preservation of security, becomes very impor-
tant:

Zero-Knowledge (ZK): Except the validity of the Prover’s assertions, no other in-
formation is revealed in the process of the proof.

If a given protocol possesses the zero-knowledge property, then it is considered
to be a zero-knowledge interactive proof system [16].

There are three different notions of zero-knowledge that have been commonly
used in the literature [11, 15, 16]; namely, perfect zero-knowledge, statistical zero-
knowledge, and computational zero-knowledge. The first notion is the most strict
definition of ZK, which is rarely useful in practice. The last notion of the ZK
property (computational zero-knowledge) is the most liberal notion, and it is used
more frequently in practice than the others.

Sibert et al. authentication protocol, is an example of an interactive (dynamic,
randomized) proof system. In this paper, we use probabilistic tools, introduced
in [27] and outlined in Section 2.3 below, to design an attack on this particular
cryptographic primitive and show that it is not computationally zero-knowledge.
In addition, we conduct some experiments that support our conclusions and show
that the protocol is not secure in practice.

1.1 Description of the protocol

The Sibert’s protocol is an iterated two-party three-pass Feige—Fiat—Shamir [14]
type authentication protocol. There are two slightly different descriptions of the
protocol available in [11] and [34] with two different key generation algorithms.
In [34], the protocol is introduced as Scheme II. Here, we follow the description
of the scheme from the survey [11], except for the minor notational modifica-
tions in the conjugation. These modifications do not affect the protocol and its
cryptographic properties at all (inverting r and y in [11] would resolve it). In ad-
dition, [11] and [34] treat the protocol slightly differently themselves, with and
without a collision-free one-way hash function, respectively. Nevertheless, it is
not essential for our analysis.

Let G be a (non-commutative, infinite) group, called the platform group and
[ a probability measure on G. The Prover’s private key is an element s € G,
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the Prover’s public key is a pair (w,t), where w is an arbitrary element of the
group G, called the base element, and t = s~ ws is a conjugate of w by s. In
addition, we assume that H is a collision-free one-way hash function from G to
{0, 1}V, A single round of the protocol is performed as follows:

(i) The Prover chooses a random element » € G, called the nonce, according to
the probability measure p, and sends x = H (r_ltr), called the commitment,
to the Verifier.

(i) The Verifier chooses a random bit ¢, called the challenge, and sends it to the
Prover.

e If ¢ = 0, then the Prover sends y = r to the Verifier and the Verifier
checks if the equality x = H(y~!ty) is satisfied.

e If ¢ = 1, then the Prover sends y = sr to the Verifier and the Verifier
checks if the equality x = H(y~wy) is satisfied.

This round is repeated k times to guarantee the soundness error (i.e., probability
that a cheating Prover will be able to convince the Verifier of a false statement)
of order 27, which is considered to be negligible if k is large, say k > 100.
The Sibert’s protocol satisfies both, completeness and soundness, properties of
interactive proof systems.

In addition, [34] describes another authentication protocol, the so-called
Scheme II1, which is different from the one described above. Even though tech-
niques of this paper do not directly apply to that protocol, we believe that using
similar ideas, this scheme can be successfully attacked as well.

1.2 Security of the protocol

Note that if an intruder (named Eve) can compute the secret element s or any
element s’ € G such that = s/~ 'ws’, i.e., if Eve can solve the conjugacy search
problem for G, then she can authenticate as the Prover. Thus, as indicated in [34],
the computational difficulty of the conjugacy search problem for G is necessary
for security of this protocol.

Originally, it was proposed to use braid groups B, (see [2,13,19]) as platform
groups, because there was no efficient solution of the conjugacy search problem
for B, known. This motivated a lot of research about braid groups. As a result of
recent developments [3-5]), there is an opinion that the conjugacy search problem
for B, can be solved in polynomial time. If that is true in fact, then the Sibert
et al. authentication protocol is insecure for B,. Nevertheless, the same protocol
can be used with other platform groups and, hence, it is important to have tools
for analysis of this type of general Sibert protocols. We show in the present paper
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that it is not necessary to solve the conjugacy search problem for G to break the
scheme. Instead, one can analyze zero-knowledge property of the protocol by
employing ideas from probability theory and show that the protocol is insecure
under a mild assumption of existence of an efficiently computable length function
for the platform group G. Even for groups with no efficiently computable length
function, such as By, a reasonable approximation can do the job.

Now, let u be a probability measure on a platform group G. We say that u is
left-invariant if for every A C G and g € G the equality u(A) = u(gA) holds.
The following result is proved in [34].

Proposition ([34]). Let G be a group. If the conjugacy search problem for G is
computationally hard (cannot be solved by a probabilistic polynomial time Turing
machine) and | is a left-invariant probability measure on G then the outlined
above protocol is a zero knowledge interactive proof system.

Clearly, there are no left-invariant probability measures on braid groups, used
as platform groups in the protocol, and, therefore, as noticed in [11] and [34], this
protocol cannot be a perfect zero knowledge interactive proof system when used
with an infinite group such as Bj,. Nevertheless, it is conjectured in [34] that the
scheme can be computationally zero knowledge for certain distributions p on By,.
The authors supported that conjecture by statistical arguments based on length
analysis.

