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1 Introduction

Elliptic curves have been of great interest to algebraists, algebraic geometers, and
number theorists for numerous decades. Since the time of Jacobi (more than 150
years ago) and long before the emergence of modern cryptography, it was well
known that every elliptic curve is endowed with a unique group law which turns
the points on an elliptic curve into an abelian group. The binary operation of this
group, which is rationally expressed in terms of the coordinates of points of an
elliptic curve, is called the addition law. The addition law turns out to be efficiently
computable for elliptic curves defined over “suitable” fields. After the 1980s, such
elliptic curves found several applications in cryptology. Standard references are
[30, 31, 34].

In this context, several forms of elliptic curves have been studied for a more
efficient computation of elliptic curve point addition. In most studies the most
common cases of addition and doubling are covered, and handling of the special
cases is omitted. This paper closes this gap by giving a complete description of
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the group law in the case of three selected forms of elliptic curves:

(1) Extended Jacobi quartic form, y2 D dx4 C 2ax2 C 1 (in variables x and y),

(2) Twisted Edwards form, ax2 C y2 D 1C dx2y2 (in variables x and y),

(3) Twisted Jacobi intersection form, bs2 C c2 D 1; as2 C d2 D 1 (in variables
s, c and d ).

The rest of this paper is structured as follows. Section 2 provides formal defini-
tions for background concepts which will be frequently accessed in the subsequent
chapters. In particular, the group law is defined. Weierstrass forms of selected
curves are presented along with birational maps. Section 3 brings together several
computational tools which are beneficial in deriving group laws on elliptic curves.
Section 4 presents low-degree point addition formulae for fixed forms of ellip-
tic curves and states a complete addition algorithm in affine coordinates for each
form by suitably handling all division by zero exceptions and interactions with the
point(s) at infinity. Section 4 also contains results from the authors’ previous works
[24–26]. Section 5 concludes this paper with a summary of the contributions.

2 Elliptic curves

This section provides definitions for background concepts which will be frequently
accessed in the subsequent sections.

2.1 Weierstrass form

Throughout this subsection, K denotes a field of arbitrary characteristic and L an
algebraic extension of K.

Definition 2.1. Let a1; a3; a2; a4; a6 2 K. A Weierstrass curve defined over K is
a curve

EW ;a1;a3;a2;a4;a6
W v2
C a1uv C a3v D u

3
C a2u

2
C a4uC a6:

A Weierstrass curve is non-singular if and only if for every u1; v1 2 K (closure
of K) with v2

1 C a1u1v1 C a3v1 � .u
3
1 C a2u

2
1 C a4u1 C a6/ D 0, the partial

derivatives 2v1Ca1u1Ca3 and a1v1� 3u
2
1� 2a2u1�a4 do not vanish simulta-

neously (see the Jacobi criterion in [15, Lemma 4.49]). The singularity check can
be done algebraically by computing � D �b2

2b8 � 8b
3
4 � 27b

2
6 C 9b2b4b6 where

b2 D a
2
1 C 4a2, b4 D a1a3 C 2a4, b6 D a

2
3 C 4a6, and b8 D a

2
1a6 � a1a3a4 C

4a2a6Ca2a
2
3�a

2
4. A Weierstrass curve is non-singular if and only if� ¤ 0. The

notation EW ;a1;a3;a2;a4;a6
will be abbreviated as EW when a1; a3; a2; a4; a6 are
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understood. The projective closure of EW is given by the equation

EW ;a1;a3;a2;a4;a6
W V 2W C a1UVW C a3V W

2

D U 3
C a2U

2W C a4UW
2
C a6W

3:

A point .U WV WW / with U; V 2 K and W 2 Kn¹0º on EW corresponds to the
affine point .U=W; V=W / on EW . The point .0W 1W 0/ on EW is non-singular.
This point is called the point at infinity and is denoted by 1. The point 1 is
K-rational. There are no other points on EW with W D 0.

With a slight abuse of notation, EW .L/, the set of L-rational points on EW is
denoted by

EW .L/ D ¹.u; v/ 2 L2
j v2
C a1uv C a3v D u

3
C a2u

2
C a4uC a6º [ ¹1º:

An elliptic curve is denoted by its affine part hereafter by assuming that its projec-
tive closure is understood.

The following theorem says that every elliptic curve can be expressed as a
Weierstrass curve regardless of the characteristic of K chosen. This can be seen as
a reason of why elliptic curves are typically explained with the use of the Weier-
strass form.

Theorem 2.2 (Weierstrass form of an elliptic curve). Let C=K be a genus 1 curve
with a K-rational point. There exist a1; a3; a2; a4; a6 2 K such that

K.C / Š K.EW ;a1;a3;a2;a4;a6
/:

Thus, C is birationally equivalent over K to EW .

Proof. The proof follows from an application of the Riemann–Roch theorem, see
[39, § III.3.3] and [15, § 4.4.2 and § 13.1].

It is natural to ask when are two Weierstrass curves isomorphic over K.

Theorem 2.3. Let EW ;a1;a3;a2;a4;a6
and EW 0;A1;A3;A2;A4;A6

be two Weierstrass
curves defined over K, as in Definition 2.1. EW and EW 0 are isomorphic over K
if and only if there exist c 2 Kn¹0º and r; s; t 2 K such that

A1 D .a1 C 2s/=c;

A2 D .a2 � sa1 C 3r � s
2/=c2;

A3 D .a3 C ra1 C 2t/=c
3;

A4 D .a4 � sa3 C 2ra2 � .t C rs/a1 C 3r
2
� 2st/=c4;

A6 D .a6 C ra4 C r
2a2 C r

3
� ta3 � t

2
� rta1/=c

6:
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If such c; r; s; t exist then the maps

 WEW ! EW 0 ; .u; v/ 7!
�u � r
c2

;
v � s.u � r/ � t

c3

�
; (2.1)

�WEW 0 ! EW ; .u0; v0/ 7!
�
c2u0 C r; c3v0 C c2su0 C t

�
(2.2)

are the desired isomorphisms defined over K.

Proof. See [39, Table 1.2, III.1].

The morphism � in Theorem 2.3 is usually called the admissible change of
variables.

2.2 Group law

This section presents the group law on elliptic curves. Let EW be a Weierstrass
form elliptic curve with the point at infinity1 2 EW .L/. The identity element is
the point1. To specify this choice the identity is denoted by O. Every point in
EW .L/ has a unique inverse which can be computed by the unary operation “�”.
A computation of this operation requires case distinctions. In particular, �O D O.
Let P1 D .u1; v1/ 2 EW . Then �P1 D .u1;�v1 � a1u1 � a3/. A computation
of the binary operation “C” requires somewhat more case distinctions. These
cases are summarized in Algorithm 2.5. Using this algorithm, it can be verified
that P1 C P2 D P2 C P1 and .P0 C P1/ C P2 D P0 C .P1 C P2/ for all
Pi 2 EW .K/. Geometric and algebraic verifications of the group axioms are
given in many textbooks, cf. [21, 40].

Definition 2.4. The unary operation � is called the negation law. The binary op-
eration C is called the addition law. Together with a fixed identity element these
two laws become the building blocks of the group law which turns EW into an
additively written abelian group.

Both the negation and addition laws require case distinctions. The sets of for-
mulae handling some of these cases will be assigned special names hereafter.
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Algorithm 2.5. The addition law for Weierstrass form in affine coordinates
Input : P1; P2;O 2 EW ;a1;a3;a2;a4;a6

.K/.

Output : P3 D P1 C P2.

1 if P1 D O then return P2.
2 else if P2 D O then return P1.
3 else if u1 D u2 then
4 if v1 C a1u1 C a3 C v2 D 0 then return O.
5 else
6 � .3u2

1 C 2a2u1 � a1v1 C a4/=.2v1 C a1u1 C a3/.
7 u3  �2 C a1� � a2 � 2u1.
8 v3  �.u1 � u3/ � v1 � a1u3 � a3.
9 return .u3; v3/.

10 end
11 else
12 � .v1 � v2/=.u1 � u2/.
13 u3  �2 C a1� � a2 � u1 � u2.
14 v3  �.u1 � u3/ � v1 � a1u3 � a3.
15 return .u3; v3/.
16 end

Definition 2.6. If a set of formulae can only be used without any case distinction
to carry out the operation

� “�” for all but finitely many points in EW , then such formulae are called
the point-negation formulae. The operation carried out is called the point-
negation.

� “C” for all but finitely many pairs of equal points and not for any pair of
distinct points inEW �EW , then such formulae are called the point-doubling
formulae. For instance, see lines 7, 8, 9 in Algorithm 2.5. The operation
carried out is called the point-doubling.

� “C” for all but finitely many pairs of distinct points in EW �EW , then such
formulae are called the dedicated point-addition formulae. For instance, see
lines 13, 14, 15 in Algorithm 2.5. The operation carried out is called the
dedicated point-addition.

� “C” for all but finitely many pairs of not necessarily distinct points in EW �

EW , then such formulae are called the unified point-addition formulae. For
instance, see [40, Remark III.3.1]. The operation carried out is called the
unified point-addition. In some cases, dedicated point-addition formulae can
be used to add pairs of equal points after a rotation of coordinates, cf. [29].
Such formulae are called weakly unified point-addition and all unified point-
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addition formulae which are not weakly unified point-addition are called
strongly unified point-addition in EFD [7]. The distinction is omitted in
this work since all unified point-addition formulae in this work exhibit the
strongly unified property.

For economical reasons the “point-” and even the “formulae” part of each term
will sometimes be dropped assuming that the meaning is clear from the context.

Theorem 2.7. Let EW =K be an elliptic curve. Then the addition law and the
negation law define morphisms

C W EW �EW ! EW and � W EW ! EW

.P1; P2/ 7! P1 C P2 P1 7! �P1:

Proof. See [39, Theorem III.3.6] for a proof.

When speaking of one of these terms, say, a unified addition, it may be the case
that the denominators vanish and produce division by zero in affine coordinates.
Since the addition law is a morphism by Theorem 2.7 it is always possible to
switch to another set of formulae to compute the correct output. See also [39,
Remark 3.1]. Therefore, when stating the addition law on an elliptic curve all
cases should be considered carefully. Section 4 will provide more details on this.

The background in this section covers all elliptic curves. In Section 2.3, the
attention will be restricted to cases where K is of odd characteristic.

2.3 Forms of elliptic curves

This section explicitly describes the birational equivalence between each of the
aforementioned elliptic curves in Section 1 and a suitable Weierstrass curve. Some
of the birational maps are borrowed from the literature resources while some oth-
ers are derived by computer algebra tools which use Theorem 2.2 for this purpose.
Applied examples on the explicit derivation of the maps will be presented in Sec-
tion 3.1. Therefore, further discussion is omitted in this section. Note that for each
one of the studied forms the identity element and the presented maps comply with
the revisited/computed/proposed formulae in Sections 3 and 4.

It is still possible to substantially extend the list of the given forms. Indeed, a
recent preprint ([12]) explains a derivation of group laws for many more forms.
However, the forms listed at the beginning of this section are still the best when it
comes to efficient computations.
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Extended Jacobi quartic form

Throughout this subsection, K denotes a fixed field of odd characteristic and L an
algebraic extension of K. Let d; a 2 K. Assume that d is a square in L unless
stated otherwise.

Definition 2.8. An extended Jacobi quartic curve defined over K is the curve

EQ;d;a W y
2
D dx4

C 2ax2
C 1:

This curve is non-singular if and only if d.a2 � d/ ¤ 0. The j -invariant is
given by 64.a2C 3d/3=.d.a2 � d/2/ 2 K. The projective closure of EQ is given
by the equation

EQ;d;a W Y
2Z2
D dX4

C 2aX2Z2
CZ4:

A point .X WY WZ/withZ ¤ 0 onEQ corresponds to the affine point .X=Z; Y=Z/
on EQ. The point .0W 1W 0/ on EQ is singular. Using the standard “blow-up”
techniques (see [21, § 7.3]) the singularity can be resolved. The resolution of sin-
gularities produces two points which are labeled as �1 and �2. Note that two
“blow-ups” are necessary and sufficient to resolve the singularities. There are no
other points on EQ with Z D 0.

A way of removing the singularity is by using the projective curve given by the
equations eEQ;d;a W Y

2
D dT 2

C 2aX2
CZ2; X2

D TZ:

A point .X WY WT WZ/ with Z ¤ 0 on eEQ corresponds to the affine point
.X=Z; Y=Z/ on EQ. Fix ı 2 K such that ı2 D d . The points .0W ıW 1W 0/ and
.0W �ıW 1W 0/ correspond to �1 and �2 on the desingularization of EQ. There is
no other point on eEQ with Z D 0.