1.3 The idea of mean-set attack: the shift search problem

If we look at the protocol outlined in Section 1.1, we observe that the Prover sends
to the Verifier a sequence of random elements of two types: r and sr, where r is
a randomly generated element and s is the Prover’s secret element. Any passive
eavesdropper (Eve) can arrange a table of challenge/response transactions, where
each row corresponds to a single round of the protocol, as shown in the table, and
obtain two sets of elements, corresponding to ¢ = 0 and ¢ = 1 respectively: Ry =
{riy,....riyy and Ry = {srj,,...,srj,_, }, where all elements r; are distributed
according to u, i.e., all these elements are generated by the same random generator.
Eve’s goal is to recover the secret element s based on the intercepted sequences
Ro and R;. We call this problem a shift search problem.

To explain the idea of the mean-set attack, assume for a moment that the group
G is an infinite cyclic group Z. In that case, we can rewrite the elements of R
in additive notation {s 4 r;,,...,s 4+ rj,_, }. Then we can compute the empirical
average 7o = % an:l 14, of the elements in Ry C Z and the empirical average

o= Az S ks + ) =5+ L S =Ky, of the elements in R, C Z.

n—
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Round | Challenge | Response type #1 Response type #2
1 c=1 - STy

2 c=0 r _

3 c=0 r3 —

4 c=1 - STy

5 c=0 s -

n c=0 'n _

By the strong law of large numbers for real-valued random variables the larger
the sequence Ry is, the closer the value of 7o to the actual mean E(u) of the
distribution p on Z, induced by r. Similarly, the larger the sequence R; is, the
closer the value of 7 is to the number s 4+ E(u). Therefore, subtracting 7o from
71, we obtain a good guess of what s is. Observe three crucial properties that allow
us to compute the secret element in the case G = Z:

(AV1) (Strong law of large numbers for real-valued random variables) If {§; }°2,

is a sequence of independent and identically distribute (i.i.d.) real-valued
random variables, then

1 n
S 6 - EE)
n e
i=1
with probability one as n — oo, provided E(§;) < oo.

(AV2) (“Shift” property or linearity) For any real-valued random variable £, the

formula
E(c+&) =c+E(®$)

holds.
(AV3) (Efficient computations) The average value % >, & is efficiently com-

putable.
Geometrically, we can interpret this approach as follows. Given a large sample
of random, independent, and identically distributed points r;,, ..., r;, and a large
sample of shifted points s + 7j,,...,s + rj,_, on the real line, the shift s is “ef-

fectively visible”.

It turns out that the same is true in general infinite groups. One can generalize
a number of mathematical tools of the classical probability theory to finitely gen-
erated groups (see [27] and Section 2.3 below) in order to have the counterparts of
(AV1), (AV2), and (AV3). Indeed,
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e for a random group element £ : 2 — G, one can define a set E(§) C G
called the mean-set,

e for a sample of n random group elements &1,...,&,, one can define their
average — a set S, = S(&1,...,&,) C G called the sample mean-set of
elements £1,...,&,,

so that we have a “shift” property E(s&) = sE(£) and a generalization of the
strong law of large numbers (SLLN) for groups with respect to E(§) in a sense

that S(&1,...,&,) converges to E(§1) as n — oo with probability one (see Sec-
tion 2.3 for precise definitions and statements). In addition, assume that sample
mean S(&1, ..., &,) is efficiently computable. Using the operator S, Eve can com-
pute a set

S(srjys..., 81, - [S(riy, ..., rik)]_l,

which should contain s with high probability when n is sufficiently large. This
is the idea of the mean-set attack and our approach to the shift search problem.
Furthermore, one can show that the more rounds of the protocol are performed,
the more information about the secret key our attack gains (note that at the same
time the protocol is iterated by its nature, and large number of rounds is important
for its reliability in a sense of the soundness property). The discussion above leads
to the main theoretical results of this paper, proved in Section 4.

Theorem A (Mean-set attack principle — I). Let G be a group, X a finite generat-
ing set for G, s € G a secret fixed element, and &1, &>, ... a sequence of randomly
generated i.i.d. group elements, such that E(&1) = {g}. If &1, ..., &, is asample of
random elements of G generated by the Prover, cy, . .., cy a succession of random
bits (challenges) generated by the Verifier, and

i ifei =0
Vi sri ifci =1
random elements representing responses of the Prover, then there exists a constant
D = D(G, p) such that
. . _ D
P ¢Syl =1i=1...n)-Syila=0i=1..n)"")<—.

Theorem B (Mean-set attack principle — II). If, in addition to the assumptions
of Theorem A, the distribution | has finite support, then there exists a constant
D = D(G, ) such that

Ps¢SUyilci=1i=1,....n)-SUyilci=0.i =1,....n)7 "
<0(e P,
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1.4 Outline

Section 2 reviews some necessary graph- and group-theoretic preliminaries that
constitute the setting of our work. In Section 2.3, we recall the notion of the mean-
set (expectation) of a (graph-)group-valued random element, introduced in [27],
and main theorems relevant to this object to prepare the ground for the main re-
sults; in particular, we discuss the “shift” property, the strong law of large num-
bers, and the analogues of Chebyshev and Chernoff-like inequalities for graphs and
groups. In Section 3, we propose an algorithm for computing mean-sets. Next, we
turn to formulations and proofs of the main theoretical results of this paper, the
mean-set attack principles under different assumptions. This task is carried out in
Section 4. At the end of that section, we indicate that even if the proposed algo-
rithm fails, we can still gain some information about the secret key of the Prover.
In other words, the more rounds of the protocol are performed, the more informa-
tion about the secret key we can gain. In Section 5.1, we present results of our
experiments with the classical key generation according to [11]. Section 5.2 is
concerned with results of experiments with the alternative (special) key generation
proposed by Sibert et al. in [34]. At the end, in Section 6, we discuss possible
methods for defending against the mean-set attack.

2 Preliminaries

Let us briefly recall some definitions of group and graph theory. For a better insight
into graph theory, the reader is referred to [35], while [21] can serve as a good
introduction into group theory.

2.1 Graphs
An undirected graph T is an ordered pair of sets (V, E) where
o V = V(T') is called the vertex seft;
e E = E(I') is a set of unordered pairs (v, v3) € V x V called the edge set.

If e = (v1,v2) € E then we say that vy and v, are adjacent in I'. The number
of vertices adjacent to v is called the degree of v. We say that the graph I' is
locally-finite if every vertex has a finite degree.

A directed graph T is an ordered pair of sets (V, E) where E = E(T") is a set
of ordered pairs (vi,v2) € V x V. If e = (v1,v3) € E, then we say that v;
is the origin of the edge e, denoted by o(e), and v, is the terminus of e, denoted
by #(e). An undirected graph can be viewed as a directed graph in which a pair
(v1,v3) € E serves as two edges (vy, v2) and (vp, v1).
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A path p in a directed graph I is a finite sequence of edges e, . . ., e, such that
t(e;) = o(ej+1). The vertex o(ey) is called the origin of the path p and is denoted
by o(p). The vertex ¢ (e;) is called the terminus of the path p and is denoted by
t(p). The number 7 is called the length of the path p and is denoted by |p|. We
say that two vertices vy, vy € V(I') are connected, if there exists a path from v to
vp in I'. The graph I' is connected if every pair of vertices is connected.

The distance between v and v, in a graph I' is the length d (v, v2) of a shortest
path between v; and v,. If vy and v, are disconnected, then d(vy, v2) = oo.
We say that a path p = eq,...,e, from vy to vy is geodesic in a graph I' if
d(o(p),t(p)) = d(v1,v2) = n,i.e.,if p is a shortest path from v; to vs.

A path p = ey,...,e, in a graph [ is closed, if o(p) = t(p). In this case we
say that p is a cycle in I". A path p is simple, if no proper segment of p is a cycle.
The graph I is a tree if it does not contain a simple cycle.

2.2 Groups and Cayley graphs

Consider a finite set, also called alphabet, X = {x1,...,xn}, and let X! be the
set of formal inverses {xl_l, ce Xy, 1} of elements in X. This defines an involu-
tion ! on the set X*! := X U X! which maps every symbol x € X to its
formal inverse x ! € X! and every symbol x~! € X! to the original x € X.
An alphabet X is called a group alphabet if X~! C X, and there is an involution
which maps elements of X to their inverses. An X -digraph is a graph (V, E) with
edges labeled by elements in X*! = X U X! such that for any edge e = u S
there exists an edge v g u, which is called the inverse of e and is denoted by e 1.
See [18] for more information on X -digraphs.

Let G be a group and X C G a set of generators for G, i.e. G = (X). Assume
that X is closed under inversion, i.e., X = X*!. The Cayley graph Cg(X) of G
relative to X is a labeled graph (V. E), where the vertex set is V' = G, and the
edge set E contains all edges of the form g 5 g» where g1,82 € G, x € X and
g> = g1x and only them. The distance between elements g1, g» € G relative to
the generating set X is the distance in the graph Cg(X) between vertices g and
g» or, equivalently,

dx(g1,82) = min{n | g1x7'x52...x5" = go forsome x; € X, &; = £1}.

2.3 Random (graph-)group elements

In this section, we recall some of the main notions and results of [27] that are em-
ployed further in the present paper. Let I' = (V, E) be a locally-finite connected
graph and (2, ¥, P) a probability space. A measurable mapping £ : Q — V(I")
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is called a random graph element defined on a given probability space. A random
I'-element & induces an atomic probability measure p on V(I') defined in a usual
way as

p) = pe) = Po | §@) =v}, velV(I).

Define a weight function Mg : V(I') — R by

M@) = Mg(w) = ) d>v.5)pg(s),
seV(I)

where d (v, s) is the distance between v and s in I". The domain of M is the set

domain(M) = {v e V() | Z dz(v,s)ug(s) < oo}.
seV ()

It is proved in [27] that for any distribution p on V(I") either domain(M) = @ or
domain(M) = V(I'). In the case when domain(M) = V(I"), we say that M(-) is
totally defined. Given that domain(M) = V(I'), the mean-set of a I'-valued £ is
defined to be a set of vertices minimizing the weight function, i.e.,

E() = {v e V() | M(v) < M(u), Yu € V(). @2.1)

Sometimes we write E(x) and speak of the mean-set of distribution p. Using
the Cayley graph construction one can similarly define a notion of the mean-set
for a finitely generated group G (relative to a fixed generating set). Similar mean
values (in different settings) are used rather often; see [27] for some history and
literature sources. Below, we recall some results proved in [27].

Lemma 2.1 ([27]). Let & be a random T -element, where T is a connected locally-
finite graph, with totally defined weight function Mg(-). Then the mean-set E(§)
is non-empty and finite.

The next property is an analogue of the property E(c + &) = ¢ + E(§) for
real-valued random variables.

Proposition 2.2 (Shift property, [27]). Let G = (X) be a finitely generated group
and g € G. Let & be a random G-element. Then for a random element &4 defined

by &g () := g&(w) we have E(§g) = gE(£).