Another way of removing the singularity is by using the weighted projective
curve bEQ;d;a W Y

2
D dX4

C 2aX2Z2
CZ4:

A point .X WY WZ/ with Z ¤ 0 on bEQ corresponds to the affine point
.X=Z; Y=Z2/ on EQ. The points .1W ıW 0/ and .1W �ıW 0/ on bEQ correspond to
�1 and�2 on the desingularization of EQ. There are no other points on bEQ with
Z D 0.

With a slight abuse of notation, EQ.L/, the set of L-rational points on EQ is
denoted by

EQ.L/ D ¹.x; y/ 2 L2
j y2
D dx4

C 2ax2
C 1º [ ¹�1; �2º

where �1; �2 are points at infinity.
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Remark 2.9. The points �1, �2 on the desingularization of EQ; the points
.1W ıW 0/, .1W �ıW 0/ on bEQ; and the points .0W ıW 1W 0/, .0W �ıW 1W 0/ on eEQ are
L-rational if and only if d is a square in L.

The curve EQ is birationally equivalent over K to the Weierstrass curve

EW W v
2
D u.u2

� 4auC 4a2
� 4d/

via the maps

 WEQ ! EW ; .x; y/ 7!
�2y C 2

x2
C 2a;

4y C 4

x3
C
4a

x

�
; (2.3)

�WEW ! EQ; .u; v/ 7!
�
2
u

v
; 2.u � 2a/

u2

v2
� 1

�
: (2.4)

It is trivial to check that � ı  D idEQ
and  ı � D idEW

as formal maps.
The map  is regular at all points on EQ except .0; 1/ which corresponds to 1
on EW . At first glance, it may seem that  is not regular at .0;�1/. However,
it is possible to alter  to successfully map all points on EQ except .0; 1/. For
instance, the point .0;�1/ can be sent to EW with an alternative map given by

 0WEQ ! EW ; .x; y/ 7!
�2dx2 C 2a.1C y/

y � 1
;
4a.dx2 C 2a/ � 4d.1 � y/

.1 � y/2
x
�
:

(2.5)

The map � is regular at all points on EW except in one case. Before investigating
this case observe that the point .0; 0/ on EW can be sent to EQ with an alternative
map given by

�0WEW ! EQ; .u; v/ 7!
� 2v

.u � 2a/2 � 4d
;
u2 � 4.a2 � d/

.u � 2a/2 � 4d

�
: (2.6)

The map � is not regular at two points of the form .u; v/ with u ¤ 0 and v D 0.
These exceptional points correspond to two points at infinity on the desingulariza-
tion of EQ. From Remark 2.9 it follows that � is a morphism if d is a non-square
in K.

Every Weierstrass curve v2 D u3C a2u
2C a4u is birationally equivalent over

K to EQ;.a2
2�4a4/=16;�a2=4. The shape v2 D u3 C a2u

2 C a4u covers all elliptic
curves (over K) having at least one point of order two. Therefore every elliptic
curve of even order can be written in Jacobi quartic form. This extended model
covers more isomorphism classes than the Jacobi model EQ;k2;�.k2C1/=2.
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Notes. Jacobi and Abel worked on generalizing the results known for the circle
y2 D .1 � x2/ to the quartic curve y2 D .1 � x2/.1 � k2x2/. This form of
elliptic curves is known as the Jacobi model. A Jacobi quartic curve given by
y2 D x4 C 2ax2 C 1 and its generalized version extended Jacobi quartic curve
y2 D dx4 C 2ax2 C 1, cf. [43]. In the context of cryptography, extended Jacobi
quartic curves are studied in [11] where it is remarked that every elliptic curve of
even order can be written in extended Jacobi quartic form.

Twisted Edwards form

Throughout this subsection, K denotes a fixed field of odd characteristic and L an
algebraic extension of K. Let a; d 2 K. Assume that both a and d are squares in
L unless stated otherwise.

Definition 2.10. A twisted Edwards curve defined over K is the curve

EE;a;d W ax
2
C y2

D 1C dx2y2:

This curve is non-singular if and only if ad.a � d/ ¤ 0. The j -invariant is
given by 16.a2C 14ad C d2/3=.ad.a� d/4/ 2 K. The projective closure of EE

is given by the equation

EE;a;d W aX
2Z2
C Y 2Z2

D Z4
C dX2Y 2:

A point .X WY WZ/withZ ¤ 0 onEE corresponds to the affine point .X=Z; Y=Z/
onEE. The points .0W 1W 0/ and .1W 0W 0/ onEE are singular even if ad.a�d/ ¤ 0.
Using the standard “blow-up” techniques (see [21, § 7.3]) the singularities can be
resolved. The resolution of singularities produces four points (see [3]) which are
labeled as �1, �2, �3, and �4. It is convenient to note here that a single “blow-
up” for each of the points .0W 1W 0/ and .1W 0W 0/ is necessary and sufficient to resolve
the singularities. There are no other points on EE with Z D 0.

A way of removing the singularities is by using the projective curve given by
the equations

eEE;a;d W aX
2
C Y 2

D Z2
C dT 2; XY D TZ:

A point .X WY WT WZ/ with Z ¤ 0 on eEE corresponds to the affine point
.X=Z; Y=Z/ on EE. Fix ˛; ı 2 K such that ˛2 D a and ı2 D d . The points
.ıW 0W˛W 0/, .�ıW 0W˛W 0/, .0W ıW 1W 0/, and .0W �ıW 1W 0/ on eEE correspond to �1,
�2, �3, and �4 on the desingularization of EE.
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With a slight abuse of notation, EE.L/, the set of L-rational points on EE is
denoted by

EE.L/ D ¹.x; y/ 2 L2
j ax2

C y2
D 1C dx2y2

º [ ¹�1; �2; �3; �4º

where �1; �2; �3; �4 are points at infinity.

Remark 2.11. The points �1 and �2 on the desingularization of EE; and the
points .ıW 0W˛W 0/ and .�ıW 0W˛W 0/ on eEE are L-rational if and only if ad is a
square in K. The points�3 and�4 on the desingularization of EE; and the points
.0W ıW 1W 0/ and .0W �ıW 1W 0/ on eEE are L-rational if and only if d is a square in K.
Therefore, it is necessary to have both a and d squares in K to make all of these
points L-rational simultaneously.

Theorem 2.12 (Bernstein et al., [3]). Every twisted Edwards curve over K is bira-
tionally equivalent over K to the Montgomery curve given byBy2 D x3CAx2Cx

for some A;B 2 K. Conversely, every Montgomery curve over K is birationally
equivalent over K to a twisted Edwards curve.

The explicit maps for Theorem 2.12 are given in [3]. Using those maps, after a
formal rescaling of B in Montgomery form, maps for the birational equivalence to
the Weierstrass curve

EW W v
2
D u3

C 2.aC d/u2
C .a � d/2u

are given as

 WEE ! EW ; .x; y/ 7!
�
.1C y/2

1 � dx2

x2
; 2.1C y/2

1 � dx2

x3

�
; (2.7)

�WEW ! EE; .u; v/ 7!
�
2
u

v
;
u � aC d

uC a � d

�
: (2.8)

It is trivial to check that � ı  D idEE
and  ı � D idEW

as formal maps. The
map is regular at all points onEE except .0; 1/which corresponds to1 onEW .
At first glance, it may seem that  is not regular at .0;�1/. However, it is possible
to alter  to successfully map all points on EE except .0; 1/. For instance, the
point .0;�1/ can be sent to EW with an alternative map given by

 0WEE ! EW ; .x; y/ 7!
�
.a � d/

1C y

1 � y
; 2.a � d/

a � dy2

.1 � y/2
x
�
: (2.9)
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The map � is regular at all points onEW except in two cases. Before investigating
these two cases observe that the point .0; 0/ on EW can be sent to EE with an
alternative map given by

�0WEW ! EE; .u; v/ 7!
� 2v

.u � 2a/2 � 4d
;
u2 � 4.a2 � d/

.u � 2a/2 � 4d

�
: (2.10)

The map � is not regular at two points of the form .u; v/ with u ¤ 0 and v D 0.
These exceptional points correspond to two points at infinity on the desingular-
ization of EE. The map � is not regular at two points of the form .u; v/ with
u D d � a. These exceptional points correspond to the other two points at infinity
on the desingularization ofEE. From Remark 2.11 it follows that � is a morphism
if both d and ad are non-squares in K.

Notes. Building on the historical works of Euler and Gauss, Edwards introduced
the normal form x2 C y2 D c2.1 C x2y2/ of elliptic curves together with an
explicit addition law on this curve in [20]. Edwards also showed that every elliptic
function field is equivalent to the function field of this curve for some c, over some
small finite extension of the K. In [8], Bernstein and Lange introduced Edwards
form elliptic curves defined by x2 C y2 D c2.1C dx2y2/ where c; d 2 K with
cd.1 � dc4/ ¤ 0, covering more curves than original Edwards curves when K
is finite. Twisted Edwards form was introduced by Bernstein et al. in [3] as a
generalization of Edwards curves. The facts about the resolution of singularities
or the points at infinity or the coverage of these curves or the group structure have
already been studied in different generalities in [3, 5, 8, 20]. Also see [7].

Twisted Jacobi intersection form

Throughout this subsection, K denotes a fixed field of odd characteristic and L an
algebraic extension of K. Let a; b 2 K. Assume that both �a and �b are squares
in L unless stated otherwise.

Definition 2.13. A twisted Jacobi intersection curve defined over K is the curve

EI;b;a W bs
2
C c2

D 1; as2
C d2

D 1:

This curve is non-singular if and only if ab.a � b/ ¤ 0. The j -invariant is
given by 256.a2 � ab C b2/3=.ab.a � b//2 2 K. The projective closure of EI is
given by the equations

EI;b;a W bS
2
C C 2

D Z2; aS2
CD2

D Z2:
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A point .S WC WDWZ/ with Z ¤ 0 on EI corresponds to the affine point
.S=Z;C=Z;D=Z/ on EI. Fix ˛; ˇ 2 K such that ˛2 D �a and ˇ2 D �b.
The points �1 D .1WˇW˛W 0/, �2 D .1W �ˇW˛W 0/, �3 D .1WˇW �˛W 0/, and
�4 D .1W �ˇW �˛W 0/ are non-singular. There are no other points on EI with
Z D 0.

With a slight abuse of notation, EI.L/, the set of L-rational points on EI is
denoted by

EI.L/ D ¹.s; c; d/ 2 L3
j bs2

C c2
D 1; as2

C d2
D 1º [ ¹�1; �2; �3; �4º

where �1; �2; �3; �4 are the points at infinity.

Remark 2.14. The points�1,�2,�3,�4 onEI are L-rational if and only if both
�a and �b are squares in L.

The curve EI is birationally equivalent over K to the Weierstrass curve

EW W v
2
D u.u � a/.u � b/

via the maps

 WEI ! EW ; .s; c; d/ 7!
�.1C c/.1C d/

s2
;�
.1C c/.1C d/.c C d/

s3

�
;

(2.11)

�WEW ! EI; .u; v/ 7!
� 2v

ab � u2
; 2u

b � u

ab � u2
� 1; 2u

a � u

ab � u2
� 1

�
: (2.12)

It is trivial to check that � ı  D idEI
and  ı � D idEW

as formal maps. The
map  is regular at all points on EI except .0; 1; 1/ which corresponds to1 on
EW . At first glance, it may seem that  is not regular at some other points with
zero s-coordinate: .0;�1; 1/, .0; 1;�1/, and .0;�1;�1/. However, it is possible
to alter  to successfully map all points except .0; 1; 1/. For instance, the points
.0;�1; 1/, .0; 1;�1/, .0;�1;�1/ can be sent toEW with an alternative map given
by

 0WEI ! EW ; .s; c; d/ 7!
�
b
1C d

1 � c
; b
a.1 � c/ � b.1C d/

.1 � c/2
s
�
; (2.13)

 00WEI ! EW ; .s; c; d/ 7!
�
a
1C c

1 � d
; a
b.1 � d/ � a.1C c/

.1 � d/2
s
�
: (2.14)

The map � is regular at all points on EW except the points of the form .u; v/ with
u2 D ab. These exceptional points correspond to the four points at infinity on EI

if ab is a square in K. From Remark 2.14 it follows that � is a morphism if ab is
a non-square in K.
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Notes. An elliptic curve can be represented generically as the intersection of two
quadrics [42, § 2.5.4]. See [11, 13, 32] for cryptographic applications of Jacobi
intersection form. Every elliptic curve having three points of order 2 is birational
to a twisted Jacobi intersection curve.