It is easy to see that this property follows from the fact that for any g1, g2,.5 € G
the equality dx (g1, g2) = dx(sg1,sg2) holds, where dx (g1, g2) is the distance
between elements g1, g> € G relative to X (see Section 2).
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Now let&q, ..., &, be a sample of independent and identically distributed graph-
valued random elements & : Q2 — V(I') defined on a given probability space
(2, F,P) and py(v) be the relative frequency

_ Hil&i(@) =v.1=i=<nj
B n

Un (V) = pn(v, w)

with which the value v € V(I") occurs in the random sample &) (w), ..., & ().
Let
My(v) = > d*(v.i)pa(i)

ieV(I')

be the random weight, called the sampling weight, corresponding to v € V(I'),
and M, () the resulting random sampling weight function. The set of vertices

Sp =S¢1,....&) ={ve V@) | My(v) < My(u),Vu € V(I')}

is called the sample mean-set (or sample center-set) relative to £. The next theorem
shows that the sets S,, and E(§) in I" play roles analogous to the classical average
of real values x""nﬁ and the classical expectation [E of a real-valued random
variable respectively, in the non-commutative case. In other words, the strong
law of large numbers generalized to graphs and groups states that our (empirical)
sample mean-set S, converges to the (theoretical) mean-set [E(§) as n — oo.

Theorem 2.3 (Strong law of large numbers, [27]). Let T be a locally-finite con-
nected graph and {§;}72., a sequence of i.i.d. random I'-elements. If the weight
function Mg, (-) is totally defined and E(§1) = {v} for some v € V(I'), then

i 5, = E(6)
with probability one.

Similar result holds for multi-vertex mean-sets. See [27] for technical condi-
tions needed, as well as other details. The simplest version of multi-vertex SLLN
in terms of limsup is as follows:

Theorem 2.4 (Multi-Vertex SLLN, [27]). Let I be a locally-finite connected graph
and {£;}72 | be a sequence of i.i.d. random T'-elements. Assume that the weight
function Mg, (-) is totally defined and E(§) = {v1,..., vk}, where k > 4. If
E(§1) < supp(p) then

limsup S, = E(§)

n—0o0

holds with probability one.
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Moreover, the following asymptotic upper bounds (analogues of the classical
Chebyshev and Chernoff bounds) on convergence rate hold:

Theorem 2.5 (Chebyshev’s inequality for graphs, [27]). Let I be a locally-finite
connected graph and {§; }72 | a sequence of i.i.d. random I"-elements. If the weight
function Mg, (-) is totally defined then there exists a constant C = C(I',&1) > 0
such that

PO &) ZEG) < 2.2)

With an additional assumption on p, we can get even Chernoff-like asymptotic
bound.

Theorem 2.6 (Chernoff-like bound for graphs, [27]). Let I be a locally-finite con-
nected graph and {£;}72 | a sequence of i.i.d. random I"-elements. If the weight
function Mg, (-) is totally defined and jig, has finite support, then for some con-

stant C > 0

P(S(1.....En) L E(£1)) < O(e™CM). (2.3)

3 Effective computation of a mean-set

Let G be a group and {;}_, a sequence of random i.i.d. elements taking values
in G such that the corresponding weight function M(-) is totally defined. In Sec-
tion 2.3, we introduced a notion of the mean-set of £ that satisfies the desirable
properties (AV1) and (AV2) of Section 1.3. One of the technical difficulties en-
countered in practice is that, unlike the classical average value (x1 + -+ + x)/n
for real-valued random variables, the sample mean-set S, is hard to compute. In
other words, in general, our definition of the meat-set might not satisfy the prop-
erty (AV3).
Several problems arise when trying to compute Sy:

* Straightforward computation of the set {M(g) | ¢ € G} requires at least
O(|G|?) steps. This is computationally infeasible for large groups G, and impos-
sible for infinite groups. Hence we might want to reduce the search of a minimum
to some small part of G.

* There exist infinite groups in which the distance function d( -, -) is very difficult
to compute. The braid group B is an example for such a group. The computation
of the distance function for B, is known to be NP-hard, see [31]. Such groups
require special treatment. Moreover, there exist infinite groups for which the dis-
tance function d( -, -) is not computable. We omit consideration of such groups.
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We devise a heuristic procedure to solve the first problem. As proved in [27],
if the weight function M(-) satisfies certain local monotonicity properties, then
our procedure achieves the desired result. Our algorithm is a simple direct descent
heuristic, in which we use the sample weight function M, that comes from a sam-
ple of random group elements {g1, ..., g} from a finitely-generated group G.

Algorithm 3.1 (Direct Descent Heuristic).

INnpUT: A group G with a finite set of generators X € G and a sequence of
elements {g1,...,g,}in G.

OuTPUT: An element g € G that locally minimizes My (-).

COMPUTATIONS:

A. Choose a random g € G according to some probability measure v on G.
B. If for every x € X!, M, (¢) < M, (gx), then output g.

C. Otherwise put g <— gx, where x € X *1 i5 an element minimizing the value
of M, (gx) and go to step B.

As any other direct descend heuristic method, Algorithm 3.1 might not work if
the function M, has local minima. It is proved in [27] that it always works for
trees and, hence, for free groups.

Theorem 3.2 ([27]). Let i be a distribution on a locally-finite tree T such that
a function M is totally defined. Then Algorithm 3.1 for T and M finds a central
point (mean-set) of L on T.

The second problem of computing S,, concerns practical computations of length
function in G. It turns out that we need a relatively mild assumption to deal with
it — the existence of an efficiently computable distance function dx(-,-); even
a “reasonable” approximation of the length function may work. In this work we
approximate geodesic length using the method described in [25]. Even though
it does not guarantee the optimal result, it was proved to be practically useful in
a series of attacks, see [22,23,29,30].

4 The mean-set attack

In this section, we use theoretical results stated above to attack the Sibert et al.
protocol, described in Section 1.1. In the following heuristic attack we use the
Algorithm 3.1 to compute sample mean-set Sy.
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Algorithm 4.1 (The mean-set attack).

InpuT: The Prover’s public element (¢, w) and sequences Rg and R; as in the
protocol.

OuTpUT: An element z satisfying the equality # = z~!wz (which can be consid-
ered as the Prover’s private key), or Failure.

COMPUTATIONS:

A. Apply Algorithm 3.1 to Ry and obtain gg.
B. Apply Algorithm 3.1 to R and obtain g1.

C If glgal satisfies 1 = (glggl)_lw(glgal) then output glgal. Otherwise
output Failure.

If the algorithm outputs an element z € G, then z can serve as the Prover’s
original secret s; any solution of the conjugacy equation t = x~'wx does. In
general, z can be different from s, and there are no means for the adversary to
determine whether z = s. In spite of that, Eve, who is only trying to authenticate
as the Prover, considers this z a success. On the other hand, since our goal is
to show that the protocol is not computationally zero-knowledge, we estimate the
probability to find s. Only this original secret element s is considered as a success
in our analysis. Other outcomes that work for Eve (when z # s) are ignored.

The theorems below give asymptotic bounds on the failure rate (for the orig-
inal s) in the mean-set attack. We show that the probability of the failure can
decrease linearly or exponentially, depending on the distribution f.

Theorem 4.2 (Mean-set attack principle — ). Let G be a group, X a finite generat-
ing set for G, s € G a secret fixed element, and &1, &>, . .. a sequence of randomly
generated i.i.d. group elements, such that E(&1) = {g}. Ifé1,..., &, is a sample of
random elements of G generated by the Prover, cy, ..., ¢y a succession of random
bits (challenges) generated by the Verifier, and

o _ i ifa =0
Vi sri ifc; =1

random elements representing responses of the Prover, then there exists a constant
D such that

Ps&SHyilci=1,i=1,....,n})-S{yi | ¢c; =0,i = 1,...,n})_1)§

:.|®

Proof. 1t follows from Theorem 2.5 that there exists a constant C such that

C
lci =0,i=1,...,n}

P(S({yi |ci =0.i =1,....n}) #{g}) < 7
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Applying Chebyshev’s inequality to Bernoulli random variables {c;} having

E(c) = % and Ucz,- = %, we obtain

. . n 4
P(Iilei=0i=1..m<7)<—.

n

In more detail, if the number of zeros in our sample of challenges is less than

% then the number of ones is greater or equal to 3 and we have
P(|{i|ci=0,i:l, n} < )<P(‘ch__‘__>_
Note that
n

)Zci—f\ NN ’Z,-lcl _hot

i 4 217 4

i=1
and

P(‘M_l(g)&
n 2174/ 7 n
from the classical Chebyshev inequality for sample means with ¢ = %.

It follows that

POyl =00 =1,..n)#gh = o+ = < 2T

n

Similarly, we prove that P(S{y; | ¢; = 1,i = 1,...,n}) # {sg}) < #.
Hence,

Ps¢SUyileci=1i=1,....n)-SUyilci=0,i=1,....nH)7 Y
8+ 8C
< )

- n

Furthermore, we can get Chernoff-like asymptotic bound if we impose one re-
striction on distribution . Recall the original Hoeffding’s inequality [17] well
known in probability theory. Assume that {x;} is a sequence of independent ran-
dom variables and that every x; is almost surely bounded, i.e., P(x; — E(x;) €
[ai,bi]) = 1 for some a;,b; € R. Then for the sum S, = x; + --- + xp, the
inequality

2n%g?
P(Sp — E(Sn) = ne) < exp ( - m)
i=1\i !
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holds. If x; are identically distributed, then we get the inequality

P l(x 4+ xp) —E(x;) >e) <2exp —Ln 4.1)
n 1 n 1) = = (b—a)2 . .

Now we can prove the Mean-set attack principle with exponential bounds.
Theorem 4.3 (Mean-set attack principle —I1). Let G be a group, X a finite generat-

ing set for G, s € G a secret fixed element, and &1, &2, . . . a sequence of randomly
generated i.i.d. group elements, such that E(&1) = {g}. Ifé1, ..., &, is a sample of

random elements of G generated by the Prover, cy, ..., ¢y a succession of random
bits (challenges) generated by the Verifier,
)i ifa =0
Vi sri ifc; =1

random elements representing responses of the Prover, and the distribution | has
finite support, then there exists a constant D = D(G, ) such that

PG ¢SWyilai=1i=1....n)-S{yi|e; =00 =1...0)7")
<0(e P,

Proof. 1t follows from Theorem 2.6 that there exists a constant C such that

P(S({yi | ci = 0.i = L....n}) # {g}) < O(e” CIWIG=01=Lmmll)

Applying inequality (4.1) to Bernoulli random variables {c; }, we get

Thus, we obtain a bound
P(S{yi |ci =0.i =1,....n}) # {g}) <e ™8+ 0@ "%,

Similarly, we prove that P(S({y; | ¢; = 1.i = 1,...,n}) # {sg}) < e /8 +
O(e=€"/%). Hence,

PsdSUyilci=1i=1,....n)-SUyilci=0,i=1,....nH)7YH
< 0@ P

where D = min{1/8, C/4}. |
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Algorithm 4.1 can fail. Nevertheless the pair of the obtained elements gg, g1
often encodes some additional information about the secret s. Indeed, assume that
E(un) = {g}. The element g¢ obtained at step A of Algorithm 4.1 can be viewed
as a product geg for some eg € G. Similarly, the element g; can be viewed as
a product sge; for some e; € G. Hence Algorithm 4.1 outputs the secret element
s whenever glgal = sgelealg_l = g, 1.e., whenever eleal =1.