3 A toolbox for group laws

This section brings together several computational tools which are beneficial in
deriving the group law on an elliptic curve. The approach will be algebraic rather
than geometric, and the emphasis lies on the development of computer algebra
routines to derive the desired group laws. In this direction, Section 3.1 outlines an
automated method to derive the group laws on elliptic curves and provides case
studies. Section 3.2 revisits rational simplification techniques by Monagan and
Pearce ([36]) in the context of efficient automated group law derivation to detect
useful formulae. Section 3.3 shows how to validate worked formulae in Maple
([35]) system based on a similar strategy from [7]. Section 3.4 provides a method
to derive alternative formulae for point doubling and addition on elliptic curves.

3.1 Automated derivations

This section outlines how to derive the group law on an elliptic curve embedded in
a suitable affine space. The method simply uses Riemann–Roch computations. In
a rough sense, this can be viewed as a “conversion” of the well known group law
for Weierstrass curves to the corresponding group law on a birationally equivalent
curve using rational mappings.

The following theorem shows how to find the affine part of the addition law on
an arbitrary elliptic curve.

Theorem 3.1. Let W=K and M=K be affine curves. Assume that W and M , each
with a fixed K-rational point, are elliptic curves. Assume that W and M are
birationally equivalent over K. Let � W W !M and  W M ! W be maps such
that � ı  and  ı � are equal to the identity maps idM and idW , respectively.
Let CW W W �W ! W be the affine part of the unique addition law on W . The
affine part of the unique addition law on M is given by the compositions

CM D � ı CW ı . �  /: (3.1)

Before giving the proof, the following lemma will be useful.

Lemma 3.2. If two irreducible algebraic curves M and W are birationally equiv-
alent then K.W / Š K.M/ and K.W �W / Š K.M �M/.



14 H. Hisil, K. K. Wong, G. Carter and E. Dawson

Proof. For the isomorphism K.M/ Š K.W / see the proof of Theorem 10 in
[17, § 5.5]. The isomorphism  � W K.W / ! K.M/ is constructed via the pull-
back map  �.f / D f ı  where f 2 K.W /. In the same fashion, the map
 � �  �WK.W � W / ! K.M �M/ given by . � �  �/.g/ D g ı . �  /

where g 2 K.W �W /, is an isomorphism by the universal property of products,
cf. [37, Theorem 28.5].

Proof of Theorem 3.1. Let P1 and P2 be points on M . By the definition of �,  ,
andCW , the following equalities hold:

P1 CM P2 D .idM /.P1 CM P2/ D .� ı  /.P1 CM P2/ D �. .P1 CM P2//

D �. .P1/CW  .P2//

D .� ı CW ı . �  //.P1; P2/ if defined: (3.2)

The construction (3.2) works for all but finitely many pairs of points. The rest
of the claim (regarding the formal maps) follows from Lemma 3.2 and from the
unicity of the addition law.

Note that the negation law can be computed accordingly.

For simplicity assume that W is in Weierstrass form

EW ;a1;a3;a2;a4;a6
W y2
C a1xy C a3y D x

3
C a2x

2
C a4x C a6

which is a nonsingular model for W . Assume also that the rational mapping CW

defined by

CW W W �W ! W; .P1; P2/ 7! P1 C P2;

is the group law. By Theorem 2.7, CW is a morphism, i.e., the group law is
defined for all of W � W . Noting that CW is already known explicitly for W ,
determining CM depends only on the definition of W , � and  . Therefore, these
definitions are crucial to have the automated derivation work. In the general case,
Riemann–Roch computations always guarantee a transformation to a non-singular
almost-Weierstrass form given by c0y

2Ca1xyCa3y D c2x
3Ca2x

2Ca4xCa6

with c0; c2; ai 2 K, cf. [39, Theorem 3.1]. After this step, Nagell reduction can be
applied (partially) to rescale c0 and c2 to 1, cf. [14, Algorithm 7.4.10]. A partially
open source implementation is available in MAGMA, see in particular the CrvEll
package. An alternative method based on integral basis computations is given
in [41]. An open source implementation by Hoeij is available in Maple, see in
particular the algcurves package. The latter implementation requires M to be a
plane curve. Also see [19] for more applications on SINGULAR ([22]).
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Next, examples will be presented to show how to automate the group law deriva-
tion. This section is limited to examples on Maple. On the other hand, it should
be possible to write similar scripts in other computer algebra systems.

Example 3.3. Consider the derivation of the group law for the twisted Jacobi in-
tersection curve EI;b;a. This curve is obtained by the intersection of two quadratic
affine surfaces in 3-space. The coordinate functions s1; c1; d1; s2; c2; d2 for
EI;b;a � EI;b;a are labeled as s1, c1, d1, s2, c2, d2. The coordinate func-
tions u1; v1; u2; v2 for EW;0;0;�a�b;ab;0�EW;0;0;�a�b;ab;0 are labeled as u1, v1,
u2, v2. The following Maple script defines W, C, phi, psi, psipsi to represent
W D EW;0;0;�a�b;ab;0, M D EI;b;a, �,  , and . ;  /, respectively.

> a1:=0: a3:=0: a2:=-a-b: a4:=a*b: a6:=0:
> W:=(u,v)->(v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)):
> C:=(s,c,d)->(b*s^2+c^2-1,a*s^2+d^2-1):
> phi:=(u,v)->(-2*v/(u^2-a*b),(u^2-2*b*u+a*b)/(u^2-a*b),(u^2-2*a*u+a*b)/(u^2-a*b)):
> psi:=(s,c,d)->(a*(1+c)/(1-d),-a^2*s*(1+c)*(c+d)/((1-d)^2*(1+d))):
> psipsi:=(s1,c1,d1,s2,c2,d2)->(psi(s1,c1,d1),psi(s2,c2,d2)):

In this example, W , �, and  are copied from “Twisted Jacobi intersection
form” of Section 2 to match a standard choice of the identity element.

Addition. The following Maple script derives the corresponding addition formu-
lae. The first line defines the addition formulae for W and the second line applies
3.1.

> addW:=(u1,v1,u2,v2)->(((v2-v1)/(u2-u1))^2+a1*(v2-v1)/(u2-u1)-a2-u1-u2,(v2-v1)/ \
(u2-u1)*(u1-(((v2-v1)/(u2-u1))^2+a1*(v2-v1)/(u2-u1)-a2-u1-u2))-v1-a1*u3-a3):

> addM:=phi(addW(psipsi(s1,c1,d1,s2,c2,d2))):

The addition formulae stored in addM are given by .s1; c1; d1/ C .s2; c2; d2/ D

.s3; c3; d3/ where

s3 D �2..�a
2s2.1C c2/.c2C d2/=..1� d2/

2.1C d2//C a
2s1.1C c1/.c1C

d1/=..1 � d1/
2.1C d1///.2a.1C c1/=.1 � d1/ � .�a

2s2.1C c2/.c2 C

d2/=..1 � d2/
2.1 C d2// C a2s1.1 C c1/.c1 C d1/=..1 � d1/

2.1 C

d1///
2=.a.1Cc2/=.1�d2/�a.1Cc1/=.1�d1//

2Ca.1Cc2/=.1�d2/�

a� b/=.a.1C c2/=.1� d2/� a.1C c1/=.1� d1//C a
2s1.1C c1/.c1C

d1/=..1�d1/
2.1Cd1///=...�a

2s2.1Cc2/.c2Cd2/=..1�d2/
2.1Cd2//C

a2s1.1Cc1/.c1Cd1/=..1�d1/
2.1Cd1///

2=.a.1Cc2/=.1�d2/�a.1C

c1/=.1�d1//
2�a.1Cc1/=.1�d1/�a.1Cc2/=.1�d2/CaCb/

2�ab/,
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c3 D ...�a2s2.1 C c2/.c2 C d2/=..1 � d2/
2.1 C d2// C a

2s1.1 C c1/.c1 C

d1/=..1�d1/
2.1Cd1///

2=.a.1C c2/=.1�d2/�a.1C c1/=.1�d1//
2�

a.1C c1/=.1 � d1/ � a.1C c2/=.1 � d2/C a C b/
2 � 2b..�a2s2.1C

c2/.c2Cd2/=..1�d2/
2.1Cd2//Ca

2s1.1Cc1/.c1Cd1/=..1�d1/
2.1C

d1///
2=.a.1Cc2/=.1�d2/�a.1Cc1/=.1�d1//

2�a.1Cc1/=.1�d1/�

a.1C c2/=.1 � d2/C a C b/C ab/=...�a
2s2.1C c2/.c2 C d2/=..1 �

d2/
2.1C d2//C a

2s1.1C c1/.c1 C d1/=..1 � d1/
2.1C d1///

2=.a.1C

c2/=.1�d2/�a.1Cc1/=.1�d1//
2�a.1Cc1/=.1�d1/�a.1Cc2/=.1�

d2/C aC b/
2 � ab/,

d3 D ...�a2s2.1 C c2/.c2 C d2/=..1 � d2/
2.1 C d2// C a

2s1.1 C c1/.c1 C

d1/=..1�d1/
2.1Cd1///

2=.a.1C c2/=.1�d2/�a.1C c1/=.1�d1//
2�

a.1C c1/=.1 � d1/ � a.1C c2/=.1 � d2/C a C b/
2 � 2a..�a2s2.1C

c2/.c2Cd2/=..1�d2/
2.1Cd2//Ca

2s1.1Cc1/.c1Cd1/=..1�d1/
2.1C

d1///
2=.a.1Cc2/=.1�d2/�a.1Cc1/=.1�d1//

2�a.1Cc1/=.1�d1/�

a.1C c2/=.1 � d2/C a C b/C ab/=...�a
2s2.1C c2/.c2 C d2/=..1 �

d2/
2.1C d2//C a

2s1.1C c1/.c1 C d1/=..1 � d1/
2.1C d1///

2=.a.1C

c2/=.1�d2/�a.1Cc1/=.1�d1//
2�a.1Cc1/=.1�d1/�a.1Cc2/=.1�

d2/C aC b/
2 � ab/.

Specialized negation and doubling formulae can be computed following the
same framework.

The computer-derived formulae are overly involved with many terms which
makes them inefficient in computations. For instance, both addition and doubling
formulae have total degree of the fractions over 50. The next section is a continu-
ation of Example 3.3 for finding more “suitable” representatives for s3, c3, and d3

among each of the residue classes Œs3�, Œc3�, and Œd3�, respectively.

3.2 Minimal total degree

Let V be a variety over K and K.V / the function field of V . Note that the elements
of K.V / are represented by rational functions on V .

Since the chief objects of study are group laws on elliptic curves, V can be
fixed to an elliptic curve E or to the product E � E. Let P 2 V and f 2 K.V /
such that f is regular at P . Suppose that the aim is to evaluate f D h=g at P
efficiently with g ¤ 0. It is then reasonable to find a suitable Of D Oh= Og such
that Ohg � h Og � 0 mod I.V / where I.V / is the ideal generated by the defining
equation(s) of V . Then, f .P / D Of .P / assuming that Og.P / ¤ 0.

The computational effort for finding the suitable Of can be neglected here since
Of can be fixed for many evaluations. Roughly speaking, the smaller the number
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of field operations used for an evaluation of Of at P , the more efficient the evalu-
ation is. The term efficiency here is usually understood as the running time or the
space consumption of an algorithm. Note that other interpretations are possible
such as the required transmission size of some data or consumed energy along the
execution. The emphasis here is on the running time aspect. See also [16].

A common experience for an efficient evaluation of a rational function on a va-
riety at a randomly chosen non-singular point is that the evaluation takes less time
if the numerator and denominator have lower total degrees, and preferably having
no “common factor”, cf. [13]. The numerator and denominator of a rational func-
tion in K.V / can be viewed as polynomial functions in KŒV �. These polynomial
functions, for the purpose of this work, are the multivariate polynomial expres-
sions arising in the group law of an elliptic curve. Therefore, the main emphasis
of this section is on finding suitable fractions of polynomials with low/lowest total
degree in making a description of the group law. Note that the arithmetic of ellip-
tic curves is known to be very efficient and it has attracted a lot of attention over
the past few decades. Standard references are [15, 23]. More updated reviews can
be found in [7]. In this sense, the present work is an attempt to improve previous
upper bounds for efficient computations.

Concerning the numerator and denominator of s3 (or c3 or d3) in Example 3.3, it
is intuitive to ask whether the denominator is a unit in the corresponding coordinate
ring. If this is the case, the fraction reduces to a polynomial which allows working
in affine coordinates without inverting elements of K. In large characteristic fields,
this turns out to be possible for negation formulae most of the time. However, for
doubling and addition this is not possible in any of the three forms that are studied
in this work.

It is also intuitive to ask whether there exists representatives having minimal to-
tal degrees for both the numerators and denominators. The two may not be possible
simultaneously, i.e. among all possible fractions, a fraction with minimal total de-
gree numerator may not have a minimal total degree denominator (and vice versa).
However, there always exist representatives with minimal total degree. This sec-
tion collects necessary tools from literature to find such representatives. Computer
algebra examples are also provided. Efficiency of the simplification process is not
a major issue as long as the simplification can be done in a reasonable time.

Two algorithms for simplifying rational expressions, proposed by Monagan and
Pearce in 2006 in [36], are adapted in this section since their algorithms perfectly
fit the aforementioned goal of finding formulae with low/lowest total degree of
fractions in the corresponding coordinate ring (i.e. KŒM � for negation and dou-
bling; and KŒM �M� for addition). Monagan and Pearce’s first algorithm com-
putes a reduced canonical form (RCF) of a fraction f=g modulo a proper prime
ideal I � KŒx1; : : : ; xn� where f; g 2 KŒx1; : : : ; xn�. The coordinates x1; : : : ; xn
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can be suitably renamed to s1; c1; d1; s2; c2; d2 in the case of Example 3.3. Using
a prime ideal ensures that KŒx1; : : : ; xn�=I is an integral domain and thus con-
tains no zero divisors. Note that this is always the case for coordinate rings of
elliptic curves (or their products). Now, let m=h be an RCF for a=b such that
ah � bm � 0 mod I where a; b;m; h 2 KŒx1; : : : ; xn� with b; h … I . The
algorithm is built on three observations:

1. The colon ideal J D .hgi C I / W hf i contains an h having no common
components with g. Let ¹h1; : : : ; htº be a reduced Gröbner basis with respect
to a graded monomial ordering. Each hi is a candidate for h since h 2
hh1; : : : ; ht i.

2. By the definition of a colon ideal, b must divide hia. Thus, mi D hia=b

can be computed using an exact division. Now selectingm=h D mi=hi with
min.deg.hi // gives a representation which guarantees a minimal total degree
for the denominator ofm=h and a removal of all common components. Note
that for all curve models considered in this work, this computation yields
formulae having minimal total degree of fractions, which will be used in
Section 4. However, to this end there is no guarantee that a minimal deg.m/C
deg.h/ will be obtained.

3. Sometimes adding a common component to the numerator or denominator
leads to a lower total degree sum. This idea is pursued by Monagan and
Pearce by a computation of the reduced Gröbner basis of the module ¹Œm; h� W
f h � gm � 0 mod I º with respect to a term-over-position order. Refer to
the original paper [36] for details and to [1] for definitions of modules and
term-over-position order.
This last modification finds a “good” balance between numerator and denom-
inator. However, there is still no guarantee that a minimal deg.m/C deg.h/
will be obtained.

An implementation of this algorithm comes with Maple v.11+. An open source
Maple implementation is given in Pearce’s thesis [38].

Example 3.4. The following Maple script simplifies the automated formulae from
Example 3.3 using Monagan/Pearce reduced canonical form algorithm:

> addM:=simplify([addM],[M(s1,c1,d1),M(s2,c2,d2)],tdeg(c1,c2,d1,d2));
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Addition. The simplified addition formulae are given by

.s1; c1; d1/C .s2; c2; d2/

D

�s1c2d2 C c1d1s2

1 � abs2
1s

2
2

;
c1c2 � bs1d1s2d2

1 � abs2
1s

2
2

;
d1d2 � as1c1s2c2

1 � abs2
1s

2
2

�
:

In all of these outputs, the total degrees of the denominators are minimized with
respect to the fixed monomial ordering. Without a justification for now, it can be
stated that the addition formulae are not of minimal total degree sum.

Monagan and Pearce’s second algorithm always finds a fraction with minimal
total degree sum of the numerator and denominator. Their algorithm makes a
search among all possible m=n starting from lowest degree 0 assuming that the
fraction can be simplified to a constant in K. If the solution of the resulting sys-
tem does not give the hypothesized numerator and denominator, the hypothesized
degree is increased by one for both the numerator and denominator. The proce-
dure is repeated until a solution is found. Then the remaining cases are explored
in a recursive manner. For details see [38, § 4]. An implementation of this algo-
rithm comes with Maple v.11+. An open source Maple implementation is given in
Pearce’s thesis [38].

Example 3.5. The following Maple script1 simplifies the automated addition for-
mulae using Monagan/Pearce minimal total degree algorithm:

> addM:=simplify(addM,[M(s1,c1,d1),M(s2,c2,d2)],mindeg);

Addition. The simplified addition formulae are given by

.s1; c1; d1/C .s2; c2; d2/

D

� s2
1 � s

2
2

s1c2d2 � c1d1s2
;
s1c1d2 � d1s2c2

s1c2d2 � c1d1s2
;
s1d1c2 � c1s2d2

s1c2d2 � c1d1s2

�
:

It is experimentally observed that the rational simplification for finding minimal
total degree addition formulae takes less than a second on a Core 2 processor
running at 2:66GHz once the algorithm is fed with initial formulae in canonical
form. Using the same algorithm, it can be checked that the addition formulae

1 Warning: Maple v.11 and v.12 have internal bugs which are triggered by this example. The
problem is that the minimal total degree implementation uses local variables which clash with
the coordinate functions c1, d1, c2, and d2 resulting in wrong outputs. To surpass these bugs,
simply rename c1 to cc1; d1 to dd1; c2 to cc2; and d2 to dd2 in all relevant scripts in this
section.
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computed above are really of minimal total degree. This also justifies the claims
of Example 3.4.

For other forms of elliptic curves (including the projective representations), it is
easy to modify/parametrize the scripts of Section 3.1 and of this section, in order
to detect “reduced” formulae for negation, doubling, and addition.

Let L be an algebraic extension of K. The computer derived addition formulae
will be used in Section 4 to make a complete description of the morphism CM=L

for desingularized curves of genus 1 in several different forms.

3.3 Automated validations

It is useful to have a validation tool to decide whether two rational functions on a
variety are equivalent. The key tool is described in the following lemma.

Lemma 3.6 (Ideal membership). Let G be a Gröbner basis for an ideal I �
KŒx1; : : : ; xn�. Let f be a polynomial in KŒx1; : : : ; xn�. Then f 2 I if and
only if the normal form of f by G is zero.

Proof. The proof follows from basic properties of Gröbner basis. See [17, § 2.6].

Let V be a variety and I.V / the ideal of V . Let f; Of ; g; Og 2 KŒV � such that
g; Og … I.V /. Recall from Section 2 that the quotients f=g and Of = Og with g; Og ¤ 0
define the same function on V if and only if Of g � f Og 2 I.V /. Now, applying
Lemma 3.6 answers whether f=g and Of = Og are equivalent functions on V .

Example 3.7. It can be validated that the addition formulae in Examples 3.4 and
3.5 are coordinate-wise equivalent rational functions on V D M �M . The fol-
lowing Maple script implements this validation. Note that the last line defines the
quotient relations.

> simplify([
> (s1*c2*d2+c1*d1*s2)*(s1*c2*d2-c1*d1*s2)-(s1^2-s2^2)*(1-a*b*s1^2*s2^2),
> (c1*c2-b*s1*d1*s2*d2)*(s1*c2*d2-c1*d1*s2)-(s1*c1*d2-d1*s2*c2)*(1-a*b*s1^2*s2^2),
> (d1*d2-a*s1*c1*s2*c2)*(s1*c2*d2-c1*d1*s2)-(s1*d1*c2-c1*s2*d2)*(1-a*b*s1^2*s2^2)
> ],[b*s1^2+c1^2-1,a*s1^2+d1^2-1,b*s2^2+c2^2-1,a*s2^2+d2^2-1]);

More implementations have already been developed in [7] and several examples
are given in that database.
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3.4 Finding more formulae

In Section 3.2, it was noted how a computation of colon ideals was used for re-
moving common components of the numerator and denominator of a rational ex-
pression modulo a polynomial ideal. For the purpose of this work, these rational
expressions are rational functions on an elliptic curve M or rational functions on
the product M � M . By using a graded monomial order and by skipping the
module construction phase in the Monagan/Pearce method, it is possible to mini-
mize the total degree of either the numerator or denominator. More formulae can
then be derived from the other low degree denominators that appear in the reduced
Gröbner basis.

Example 3.8. It is convenient to continue with the investigation on twisted Jacobi
intersection form. Consider the polynomials f D s2

1 � s
2
2 and g D s1c2d2 �

c1d1s2 in KŒc1; c2; d1; d2; s1; s2� where K D Q.a; b/. Since GCD.f; g/ D 1,
the fraction f=g does not simplify in K.c1; c2; d1; d2; s1; s2/. Now assume that
f=g is a function on EI;b;a W bs

2 C c2 � 1; as2 C d2 � 1 where a; b 2 K with
ab.a � b/ ¤ 0. Let K be the ideal generated by the relations bs2

1 C c2
1 � 1,

as2
1 C d

2
1 � 1, bs2

2 C c
2
2 � 1, as2

2 C d
2
2 � 1. The reduced Gröbner basis of the

colon ideal J D .hf i C K/ W hgi with respect to any graded monomial order
must contain a minimal total degree denominator, see Section 3.2. In addition, it
often contains other low degree denominators because of the graded order which
dominates in reducing the total degree of the generators. Indeed the generators
of the reduced Gröbner basis of J with respect to graded reverse lexicographical
order with c > d > s are given by the sequence

G D Œc2d1s
2
1s2 � c1d2s1s

2
2 C .1=b/c1d2s1 � .1=b/c2d1s2; c1d2s

2
1s2 �

c2d1s1s
2
2 C .1=a/c2d1s1 � .1=a/c1d2s2; c2s

3
1s2 � .1=.ab//c1d1d2 �

.1=b/c2s1s2; d2s
3
1s2 � .1=.ab//c1c2d1 � .1=a/d2s1s2; c1s1s

3
2 �

.1=.ab//c2d1d2 � .1=b/c1s1s2; d1s1s
3
2 � .1=.ab//c1c2d2 �

.1=a/d1s1s2; c1c2d1d2 � abs
3
1s2 � abs1s

3
2 C .aC b/s1s2; c1c2d1s2 C

bd2s1s
2
2 � d2s1; c1d1d2s2 C ac2s1s

2
2 � c2s1; c1c2s1s2 C

.1=a/d1d2; d1d2s1s2 C .1=b/c1c2; s
2
1s

2
2 � .1=.ab//; c2d2s1 �

c1d1s2; c
2
1 C bs

2
1 � 1; c

2
2 C bs

2
2 � 1; d

2
1 C as

2
1 � 1; d

2
2 C as

2
2 � 1�.

By the definition of colon ideal, J trivially contains K. Therefore, the generators
of G can be discarded if they are in K. This can be efficiently detected using
Lemma 3.6. Observe that the initial denominator s1c2d2 � c1d1s2 is in G. On
the other hand, there are several more low total degree entries which are other
candidates for the denominator of equivalent fractions. For instance, select the
entry c1c2s1s2C.1=a/d1d2. Using a multivariate exact division algorithm the new
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numerator is computed as .c1c2s1s2 C .1=a/d1d2/f =g D .c1s2d2 C s1d1c2/=a.
So the alternative formula is given by .c1s2d2Cs1d1c2/=.d1d2Cac1c2s1s2/. For
an exact division algorithm see Pearce’s thesis [38]. Each one of the other entries
gives rise to another fraction. Even more fractions can be obtained by changing
order of the variables in the lexicographical ordering.

4 Group law in affine coordinates

The goal of this section is two-fold. The first part of the goal is to find low-degree
point addition formulae for fixed representations of elliptic curves. Some of the
formulae are obtained from literature resources whereas some others are derived
with the tools from Section 3. In this context, each of the sections mainly concen-
trates on two denominators which naturally arise when searching for low degree
group laws for each elliptic curve form. As the second part of the goal, the excep-
tional cases of the selected denominators are explicitly determined and practical
ways of preventing division-by-zero exceptions are studied including pointers to
the literature when possible. This work focuses on three aforementioned forms of
elliptic curves in Section 2 which are the most commonly used ones in practical
applications.