Now, assume that Algorithm 4.1 has failed, i.e., e1e, 1 # 1. In this case, one
can try to reconstruct the secret element s as a product

g1-e gy =sger-e-ep'g”!
where e is an unknown element of the platform group. Clearly, e gives a correct
answer if and only if e; - e -eo_l =lore= el_leo. The element

eieo (4.2)

is called the error of the method. Clearly, one only needs to enumerate all words e
of length up to |el_1 eo| to reconstruct the required s in the form giegy 1 If a secret
element s is chosen uniformly as a word of length / and |e] 'eg| < [, then we gain
some information about s, since the search space for s reduces. We can improve
Algorithm 4.1 by adding such enumeration step as follows.

Algorithm 4.4 (The attack — 2).

InpuT: The Prover’s public element (¢, w). Sequences Rg and R; as in the proto-
col. The number k € N — the expected length of error element eq e, L

OUTPUT: An element z satisfying the equality # = z~!wz (which can be consid-
ered as the Prover’s private key), or Failure.

COMPUTATIONS:

A. Apply Algorithm 3.1 to Ry and obtain gg.
B. Apply Algorithm 3.1 to R and obtain g1.

C. For every word e of lengths up to k, check if giegy ! satisfies the equality
t = (gleggl)_lw(glegal) and if so output glegal. Otherwise output
Failure.

5 Experiments

To demonstrate the practical use of our mean-set attack, we perform a series of
experiments, which we describe below. In [34], [11] two different methods of gen-
eration of nonce elements were proposed, both with the same platform group Bj,
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which has the following (Artin’s) presentation:
o0 = oi0i0; ifli— 7l =1
B, =< Ol,...,0p—1 ‘ 0i0;0i 0j0i0j 1 i —Jl >

0i0j = 0;0; ifli —j|>1

We distinguish between the two ways, classical ([11]) and alternative ([34]),
to generate elements of the underlying group by performing two different sets of
experiments outlined below in Sections 5.1 and 5.2. In both cases, we observe that
the secret information of the Prover is not secure, and the probability to break the
protocol grows as the number of rounds of the protocol increases. All experiments
are done using the CRAG software package [9].

5.1 Classical key generation

Classical key generation of the elements of B, was suggested in [11] with param-
eters n = 50 (rank of the braid group) and the lengths of private keys L = 512.
The length function relative to the Artin generators {o1,...,0,—1} is NP-hard.
That is why in this paper, as it was already mentioned in Section 3, we use the
approximation of geodesic length method, proposed in [23]. See [22, 23,29, 30]
for a series of successful attacks using this method. We want to emphasize that we
compute the sampling weight values in the Algorithm 3.1, which is a subroutine
in Algorithm 4.1, using the approximated distance function values in B,.

One of the disadvantages of the approximation algorithm that we used is that
there is no polynomial time upper bound for that as it uses Dehornoy handle-free
forms [10]. As a result we do not know the complexity of our algorithm and we
do not know how our algorithm scales with parameter values. In each experiment
we randomly generate an instance of the authentication protocol and try to break
it, i.e., find the private key, using the techniques developed in this paper. Recall
that each authentication is a series of k 3-pass commitment-challenge-response
rounds. Therefore, an instance of authentication consists of k triples (x;, ¢;, i),
i = 1,...,k obtained as described in Section 1.1. Here x; is a commitment,
¢; 1s a challenge, and r; is a response. A random bit ¢; is chosen randomly and
uniformly from the set {0, 1}. In our experiments we make an assumption that
exactly half of ¢;’s are 0 and half are 1. This allows us to see an instance of the
protocol as a pair of equinumerous sets Ro = {r1,...,7x/2} C By and Ry =
{sri,...,sr,’{/z} C B,.

The main parameters for the system are the rank » of the braid group, the num-
ber of rounds k in the protocol, and the length L of secret keys. We generate
a single instance of the problem with parameters (1, k, L) as follows:
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* A braid s is chosen randomly and uniformly as a word of length L over a group
alphabet {071,...,0,—1}. This braid is a secret element which is used only to
generate further data and to compare the final element to.

* A sequence Rg = {ri,....,rg/p} of braid words chosen randomly and uni-
formly as words of length L over a group alphabet {01, ...,0,—1}.
« A sequence Ry = {sr],... ,sr,/c/z} of braid words, where r/ are chosen ran-

domly and uniformly as words of length L over a group alphabet {01, ...,0,—1}.

For every parameter set (1, k, L) we generate 1000 random instances (Rg, R1) and
run Algorithm 4.1 which attempts to find the secret key s used in the generation
of R 1.

Below we present the results of actual experiments done for groups Bs, Big,
and Bjg. Horizontally we have increasing number of rounds k from 10 to 320 and
vertically we have increasing lengths L from 10 to 100. Every cell contains a pair
(P%, E) where P is a success rate and E is an average length of the error (4.2) of
the method for the corresponding pair (L, k) of parameter values. All experiments
were performed using CRAG library [9]. The library provides an environment to
test cryptographic protocols constructed from non-commutative groups, for exam-
ple the braid group.