A complete addition algorithm is presented for each of the forms to handle all
possible inputs including the point(s) at infinity. The complete description of addi-
tion law for all curves given in a particular form can be extracted from the relevant
birational maps in Section 2.3 and the discussions on the exceptional points of the
birational equivalence. In this context, exceptions can be handled by first sending
the summands on a curve given in a particular form to the birationally equivalent
Weierstrass curve, then carrying out the addition on the Weierstrass curve where
a complete addition algorithm is present in the literature, and finally sending the
sum on the Weierstrass curve to the desired sum on the original curve. Indeed,
this approach implicitly describes a complete addition algorithm on all curves of
a particular form. However, the arithmetic is now dependent on the arithmetic
of Weierstrass curves. It is motivating to make a self-contained complete addi-
tion algorithm for each of these forms. The lemmas presented in Sections 4.1–4.3
investigate exceptional inputs and make the statement of a complete addition algo-
rithm easier. These lemmas also provide useful information for an exception-free
implementation. Since the same goals are set for each curve model, it is not sur-
prising to have analogous results in each section. Therefore, some repetitions are
unavoidable. However, it is still motivating to observe how similar ideas work for
almost all studied forms.
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4.1 Extended Jacobi quartic form

This section presents the group law on EQ;d;a in affine coordinates. It also in-
vestigates the exceptional summands for each formula and provides a complete
addition algorithm for all extended Jacobi quartic curves by properly handling an
entire set of division-by-zero exceptions. In addition, practical ways of preventing
these exceptions are explained.

Throughout this section, let K be a field of odd characteristic. Recall from
Section 2 that an extended Jacobi quartic curve is defined by

EQ;d;a W y
2
D dx4

C 2ax2
C 1

where a; d 2 K with d.a2 � d/ ¤ 0. Recall from Section 2 that the set of
K-rational points on the desingularization of EQ;d;a is defined by

EQ;d;a.K/ D ¹.x; y/ 2 K2
j y2
D dx4

C 2ax2
C 1º [ ¹�1; �2º

where �1; �2 are points at infinity.

Identity element and negation. The identity element is .0; 1/. Let .x1; y1/ be
a point on EQ;d;a. The negative of .x1; y1/ is .�x1; y1/.

Doubling. The doubling formulae onEQ;d;a are given by Œ2�.x1; y1/ D .x3; y3/

where

x3 D 2x1y1

ı�
2 � y2

1 C 2ax
2
1

�
; (4.1)

y3 D

�
2y2

1

�
y2

1 � 2ax
2
1

�ı�
2 � y2

1 C 2ax
2
1

�2�
� 1 (4.2)

assuming that 2 � y2
1 C 2ax

2
1 ¤ 0. These formulae do not depend on the curve

constant d and are of minimal total degree. By the curve equation the denominator
2� y2

1 C 2ax
2
1 is equivalent to 1� dx4

1 . This denominator can also be used if the
total degree is not of concern.

Affine points of order 2 can be determined by solving y2
1 D dx4

1 C 2ax
2
1 C 1

and .x3; y3/ D .0; 1/ for x1 and y1 where x3 and y3 are given by (4.1) and (4.2).
The point .0;�1/ is of order 2. There are no other affine points of order 2. There
are three points of order 2 in total (over a sufficiently large finite extension of K).
Therefore, both points at infinity �1 and �2 have to be of order 2.

The four points of the form .x; 0/ are of order 4 which can be determined by
solving y2

1 D dx
4
1C2ax

2
1C1 and .x3; y3/ D .0;�1/ for x1 and y1 where x3 and

y3 are given by (4.1) and (4.2). There are twelve points of order 4 in total (over
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a sufficiently large finite extension of K). Doubling each of the remaining eight
points must give �1 or �2. These eight affine points can be explicitly determined
by solving y2

1 D dx4
1 C 2ax2

1 C 1 and 2 � y2
1 C 2ax2

1 D 0 for x1 and y1.
These points are the only exceptions of (4.1) and (4.2). The following remark is
immediate.

Remark 4.1. Œ2�.x1; y1/ is a point at infinity if and only if 2 � y2
1 C 2ax

2
1 D 0.

Remark 4.1 does not extend to the case of generic additions. However, it is still
useful in proving some lemmas regarding the generic addition formulae which will
be presented next.

Dedicated addition. Further let .x2; y2/ be a point on EQ;d;a. The addition
formulae on EQ;d;a are given by .x1; y1/C .x2; y2/ D .x3; y3/ where

x3 D .x
2
1 � x

2
2/=.x1y2 � y1x2/; (4.3)

y3 D .x
2
1 C x

2
2/.y1y2 � 2ax1x2/=.x1y2 � y1x2/

2

� 2x1x2.1C dx
2
1x

2
2/=.x1y2 � y1x2/

2 (4.4)

assuming that x1y2 � y1x2 ¤ 0. These formulae are of minimal total degree.
These formulae do not work for identical summands hence the name dedicated.

If .x1; y1/ C .x2; y2/ is a point at infinity then x1y2 � y1x2 D 0. Other-
wise, .x1; y1/C .x2; y2/ would be an affine point since it can be shown using the
relations y2

1 D dx
4
1 C 2ax

2
1 C 1 and y2

2 D dx
4
2 C 2ax

2
2 C 1 that the algebraic ex-

pressions for .x3; y3/ satisfy y2
3 D dx

4
3C2ax

2
3C1. The converse, however, does

not necessarily apply. This means that if x1y2�y1x2 D 0 then .x1; y1/C.x2; y2/

may not be a point at infinity. Therefore it is worth investigating the exceptional
cases. The denominators of (4.3) and (4.4) vanish for some summands which are
described in the following lemma explicitly.

Lemma 4.2. Let a; d 2 K with d.a2 � d/ ¤ 0. Fix ı 2 K so that ı2 D d .
Fix x1; x2 2 Kn¹0º and y1; y2 2 K such that y2

1 D dx4
1 C 2ax2

1 C 1 and
y2

2 D dx
4
2 C 2ax

2
2 C 1. Then x1y2 � y1x2 D 0 if and only if .x2; y2/ 2 S where

S D
h
.x1; y1/; .�x1;�y1/;

� 1

ıx1
;
y1

ıx2
1

�
;
�
�1

ıx1
;
�y1

ıx2
1

�i
:

Proof. )WAssume that x1y2�y1x2 D 0. Solving the system of equations x1y2�

y1x2 D 0, y2
1 D dx4

1 C 2ax
2
1 C 1 for x2 and y2 gives S . All entries in S are

defined since x1 ¤ 0.
(W The claim follows trivially by substitution.
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The following lemma shows that if one of the summands is of odd order then in
the presence of an exception, the other summand is always of even order.

Lemma 4.3. Let a; d; x1; y1; x2; y2 be defined as in Lemma 4.2. Assume that
P1 D .x1; y1/ is a fixed point of odd order. Assume that P2 2 Sn¹P1º. Then P2

is of even order.

Proof. First note that points at infinity are of order 2. Assume that P1 D .x1; y1/

is a fixed point of odd order hence not a point at infinity. Suppose that P2 is of
odd order hence not a point at infinity. It follows that P1 ˙ P2, M D 2P1, and
N D 2P2 are all of odd order hence not points at infinity.

Assume that P2 2 Sn¹P1º. So, P2 ¤ P1. In addition, x1y2 � y1x2 D 0 by
Lemma 4.2. It follows that P1 ¤ �P2, for otherwise, x1y2 � y1x2 D 2x1y1 D 0

which means that x1 or y1 is zero. But then P1 would be of even order since
x1 ¤ 0.

Note that y2 D y1x2=x1 is defined since x1 ¤ 0, by the definition. Using this
relation together with (4.1), (4.2), and the curve equation gives

x.N /2 D
.2x2y2/

2

.2 � y2
2 C 2ax

2
2/

2

D
.2x2y2/

2

.2 � y2
2 C 2ax

2
2/

2 C 4.y2
2 � .dx

4
2 C 2ax

2
2 C 1//

D
.2x2y2/

2

.y2
2 � 2ax

2
2/

2 � 4dx4
2

D
.2x2

y1x2

x1
/2

..y1x2

x1
/2 � 2ax2

2/
2 � 4dx4

2

D
.2x1y1/

2

.2 � y2
1 C 2ax

2
1/

2
D x.M/2;

y.N / D
2y2

2.y
2
2 � 2ax

2
2/

.2 � y2
2 C 2ax

2
2/

2
� 1 D

2y2
2.y

2
2 � 2ax

2
2/

.y2
2 � 2ax

2
2/

2 � 4dx4
2

� 1

D
2.y1x2

x1
/2..y1x2

x1
/2 � 2ax2

2/

..y1x2

x1
/2 � 2ax2

2/
2 � 4dx4

2

� 1 D
2y2

1.y
2
1 � 2ax

2
1/

.2 � y2
1 C 2ax

2
1/

2
� 1

D y.M/;

where x.N /means the x-coordinate of the pointN and similarly for x.M/, y.N /,
and y.M/.

Hence, M D ˙N . But then M � N D 2P1 � 2P2 D 2.P1 � P2/ D .0; 1/.
Since P1 ¤ ˙P2, it follows that P1�P2 is a point of order 2, a contradiction. In
conclusion, P2 2 Sn¹P1º is of even order because P1 is of odd order.



26 H. Hisil, K. K. Wong, G. Carter and E. Dawson

A practical solution is now provided to prevent the exceptional cases of (4.3)
and (4.4).

Lemma 4.4. Let K be a field of odd characteristic. Let EQ;d;a be an extended
Jacobi quartic curve defined over K. Let P1 D .x1; y1/ and P2 D .x2; y2/ be
points on EQ;d;a. Assume that P1 and P2 are of odd order with P1 ¤ P2. It
follows that x1y2 � y1x2 ¤ 0.

Proof. Assume that P1 and P2 are of odd order with P1 ¤ P2. Suppose that
x1 D 0 and x2 D 0. Then, P1 D P2 D .0; 1/, a contradiction. So, either x1 ¤ 0

or x2 ¤ 0. Suppose that x1 ¤ 0 and x2 D 0 or x1 D 0 and x2 ¤ 0 then the claim
follows trivially. Now, x1x2 ¤ 0. The claim then follows from Lemma 4.2 and
Lemma 4.3 (by swapping P1 and P2 when necessary).

Unified addition. Alternative addition formulae on EQ;d;a are given by
.x1; y1/C .x2; y2/ D .x3; y3/ where

x3 D .x1y2 C y1x2/=.1 � dx
2
1x

2
2/; (4.5)

y3 D .y1y2 C 2ax1x2/.1C dx
2
1x

2
2/=.1 � dx

2
1x

2
2/

2

C 2dx1x2.x
2
1 C x

2
2/=.1 � dx

2
1x

2
2/

2 (4.6)

assuming that 1 � dx2
1x

2
2 ¤ 0. These formulae work for identical summands in

most of the cases hence the name unified.
If .x1; y1/ C .x2; y2/ is a point at infinity then 1 � dx2

1x
2
2 D 0. Otherwise,

.x1; y1/C .x2; y2/ would be an affine point since it can be shown using the rela-
tions y2

1 D dx4
1 C 2ax

2
1 C 1 and y2

2 D dx4
2 C 2ax

2
2 C 1 that the algebraic ex-

pressions for .x3; y3/ satisfy y2
3 D dx

4
3C2ax

2
3C1. The converse, however, does

not necessarily apply. This means that if 1 � dx2
1x

2
2 D 0 then .x1; y1/C .x2; y2/

may not be a point at infinity. Therefore it is worth investigating the exceptional
cases. The denominators of (4.5) and (4.6) vanish for some summands which are
described in the following lemma explicitly.

Lemma 4.5. Let a; d 2 K with d.a2 � d/ ¤ 0. Fix ı 2 K so that ı2 D d .
Fix x1; x2 2 Kn¹0º and y1; y2 2 K such that y2

1 D dx4
1 C 2ax2

1 C 1 and
y2

2 D dx
4
2 C 2ax

2
2 C 1. Then 1 � dx2

1x
2
2 D 0 if and only if .x2; y2/ 2 S

0 where

S 0 D
h� 1

ıx1
;
�y1

ıx2
1

�
;
�
�1

ıx1
;
y1

ıx2
1

�
;
� 1

ıx1
;
y1

ıx2
1

�
;
�
�1

ıx1
;
�y1

ıx2
1

�i
:
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Proof. )W Assume that 1 � dx2
1x

2
2 D 0. Solving the system of equations

1 � dx2
1x

2
2 D 0, y2

1 D dx4
1 C 2ax

2
1 C 1 for x2 and y2 gives S 0. All entries

in S 0 are defined since x1 ¤ 0.
(W The claim follows trivially by substitution.

This lemma and Lemma 4.2 exclude x1 D 0. For x1 D 0 the denominators in
(4.5) and (4.6) are defined and equal to 1.

The following lemma shows that if one of the summands is of odd order then
in the presence of a vanished denominator, the other summand is always of even
order.

Lemma 4.6. Let a; d; x1; y1; x2; y2 be defined as in Lemma 4.5. Assume that
P1 D .x1; y1/ is a fixed point of odd order. Assume that P2 D .x2; y2/ 2 S

0.
Then P2 is of even order.

Proof. First note that points at infinity are of order 2. Assume that P1 D .x1; y1/

is a fixed point of odd order hence not a point at infinity. Suppose that P2 is of
odd order hence not a point at infinity. It follows that P1 ˙ P2, M D 2P1, and
N D 2P2 are all of odd order hence not points at infinity.