L\k 10 20 40 80 160 320
10 || (19%, 1.3) | (72%,0.3) | (97%, 0.04) | (100%, 0) | (100%, 0) | (100%, 0)
50 || 2%, 13.4) 8%, 9) (68%,1.3) | (93%,0.1) | (100%, 0) | (100%, 0)
100 || (0%, 53.7) | (0%, 48.1) | (6%, 26.9) | (44%, 14) | (65%, 14.7) | (87%, 5)

Table 1. Experiments in Bs.

L\k 10 20 40 80 160 320
10 (15%, 1.8) | (68%,0.3) | (98%,0) | (100%,0) | (100%,0) | (100%, 0)
50 0%,4.5) | 23%,1.3) | (82%,0) | (97%, 0) (99%, 0) (100%, 0)
100 (1%, 41) (7% ,23.5) | (33%.,5) (79%, 1) | (97%,0.6) | (98%, 1.1)

Table 2. Experiments in Byg.

L\k 10 20 40 80 160 320
10 (15%, 1.6) | (87%,0.1) | (100%,0) | (100%, 0) | (100%, 0) | (100%, 0)
50 (0%,5.4) | 23%,1.7) | (81%,0.2) | (100%,0) | (100%, 0) | (100%, 0)
100 (0%,7.8) (15%,2) | (712%,0.3) | (97%,0) | (100%,0) | (100%, 0)

Table 3. Experiments in By.
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We immediately observe from the data in Tables 1-3 that:

* the success rate increases as the number of rounds (sample size) increases;
* the success rate decreases as the length of the key increases;

* the success rate increases as the rank of the group increases;

* the average error length decreases as we increase the number of rounds.

The first observation is the most interesting since the number of rounds is one of
the main reliability parameters of the protocol, namely, the soundness error de-
creases as 1/ 2K as the number of rounds k gets larger. But, at the same time, we
observe that security of the scheme decreases as k increases. The second obser-
vation can be interpreted as follows — the longer the braids are the more difficult
it is to compute the approximation. The third observation is easy to explain. The
bigger the rank of the group the more braid generators commute and the simpler
random braids are.

5.2 Alternative key generation

As we have mentioned in Section 1.2, the Sibert et al. scheme, proposed in [34],
does not possess perfect zero knowledge property. Nevertheless, the authors
of [34] try to achieve computational zero knowledge by proposing a special way
of generating public and private information. They provide some statistical evi-
dence that the scheme can be computationally zero knowledge if this alternative
key generation is used. In this section we, firstly, outline the proposed key gener-
ation method and, secondly, present actual experiments supporting our theoretical
results even for this special key generation method.

The method of generating of braids in [34] can be translated to the notation of
the present paper as follows. The Prover generates

* nonce elements r as products of L uniformly chosen permutation braids p;
(see [13]) from B,

) pl cee pL’
in particular, r belongs to the corresponding positive monoid.

* the secret key s as the inverse of a product of L uniformly chosen permutation

braids from By, i.e.,
1

—1 -
s = pl LAY pL .
We made a very useful observation when doing the experiments with so gener-
ated nonce elements r. We observed that the mean-set in this case is often a sin-
gleton set of the form {A¥}, where A is a half-twist braid and k € N. Therefore,
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to enhance the performance of Algorithm 3.1 in step B, we test not only generators
X € Xil, but also x = A, and if (in step C) A minimizes the value of M, (gx),
then we put x — xA and return to step B.

In fact it is an interesting question if the uniform distribution on a sphere in
a Garside monoid G has a singleton mean set {A’é 4 for some k € N, where
Ag+ is the Garside element, A, in G172 This is clearly true for free abelian
monoids. As we mention above, experiments show that the same can be true in the
braid monoid.

Below we present the results of actual experiments done for the group Bjp.
Horizontally we have increasing number of rounds k from 10 to 320 and vertically
we have increasing lengths L (in permutation braids) from 3 to 10. Every cell
contains a pair (P %, E) where P is a success rate and E is the average length of
the error for the corresponding pair (L, k) of parameter values.

Since the average Artin length (denoted L’ in the tables below) of a permuta-
tion braid on n strands is of order n2, the length of nonce elements grows very
fast with L; it is shown in the leftmost column of the tables in parentheses. For
instance, we can see that for Bjg the average length of a product of L = 3 permu-
tation braids is 81, the average length of a product of L = 5 permutation braids is
138, etc.

L(L’)\k 10 20 40 80 160 320

3@81) || (0%,24.6) | (0%, 22.5) | (1%, 19.6) | (4%, 16) | (7%, 13.1) | (25%, 12.3)
5(138) || (0%,46.7) | (0%, 40.9) | (0%, 32.5) | (2%, 23.3)| (10%, 17.6)| (28%, 14.2)
10 (274)|| (0%, 110.2)| (0%, 102.6)| (0%, 103.5)| (0%, 96.3)| (0%, 92.7) | (0%, 87.9)

Table 4. Success rate and average length of the error for experiments in Bjyg.

Again, we observe that success rate increases as we increase the number of
rounds, and the average error length decreases as we increase the number of
rounds.

6 Defending against the attack

In this section, we describe several principles one can follow in order to defend
against the mean-set attack presented in this paper or, at least, to make it com-
putationally infeasible. Defending can be done through a special choice of the
platform group G or a special choice of a distribution ¢ on G. Another purpose
of this section is to motivate further study of distributions on groups and computa-
tional properties of groups.
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6.1 Groups with no efficiently computable length functions

One of the main tools in our technique is an efficiently computable function
dx(-,-) on G. To prevent the attacker from computing mean-sets, one can use
a platform group G with a hardly computable length function dyx (-, -) relative to
any “reasonable” finite generating set X. By reasonable generating set we mean
a set, which is small relative to the main security parameter. Examples of such
groups exist. For instance, length function for any finitely presented group with
unsolvable word problem is not computable. On the other hand, it is hard to work
with such groups, as they do not have efficiently computable normal forms.

A more interesting example is a multiplicative group of a prime field Z. The
group Zy is cyclic, i.e., Z, = {a) for some primitive root a of p. Itis easy to see
that the length of an element b € Z satisfies

|b|_ logab if IOgabS(P—l)/z,
B p—1—log, b otherwise,

and hence the problem of computing the length of an element and the discrete log-
arithm problem are computationally equivalent. The discrete logarithm problem
is widely believed to be computationally hard and is used as a basis of security
of many cryptographic protocols, most notably the ElGamal [12] and Cramer—
Shoup [8] cryptosystems. In other words, Z; is another example of a group with
hardly computable length function.

6.2 Systems of probability measures

Let G be a platform group. Recall that our assumption was that the Prover uses
a fixed distribution on the set of nonce elements, i.e., every element r; is generated
using the same random generator. Instead he can use a sequence of probability
measures {u; }72,, where each measure p;, i = 1,2,..., is not used more than
once (ever), i.e., every nonce r;, i = 1,2,...,is generated using a unique distribu-
tion {u; }. In this case, the attacker does not have theoretical grounds for working
with sampling mean-sets. Nevertheless, it can turn out that the sequence of ran-
dom elements 7y, 72, ... can have some other distribution u* and the attack will
work. Another difficulty with implementing this idea is that there is no system-
atic study of distributions on general finitely generated groups and, in particular,
braid groups. So, it is hard to propose some particular sequence of probability
distributions. Some aspects of defining probability measures on infinite groups are
discussed in [7] and [6].
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6.3 Undefined mean-set

Another way to foil the attack is to use a distribution @ on G such that E(u) is
not defined, i.e., the corresponding weight function is not totally defined. In that
case the assumption of Theorem 4.2 fails, and it is easy to see that the sampling
weights M, (g) tend to oo with probability 1. Nevertheless, we still can compare
the sampling weight values, as explained in [26] and [28], where it is shown that
the condition of finiteness of M) can be relaxed to that of finiteness of M1,
If M® is not defined then that means that the lengths of commitments are too
large and are impractical.

6.4 Large mean-set

Also, to foil the attack one can use a distribution ; on G such that the set £ ()
is large. As an example consider an authentication protocol in [33], based on the
difficulty of computing discrete discrete logarithms in groups of prime order. The
space of nonce elements in [33] is an additive group Z, acting by exponentiations
on a bigger group Zy. It is easy to compute length in (Zg, +) = (1). But, since
the nonce elements r € Zg, are chosen uniformly, it follows that the mean-set
is the whole group Z, (the uniform measure is right-invariant) and in this case
it is impossible to detect the shift s and the mean-set attack fails. We also refer
to [32] for a modification of [33] where nonce elements are not taken modulo ¢
and security proof requires a boundary on the number of times the same key is
used.

Now, let G be an infinite group. It is impossible to generate elements of G
uniformly, but one can try to achieve the property described below that can foil
the mean-set attack. Choose a probability measure ;& on G so that the mean-set
set [E(w) is large. Recall that Algorithm 4.1 can find up to one element of G
minimizing the weight function. For that it uses Algorithm 3.1 which randomly
(according to some measure v) chooses an element of g € G and then gradually
changes it (descends) to minimize its M value. This way the distribution v on the
initial choices g € G defines a distribution v; on the set of local minima of M on
G. More precisely, for g’ € G,

vy (g') = u{g € G | Algorithm 3.1 stops with the answer g’ on input g}.

Denote by ug the shifted probability measure on G by an element s defined by
ws(g) = u(s~lg). If S € G is the set of local minima of the weight function
M relative to p then the set 5.5 is the set of local minima relative to pty. But the

distribution v;S does not have to be induced from v; by the shift s, i.e., the equality

*

v;s (8) = v, (s~!g) does not have to hold. In fact, the distributions v M

*
and v Lis
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can “favor” unrelated subsets of S and s respectively. That would definitely foil
the attack presented in this paper. On the other hand, if VZ and v;';S are related,
then the mean-set attack can still work.

Finally, we want to mention again that probability measures on groups were not
extensively studied and there are no good probability measures known on general
groups and no general methods to construct measures satisfying the desired prop-
erties. Moreover, the problem of making distributions with large mean-sets is very
complicated because not every subset of a group G can be realized as a mean-set.
See [27] and [26] for more details. A number of open questions arise regarding
the problems mentioned above, but dealing with them is beyond the scope of this

paper.

7 Conclusion

In this paper, we used the probabilistic approach to analyze the Sibert et al. group-
based authentication protocol. We have proved that the scheme does not meet
necessary security compliances, i.e., it is not computationally zero-knowledge, in
practice. To conduct our analysis, we introduced a new computational problem
for finitely generated groups, the shift search problem, and employed probabilistic
tools discussed in [27] to deal with the problem. In particular, the concept of
the mean-set and the generalized strong law of large numbers for random group
elements with values in the vertices of the connected and locally-finite Cayley
graph of a given infinite finitely-generated group are used. The rate of success of
getting the secret key, as a solution to the shift search problem, has been proved to
be linear or exponential depending on the assumptions one is willing to make. In
addition, we have provided experimental evidence that our approach is practical
and can succeed even for braid groups. This work shows, among other things, that
generalization of classical probabilistic results to combinatorial objects can lead to
useful applications in group-based cryptography.
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