Assume that P2 2 S
0. Then, 1 � dx2

1x
2
2 D 0 by Lemma 4.5 and it follows that

P1 ¤ ˙P2, for otherwise, 1 � dx4
1 D 2 � y2

1 C 2ax
2
1 D 0 and P1 would be of

even order by Remark 4.1.
Note that x1 ¤ 0 since 1 � dx2

1x
2
2 D 0 (also true by definition). So, x2

2 D

1=.dx2
1/ is defined. Using this relation together with (4.5), (4.6), and the curve

equation gives

x.N /2 D
.2x2y2/

2

.1 � dx4
2/

2
D
4x2

2.dx
4
2 C 2ax

2
2 C 1/

.1 � dx4
2/

2

D

4 1

dx2
1

.d. 1

dx2
1

/2 C 2a 1

dx2
1

C 1/

.1 � d. 1

dx2
1

/2/2

D
4x2

1.dx
4
1 C 2ax

2
1 C 1/

.1 � dx4
1/

2
D

.2x1y1/
2

.1 � dx4
1/

2
D x.M/2;

y.N / D
.y2

2 C 2ax
2
2/.1C dx

4
2/C 4dx

4
2

.1 � dx4
2/

2

D
..dx4

2 C 2ax
2
2 C 1/C 2ax

2
2/.1C dx

4
2/C 4dx

4
2

.1 � dx4
2/

2
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D

..d. 1

dx2
1

/2 C 2a 1

dx2
1

C 1/C 2a 1

dx2
1

/.1C d. 1

dx2
1

/2/C 4d. 1

dx2
1

/2

.1 � d. 1

dx2
1

/2/2

D
..dx4

1 C 2ax
2
1 C 1/C 2ax

2
1/.1C dx

4
1/C 4dx

4
1

.1 � dx4
1/

2

D
.y2

1 C 2ax
2
1/.1C dx

4
1/C 4dx

4
1

.1 � dx4
1/

2
D y.M/: (4.7)

Hence, M D ˙N . But then M � N D 2P1 � 2P2 D 2.P1 � P2/ D .0; 1/.
Since P1 ¤ ˙P2, it follows that P1 � P2 is a point of order 2, contradiction. In
conclusion, P2 2 S

0 is of even order because P1 is of odd order.

The points at infinity on the desingularized projective closure of EQ;d;a are not
defined over K if d is not a square in K. Having noted this, the following lemma
implies that these addition formulae are complete (i.e. these formulae define the
addition law) provided that d is not a square in K.

Lemma 4.7. Let d; x1; x2 2 K. Assume that d is non-square. Then

1 � dx2
1x

2
2 ¤ 0:

Proof. Suppose that 1 � dx2
1x

2
2 D 0. So d; x1; x2 ¤ 0. But then we have

d D .1=.x1x2//
2, a contradiction.

In the following lemma, with reasonable assumptions, it is shown that excep-
tions can be prevented regardless of any assumption on the curve constants.

Lemma 4.8. Let K be a field of odd characteristic. Let EQ;d;a be an extended
Jacobi quartic curve defined over K. Let P1 D .x1; y1/ and P2 D .x2; y2/

be points on EQ;d;a. Assume that P1 and P2 are of odd order. It follows that
1 � dx2

1x
2
2 ¤ 0.

Proof. Assume that P1 and P2 are of odd order. Assume that x1x2 D 0 then
1�dx2

1x
2
2 ¤ 0 as desired. From now on assume that x1x2 ¤ 0. The claim follows

from Lemma 4.5 and Lemma 4.6 (by swapping P1 and P2 when necessary).

Exception handling in the general case. Algorithm 4.9 provides a complete
addition on all extended Jacobi quartic curves.
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Algorithm 4.9. Addition law in affine coordinates for extended Jacobi quartic
form

Input : P1; P2; �1; �2 2 EQ;d;a.K/ and fixed ı 2 K such that ı2 D d .

Output : P1 C P2.

1 if P1 2 ¹�1; �2º then Pt  P1, P1  P2, P2  Pt .
2 if P2 D �1 then
3 if P1 D �1 then return .0; 1/. else if P1 D �2 then return .0;�1/.
4 else if P1 D .0; 1/ then return �1. else if P1 D .0;�1/ then return �2.
5 else return .�1=.ıx1/; y1=.ıx

2
1//.

6 else if P2 D �2 then
7 if P1 D �1 then return .0;�1/. else if P1 D �2 then return .0; 1/.
8 else if P1 D .0;�1/ then return �1. else if P1 D .0; 1/ then return �2.
9 else return .1=.ıx1/;�y1=.ıx

2
1//.

10 else if x1y2 � y1x2 ¤ 0 then
11 x3  .x2

1 � x
2
2/=.x1y2 � y1x2/.

12 y3  ..x2
1 C x

2
2/.y1y2 � 2ax1x2/ � 2x1x2.1C dx

2
1x

2
2//=.x1y2 � y1x2/

2.
13 return .x3; y3/.
14 else if 1 � dx2

1x
2
2 ¤ 0 then

15 x3  .x1y2 C y1x2/=.1 � dx
2
1x

2
2/.

16 y3  ..y1y2 C 2ax1x2/.1C dx
2
1x

2
2/C 2dx1x2.x

2
1 C x

2
2//=.1 � dx

2
1x

2
2/

2.
17 return .x3; y3/.
18 else
19 if P2 D .1=.ıx1/; y1=.ıx

2
1// then return �1.

20 else return �2.
21 end

The correctness of the algorithm follows from two observations. Firstly, when
a point at infinity is involved as the sum or as one of the summands along the
lines 2 to 21, it is tedious but straightforward to check that the output of the al-
gorithm is correct using the implicit technique mentioned at the start of the sec-
tion. Line 1 conditionally swaps the inputs to eliminate half of the input-wise
symmetric branches. The second observation is that glueing together the unified
addition and the dedicated addition formulae is enough to handle all exceptions
when both of the summands and the sum are affine points. This fact follows from
Lemma 4.5 and Lemma 4.2 by observing that #.S 0 \ S/ D 2. This means that if
.x2; y2/ 2 S

0\S then the output must be a point at infinity (lines 19 and 20) since
there are exactly two points at infinity. The remaining exceptional cases which
occur at .x2; y2/ 2 S

0n.S 0 \ S/ are handled by the dedicated addition formulae
(lines 11 and 12). Similarly the exceptions at .x2; y2/ 2 Sn.S

0 \ S/ are handled
by the unified addition formulae (lines 15 and 16).
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Algorithm 4.9 complies with the completeness criterion since only the lines 15
to 17 are necessary in this case. Note that the assumption on the curve constant d
limits the number of curves in extended Jacobi quartic form for which the unified
addition formulae are complete.

Algorithm 4.9 also complies with Lemma 4.8. If P1 and P2 are points of odd
order then only the lines 15 to 17 are necessary. This technique applies to all
extended Jacobi quartic curves.

Algorithm 4.9 also complies with Lemma 4.4. If P1 and P2 are distinct points
of odd order then only the lines 11 to 13 are necessary. This technique applies
to all extended Jacobi quartic curves. The doubling formulae (4.1) and (4.2) are
enough to handle the special case P1 D P2.

The negation formulae were previously noted as �.x1; y1/ D .�x1; y1/ for an
affine point .x1; y1/. To complete the negation law, it is sufficient to note that
��1 D �1 and ��2 D �2.

Literature notes. Other results related to the affine formulae for extended Jacobi
quartic form can be found in the literature. Some pointers are [28, 33, 43, 44].
The dedicated addition formulae presented in this section are essentially the same
formulae used by Chudnovsky and Chudnovsky in [13, 4.10i, p. 418] with the
minor detail that the formulae in this section are given in affine coordinates, the
curve equation is y2 D dx4C2ax2C1 rather than y2 D x4Ca0x2Cb0, and the
identity is the point .0; 1/ rather than a point at infinity. The choice of the identity
element in this work matches with [11].

4.2 Twisted Edwards form

This section presents the group law onEE;a;d in affine coordinates. It also investi-
gates the exceptional summands for each set of formulae and provides a complete
addition algorithm for all twisted Edwards curves by properly handling an entire
set of division-by-zero exceptions. In addition, practical ways of preventing these
exceptions are explained.

Throughout this section, let K be a field of odd characteristic. Recall from
Section 2 that a twisted Edwards curve is defined by

EE;a;d W ax
2
C y2

D 1C dx2y2

where a; d 2 K with ad.a � d/ ¤ 0. Recall from Section 2 that the set of
K-rational points on the desingularization of EE;a;d is defined by

EE;a;d .K/ D ¹.x; y/ 2 K2
j ax2

C y2
D 1C dx2y2

º [ ¹�1; �2; �3; �4º

where �1; �2; �3; �4 are points at infinity.
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Identity element and negation. The identity element is .0; 1/. Let .x1; y1/ be
a point on EE;a;d . The negative of .x1; y1/ is .�x1; y1/.

Doubling. The doubling formulae onEE;a;d are given by Œ2�.x1; y1/ D .x3; y3/

where

x3 D 2x1y1

ı�
y2

1 C ax
2
1

�
; (4.8)

y3 D
�
y2

1 � ax
2
1

�ı�
2 � y2

1 � ax
2
1

�
(4.9)

assuming that .2 � y2
1 � ax

2
1/.y

2
1 C ax

2
1/ ¤ 0, see [3] (also see [4, 5, 8]). These

formulae do not depend on the curve constant d and are of minimal total degree.
By the curve equation the denominator y2

1 C ax2
1 is equivalent to 1 C dx2

1y
2
1 .

Similarly, the denominator 2 � y2
1 � ax

2
1 is equivalent to 1 � dx2

1y
2
1 . These de-

nominators can also be used if the total degree is not of concern.
The point .0;�1/ is of order 2 which can be determined by solving ax2

1Cy
2
1 D

1Cdx2
1y

2
1 and .x3; y3/ D .0; 1/ for x1 and y1 where x3 and y3 are given by (4.8)

and (4.9). There are three points of order 2 in total (over a sufficiently large finite
extension of K). Therefore, two of the points at infinity have to be of order 2. See
also [3]. �1 and �2 are taken to be of order 2 hereafter.

The two points of the form .x; 0/ are of order 4 which can be determined by
solving ax2

1 C y
2
1 D 1 C dx2

1y
2
1 and .x3; y3/ D .0;�1/ for x1 and y1 where

x3 and y3 are given by (4.8) and (4.9). There are twelve points of order 4 in
total (over a sufficiently large finite extension of K). Eight of these points can be
explicitly determined to be affine points by solving ax2

1 C y
2
1 D 1C dx2

1y
2
1 and

.2�y2
1 �ax

2
1/.y

2
1Cax

2
1/ D 0 for x1 and y1. Therefore, the remaining two points

of order 4 have to be the points at infinity �3 and �4. See also [3]. The doubles
of the eight points are either �1 or �2. The doubles of �3 and �4 are .0;�1/.
These points are the only exceptions of (4.8) and (4.9). The following remark is
immediate.

Remark 4.10. Œ2�.x1; y1/ is a point at infinity if and only if

.2 � y2
1 � ax

2
1/.y

2
1 C ax

2
1/ D 0:

Remark 4.10 does not extend to the case of generic additions. However, it is still
useful in proving some lemmas regarding the generic addition formulae which will
be presented next.
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Dedicated addition. Further let .x2; y2/ be a point on EE;a;d . The addition
formulae on EE;a;d are given by .x1; y1/C .x2; y2/ D .x3; y3/ where

x3 D
�
x1y1 C x2y2

�ı�
y1y2 C ax1x2

�
; (4.10)

y3 D
�
x1y1 � x2y2

�ı�
x1y2 � y1x2

�
(4.11)

assuming that .y1y2Cax1x2/.x1y2�y1x2/ ¤ 0. These formulae are of minimal
total degree. These formulae do not work for identical summands hence the name
dedicated.

If .x1; y1/C.x2; y2/ is a point at infinity then .y1y2Cax1x2/.x1y2�y1x2/ D

0. Otherwise, .x1; y1/C .x2; y2/ would be an affine point since it can be shown
using the relations ax2

1 C y
2
1 D 1C dx

2
1y

2
1 and ax2

2 C y
2
2 D 1C dx

2
2y

2
2 that the

algebraic expressions for .x3; y3/ satisfy ax2
2 C y

2
2 D 1C dx

2
2y

2
2 . The converse,

however, does not necessarily apply. This means that if .y1y2 C ax1x2/.x1y2 �

y1x2/ D 0 then .x1; y1/C .x2; y2/ may not be a point at infinity. Therefore it is
worth investigating the exceptional cases. The denominators of (4.10) and (4.11)
vanish for some summands which are described in the following lemma explicitly.

Lemma 4.11. Let a; d 2 K with ad.a � d/ ¤ 0. Fix ˛; ı 2 K so that ˛2 D a

and ı2 D d . Fix x1; y1; x2; y2 2 Kn¹0º such that ax2
1 C y

2
1 D 1C dx2

1y
2
1 and

ax2
2 C y

2
2 D 1C dx

2
2y

2
2 . Now, .y1y2 C ax1x2/.x1y2 � y1x2/ D 0 if and only if

.x2; y2/ 2 S where

S D
h
.x1; y1/; .�x1;�y1/;

�y1

˛
;�x1˛

�
;
�
�y1

˛
; x1˛

�
;� 1

ıy1
;
1

ıx1

�
;
�
�1

ıy1
;
�1

ıx1

�
;
� 1

˛ıx1
;
�˛

ıy1

�
;
�
�1

˛ıx1
;
˛

ıy1

�i
:

Proof. )WAssume that .y1y2Cax1x2/.x1y2�y1x2/ D 0. Solving the equations
.y1y2 C ax1x2/.x1y2 � y1x2/ D 0 and ax2

2 C y
2
2 D 1C dx

2
2y

2
2 simultaneously

for x2 and y2 gives S . All entries in S are defined since x1y1 ¤ 0.
(W The claims follow trivially by substitution.

The following lemma shows that if one of the summands is of odd order then in
the presence of an exception, the other summand is always of even order.

Lemma 4.12. Let a; d; x1; y1; x2; y2 be defined as in Lemma 4.11. Assume that
P1 D .x1; y1/ is a fixed point of odd order. Assume that P2 2 Sn¹P1º. Then P2

is of even order.
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Proof. In [8] (where a D 1) and later in [3], it is proven that the points at infinity
(over the extension of K where they exist) are of even order. Assume that P1 D

.x1; y1/ is a fixed point of odd order hence not a point at infinity. Suppose that P2

is of odd order hence not a point at infinity. It follows that P1 ˙ P2, M D 2P1,
and N D 2P2 are all of odd order hence not points at infinity.

Assume that P2 2 Sn¹P1º. So, P1 ¤ P2. Plus, .y1y2 C ax1x2/.x1y2 �

y1x2/ D 0 by Lemma 4.11. It follows that P1 ¤ �P2, for otherwise we have
.y1y2 C ax1x2/.x1y2 � y1x2/ D 2x1y1.y

2
1 � ax

2
1/ D 0 which means that y2

1 �

ax2
1 D 0 since x1; y1 ¤ 0. Using this relation, the doubling formulae simplify

to .x3; y3/ D .x1=y1; 0=.2 � 2y
2
1//. The output x3 is defined since x1y1 ¤ 0.

Whenever 0=.2 � 2y2
1/ is defined, it produces a point of order 4. But then P1

would be of even order (in particular of order 8). If y1 D ˙1 then 0=.2 � 2y2
1/ is

not defined. However these cases can be omitted since x1 ¤ 0 and the only points
with y1 D ˙1 require x1 to be zero.

Now,

� in the case y1y2Cax1x2 D 0, the expression x2 D �y1y2=.ax1/ is defined
since x1 ¤ 0 by definition. Using this relation together with (4.8) and the
curve equation gives

x.N / D
2x2y2

y2
1 C ax

2
1

D
2�y1y2

ax1
y2

y2
2 C a.

�y1y2

ax1
/2
D �

2x1y1

y2
1 C ax

2
1

D �x.M/I

� in the case x1y2 � y1x2 D 0, the expression y2 D y1x2=x1 is defined since
x1 ¤ 0 by definition. Using this relation together with (4.8) and the curve
equation gives

x.N / D
2x2y2

y2
2 C ax

2
2

D
2x2

y1x2

x1

.y1x2

x1
/2 C ax2

2

D
2x1y1

y2
1 C ax

2
1

D x.M/:

By the curve definition, y.M/ D ˙y.N / since jx.M/j D jx.N /j. Now,

� x.M/ D x.N / and y.M/ D y.N /:
M �N D .0; 1/. So, M �N D 2P1 � 2P2 D 2.P1 � P2/ D .0; 1/.

� x.M/ D x.N / and y.M/ D �y.N /:
MCN D .0;�1/. So, 2.MCN/ D 2.2P1C2P2/ D 4.P1CP2/ D .0; 1/.

� x.M/ D �x.N / and y.M/ D y.N /:
M CN D .0; 1/. So, M CN D 2P1 C 2P2 D 2.P1 C P2/ D .0; 1/.

� x.M/ D �x.N / and y.M/ D �y.N /:
M �N D .0;�1/. So, 2.M �N/ D 2.2P1� 2P2/ D 4.P1�P2/ D .0; 1/.
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Since P1 ¤ ˙P2, in all cases P1 ˙ P2 is of even order, contradiction. In conclu-
sion, P2 2 Sn¹P1º is of even order because P1 is of odd order.

A practical solution is now provided to prevent the exceptional cases of (4.10)
and (4.11).

Lemma 4.13. Let K be a field of odd characteristic. Let EE;a;d be a twisted
Edwards curve defined over K. Let P1 D .x1; y1/ and P2 D .x2; y2/ be points
on EE;a;d . Assume that P1 and P2 are of odd order with P1 ¤ P2. It follows that
y1y2 C ax1x2 ¤ 0 and x1y2 � y1x2 ¤ 0.

Proof. Assume that P1 and P2 are of odd order with P1 ¤ P2. Suppose that x1 D

0 and x2 D 0. Then, either P1 D P2 D .0; 1/ or P1 D .0;�1/ or P2 D .0;�1/,
both are contradictions. So, either x1 ¤ 0 or x2 ¤ 0. Suppose that y1y2 D 0.
Then, either P1 or P2 is of even order, contradiction. So, y1y2 ¤ 0. Therefore,
either x1y1 ¤ 0 or x2y2 ¤ 0. The claim then follows from Lemma 4.11 and
Lemma 4.12 (by swapping P1 and P2 when necessary).

Unified addition. Alternative addition formulae on EE;a;d are given by
.x1; y1/C .x2; y2/ D .x3; y3/ where

x3 D
�
x1y2 C y1x2

�ı�
1C dx1y1x2y2

�
; (4.12)

y3 D
�
y1y2 � ax1x2

�ı�
1 � dx1y1x2y2

�
(4.13)

assuming .1 � dx1y1x2y2/.1C dx1y1x2y2/ ¤ 0, see [3]. These formulae work
for identical summands in most of the cases hence the name unified.

If .x1; y1/C .x2; y2/ is a point at infinity then we have

.1 � dx1y1x2y2/.1C dx1y1x2y2/ D 0:

Otherwise, .x1; y1/C.x2; y2/would be an affine point by [8, Theorem 3.1] and by
the remark in [3, § 6] stating that EE;a;d is isomorphic to EE;1;d=a. The converse,
however, does not necessarily apply. This means that if .1 � dx1y1x2y2/.1 C

dx1y1x2y2/ D 0 then .x1; y1/C.x2; y2/may not be a point at infinity. Therefore
it is worth investigating the exceptional cases. The denominators of (4.12) and
(4.13) vanish for some summands which are described in the following lemma
explicitly.

Lemma 4.14. Let a; d 2 K with ad.a � d/ ¤ 0. Fix ˛; ı 2 K so that ˛2 D a

and ı2 D d . Fix x1; y1; x2; y2 2 Kn¹0º such that ax2
1 C y

2
1 D 1C dx2

1y
2
1 and
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ax2
2 C y

2
2 D 1 C dx2

2y
2
2 . It follows that dx1y1x2y2 2 ¹1;�1º if and only if

.x2; y2/ 2 S
0 where

S 0 D
h� 1

ıy1
;
�1

ıx1

�
;
�
�1

ıy1
;
1

ıx1

�
;
� 1

˛ıx1
;
˛

ıy1

�
;
�
�1

˛ıx1
;
�˛

ıy1

�
;� 1

ıy1
;
1

ıx1

�
;
�
�1

ıy1
;
�1

ıx1

�
;
� 1

˛ıx1
;
�˛

ıy1

�
;
�
�1

˛ıx1
;
˛

ıy1

�i
:

Proof. )W Assume that .1 � dx1y1x2y2/.1 C dx1y1x2y2/ D 0. Solving the
equations .1 � dx1y1x2y2/.1C dx1y1x2y2/ D 0 and ax2

2 C y
2
2 D 1C dx2

2y
2
2

simultaneously for x2 and y2 gives S 0. All entries in S 0 are defined since
x1y1 ¤ 0.
(W The claims follow trivially by substitution.

This lemma and Lemma 4.11 exclude x1y1 D 0. For x1y1 D 0 the denomina-
tors in (4.12) and (4.13) are defined and equal to 1.

The following lemma shows that if one of the summands is of odd order then
in the presence of a vanished denominator, the other summand is always of even
order.

Lemma 4.15. Let a; d; x1; y1; x2; y2 be defined as in Lemma 4.14. Assume that
P1 D .x1; y1/ is a fixed point of odd order. Assume that P2 D .x2; y2/ 2 S

0.
Then, P2 is of even order.

Proof. In [8] (where a D 1) and later in [3], it is proven that the points at infinity
(over the extension of K where they exist) are of even order. Assume that P1 D

.x1; y1/ is a fixed point of odd order hence not a point at infinity. Suppose that P2

is of odd order hence not a point at infinity. It follows that P1 ˙ P2, M D 2P1,
and N D 2P2 are all of odd order hence not points at infinity.

Assume that P2 2 S
0. Then, dx1y1x2y2 2 ¹1;�1º by Lemma 4.14 and it

follows that P1 ¤ ˙P2, for otherwise, dx2
1y

2
1 2 ¹1;�1º and P1 would be of even

order, see Remark 4.10.
Note that x1; y1 ¤ 0 since dx1y1x2y2 2 ¹1;�1º (also true by definition).

So, x2y2 D ˙1=.dx1y1/ are defined taking the signs independently. Using this
relation together with (4.12) gives

x.N / D
2x2y2

1C dx2
2y

2
2

D

2 ˙1
dx1y1

1C d. ˙1
dx1y1

/2
D ˙

2x1y1

1C dx2
1y

2
1

D ˙x.M/:

By the curve definition, y.M/ D ˙y.N / since jx.M/j D jx.N /j. Now,
� x.M/ D x.N / and y.M/ D y.N /:
M �N D .0; 1/. So, M �N D 2P1 � 2P2 D 2.P1 � P2/ D .0; 1/.
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� x.M/ D x.N / and y.M/ D �y.N /:
MCN D .0;�1/. So, 2.MCN/ D 2.2P1C2P2/ D 4.P1CP2/ D .0; 1/.

� x.M/ D �x.N / and y.M/ D y.N /:
M CN D .0; 1/. So, M CN D 2P1 C 2P2 D 2.P1 C P2/ D .0; 1/.

� x.M/ D �x.N / and y.M/ D �y.N /:
M �N D .0;�1/. So, 2.M �N/ D 2.2P1� 2P2/ D 4.P1�P2/ D .0; 1/.

Since P1 ¤ ˙P2, in all cases P1 ˙ P2 is of even order, contradiction. In conclu-
sion, P2 2 S

0 is of even order because P1 is of odd order.

The points at infinity on the desingularized projective closure of EE;a;d are not
defined over K if d is not a square in K and a is a square in K, see [3]. Having
noted this, it was proven in [8] (where a D 1) and later in [3] that the unified
addition formulae (4.12) and (4.13) are complete provided that d is not a square
in K and a is a square in K.

In the following lemma, with reasonable assumptions, it is shown that excep-
tions can be prevented regardless of any assumption on the curve constants.

Lemma 4.16. Let K be a field of odd characteristic. Let EE;a;d be a twisted
Edwards curve defined over K. Let P1 D .x1; y1/ and P2 D .x2; y2/ be points
on EE;a;d . Assume that P1 and P2 are points on EE;a;d of odd order. It follows
that 1˙ dx1x2y1y2 ¤ 0.

Proof. Assume that P1 and P2 are points of odd order. If x1y1x2y2 D 0 then
1 ˙ dx1y1x2y2 ¤ 0 as desired. If x1y1x2y2 ¤ 0 then the claim follows from
Lemma 4.14 and Lemma 4.15 (by swapping P1 and P2 when necessary).

Exception handling in the general case. Algorithm 4.17 provides a complete
addition on all twisted Edwards curves.

The correctness of the algorithm follows from two observations. Firstly, when
a point at infinity is involved as the sum or as one of the summands along the
lines 2 to 39, it is tedious but straightforward to check that the output of the al-
gorithm is correct using the implicit technique mentioned at the start of the sec-
tion. Line 1 conditionally swaps the inputs to eliminate half of the input-wise
symmetric branches. The second observation is that glueing together the unified
addition and the dedicated addition formulae is enough to handle all exceptions
when both of the summands and the sum are affine points. This fact follows from
Lemma 4.14 and Lemma 4.11 by observing that #.S 0\S/ D 4. This means that if
.x2; y2/ 2 S

0 \ S then the output must be a point at infinity (lines 35 to 38) since
there are exactly four points at infinity. The remaining exceptional cases which
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Algorithm 4.17. Addition law in affine coordinates for twisted Edwards form
Input : P1; P2; �1; �2; �3; �4 2 EE;a;d .K/ and fixed ˛; ı 2 K such that ˛2 D a and

ı2 D d .

Output : P1 C P2.

1 if P1 2 ¹�1; �2; �3; �4º then Pt  P1, P1  P2, P2  Pt .
2 if P2 D �1 then
3 if P1 D �1 then return .0; 1/. else if P1 D �2 then return .0;�1/.
4 else if P1 D �3 then return .�1=˛; 0/. else if P1 D �4 then return .1=˛; 0/.
5 else if P1 D .0; 1/ then return �1. else if P1 D .0;�1/ then return �2.
6 else if P1 D .�1=˛; 0/ then return �3. else if P1 D .1=˛; 0/ then return �4.
7 else return .�1=.˛ıx1/;�˛=.ıy1//.
8 else if P2 D �2 then
9 if P1 D �1 then return .0;�1/. else if P1 D �2 then return .0; 1/.

10 else if P1 D �3 then return .1=˛; 0/. else if P1 D �4 then return .�1=˛; 0/.
11 else if P1 D .0;�1/ then return �1. else if P1 D .0; 1/ then return �2.
12 else if P1 D .1=˛; 0/ then return �3. else if P1 D .�1=˛; 0/ then return �4.
13 else return .1=.˛ıx1/; ˛=.ıy1//.
14 else if P2 D �3 then
15 if P1 D �1 then return .�1=˛; 0/. else if P1 D �2 then return .1=˛; 0/.
16 else if P1 D �3 then return .0;�1/. else if P1 D �4 then return .0; 1/.
17 else if P1 D .1=˛; 0/ then return �1. else if P1 D .�1=˛; 0/ then return �2.
18 else if P1 D .0; 1/ then return �3. else if P1 D .0;�1/ then return �4.
19 else return .1=.ıy1/;�1=.ıx1//.
20 else if P2 D �4 then
21 if P1 D �1 then return .1=˛; 0/. else if P1 D �2 then return .�1=˛; 0/.
22 else if P1 D �3 then return .0; 1/. else if P1 D �4 then return .0;�1/.
23 else if P1 D .�1=˛; 0/ then return �1. else if P1 D .1=˛; 0/ then return �2.
24 else if P1 D .0;�1/ then return �3. else if P1 D .0; 1/ then return �4.
25 else return .�1=.ıy1/; 1=.ıx1//.
26 else if .y1y2 C ax1x2/.x1y2 � y1x2/ ¤ 0 then
27 x3  .x1y1 C x2y2/=.y1y2 C ax1x2/.
28 y3  .x1y1 � x2y2/=.x1y2 � y1x2/.
29 return .x3; y3/.
30 else if .1 � dx1x2y1y2/.1C dx1x2y1y2/ ¤ 0 then
31 x3  .x1y2 C y1x2/=.1C dx1x2y1y2/.
32 y3  .y1y2 � ax1x2/=.1 � dx1x2y1y2/.
33 return .x3; y3/.
34 else
35 if P2 D .1=.˛ıx1/;�˛=.ıy1// then return �1.
36 else if P2 D .�1=.˛ıx1/; ˛=.ıy1// then return �2.
37 else if P2 D .1=.ıy1/; 1=.ıx1// then return �3.
38 else return �4.
39 end
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occur at .x2; y2/ 2 S
0n.S 0 \ S/ are handled by the dedicated addition formulae

(lines 27 and 28). Similarly the exceptions at .x2; y2/ 2 S � .S
0 \S/ are handled

by the unified addition formulae (lines 31 and 32).
Algorithm 4.17 complies with the completeness criterion since only the lines 31

to 33 are necessary in this case. Note that the assumptions on the curve constants
a and d limit the number of curves in twisted Edwards form for which the unified
addition formulae are complete. In [3] such curves are named complete Edwards
curves.

Algorithm 4.17 also complies with Lemma 4.16. If P1 and P2 are points of odd
order only the lines 31 to 33 are necessary. This technique applies to all twisted
Edwards curves.

Algorithm 4.17 also complies with Lemma 4.13. IfP1 andP2 are distinct points
of odd order then only the lines 27 to 29 are necessary. This technique applies to
all twisted Edwards curves. The doubling formulae (4.8) and (4.9) are enough to
handle the special case P1 D P2.

The negation formulae were previously noted as �.x1; y1/ D .�x1; y1/ for an
affine point .x1; y1/. To complete the negation law, it is sufficient to note that
��1 D �1, ��2 D �2, ��3 D �4, and ��4 D �3.

Literature notes. Other results related to the affine formulae for twisted
Edwards curves can be found in the literature. Bernstein et al. used Edwards curves
(i.e. a D 1) in the ECM method of integer factorization in [5]. Bernstein et al. in-
troduced the shape d1.xC y/C d2.x

2C y2/ D .xC x2/.yC y2/ and presented
results on the arithmetic of these curves when char.K/ D 2 in [10]. These curve
are named binary Edwards curves. In chronological order, Das and Sarkar ([18]),
Ionica and Joux ([27]), and Arène et al. ([2]) introduced successively faster for-
mulae for pairing computations. The results in [18, 27] are based on the unified
addition formulae and the doubling formulae with a D 1. The results in [2] are
based on the dedicated addition formulae and the doubling formulae. The same
reference also provided a geometric interpretation of the group law on twisted Ed-
wards curves. Bernstein and Lange introduced in [9] a complete addition law on
an arbitrary twisted Edwards curve by embedding the curve into P1 � P1. Their
method achieve exactly the same goal of this section but using only two set of
incomplete formulae. The trade-off between the proposals is the number of the
coordinates used. Their method uses four coordinates where the proposed one re-
quires only two resulting in more branches to handle special cases. Algorithm 4.17
agrees with the addition law in [9]. Point additions involving points at infinity can
also be checked from [9] which also includes a self-contained proof.
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4.3 Twisted Jacobi intersection form

This section presents the group law on EI;b;a in affine coordinates. It also investi-
gates the exceptional summands for each set of formulae and provides a complete
addition algorithm for all twisted Jacobi intersection curves by properly handling
an entire set of division-by-zero exceptions. In addition, practical ways of prevent-
ing these exceptions are explained.

Throughout this section, let K be a field of odd characteristic. Recall from
Section 2 that a twisted Jacobi intersection curve is defined by

EI;b;a W bs
2
C c2

D 1; as2
C d2

D 1

where a; b 2 K with ab.a � b/ ¤ 0. Recall from Section 2 that the set of
K-rational points on EI;b;a is defined by

EI;b;a.K/ D ¹.s; c; d/ 2 K3
j bs2

C c2
D 1; as2

Cd2
D 1º[¹�1; �2; �3; �4º

where �1; �2; �3; �4 are points at infinity.

Identity element and negation. The identity element is .0; 1; 1/. Let .s1; c1; d1/

be a point on EI;b;a. The negative of .s1; c1; d1/ is .�s1; c1; d1/.

Doubling. The doubling formulae on EI;b;a is given by Œ2�.s1; c1; d1/ D

.s3; c3; d3/ where

s3 D 2s1c1d1

ı�
c2

1 C bs
2
1d

2
1

�
; (4.14)

c3 D
�
c2

1 � bs
2
1d

2
1

�ı�
c2

1 C bs
2
1d

2
1

�
; (4.15)

d3 D
�
2d2

1 � c
2
1 � bs

2
1d

2
1

�ı�
c2

1 C bs
2
1d

2
1

�
: (4.16)

assuming that c2
1Cbs

2
1d

2
1 ¤ 0. These formulae are of minimal total degree and do

not depend on the curve constants a and b. By the curve equation the denominator
c2

1 C bs
2
1d

2
1 is equivalent to 1 � abs4

1 or c2
1 C d

2
1 � c

2
1d

2
1 or d2

1 C as
2
1c

2
1 . These

denominators can also be used.
The points .0;�1; 1/, .0; 1;�1/, and .0;�1;�1/ are of order 2. This can be

determined by solving bs2
1 C c

2
1 D 1; as2

1 C d
2
1 D 1 and .s3; c3; d3/ D .0; 1; 1/

for s1, c1, and d1 where s3, c3, and d3 are given by (4.14), (4.15), and (4.16).
The four points of the form having the c-coordinates equal to zero are of order 4.

This can be determined by solving bs2
1Cc

2
1 D 1; as

2
1Cd

2
1 D 1 and .s3; c3; d3/ D

.0;�1; 1/ for s1, c1, and d1. Another set of four points having the d -coordinates
equal to zero are also of order 4. This can be determined by solving bs2

1C c
2
1 D 1,
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as2
1 C d

2
1 D 1 and .s3; c3; d3/ D .0; 1;�1/ for s1, c1, and d1. There are twelve

points of order 4 in total (over a sufficiently large finite extension of K). Therefore
the remaining four points of order 4 have to be the points at infinity �1, �2, �3,
and �4. These points are the only exceptions of (4.14), (4.15), and (4.16). The
following remark is immediate.

Remark 4.18. Œ2�.s1; c1; d1/ is a point at infinity if and only if c2
1 C bs

2
1d

2
1 D 0.

Remark 4.18 does not extend to the case of generic additions. However, it is still
useful in proving some lemmas regarding the generic addition formulae which will
be presented next.

Dedicated addition. Further let .s2; c2; d2/ be a point on EI;b;a. The addition
formulae on EI;b;a are given by .s1; c1; d1/C .s2; c2; d2/ D .s3; c3; d3/ where

s3 D
�
s2
1 � s

2
2

�ı�
s1c2d2 � c1d1s2

�
; (4.17)

c3 D
�
s1c1d2 � d1s2c2

�ı�
s1c2d2 � c1d1s2

�
; (4.18)

d3 D
�
s1d1c2 � c1s2d2

�ı�
s1c2d2 � c1d1s2

�
(4.19)

assuming that s1c2d2 � c1d1s2 ¤ 0. These formulae are of minimal total degree
and do not depend on the curve constants a and b. These formulae do not work
for identical summands hence the name dedicated.

If .s1; c1; d1/ C .s2; c2; d2/ is a point at infinity then s1c2d2 � c1d1s2 D 0.
Otherwise, .s1; c1; d1/C.s2; c2; d2/would be an affine point since it can be shown
using the relations bs2

1 C c
2
1 D 1; as

2
1 Cd

2
1 D 1 and bs2

2 C c
2
2 D 1; as

2
2 Cd

2
2 D 1

that the algebraic expressions for .s3; c3; d3/ satisfy bs2
3C c

2
3 D 1; as

2
3Cd

2
3 D 1.

The converse, however, does not necessarily apply. This means that if s1c2d2 �

c1d1s2 D 0 then .s1; c1; d1/C.s2; c2; d2/may not be a point at infinity. Therefore
it is worth investigating the exceptional cases. The denominators of (4.17), (4.18),
and (4.19) vanish for some summands which are described in the following lemma
explicitly.

Lemma 4.19. Let a; b 2 K with ab.a � b/ ¤ 0. Fix ˛; ˇ 2 K so that ˛2 D �a

and ˇ2 D �b. Fix s1; s2 2 Kn¹0º and c1; d1; c2; d2 2 K such that bs2
1 C c

2
1 D 1,

as2
1 C d

2
1 D 1, bs2

2 C c
2
2 D 1, and as2

2 C d
2
2 D 1. Now, s1c2d2 � c1d1s2 D 0

if and only if .s2; c2; d2/ 2 S where

S D
h
.s1; c1; d1/; .s1;�c1;�d1/; .�s1;�c1; d1/; .�s1; c1;�d1/;� 1

˛ˇs1
;
d1

˛s1
;
c1

ˇs1

�
;
� 1

˛ˇs1
;
�d1

˛s1
;
�c1

ˇs1

�
;
�
�1

˛ˇs1
;
�d1

˛s1
;
c1

ˇs1

�
;
�
�1

˛ˇs1
;
d1

˛s1
;
�c1

ˇs1

�i
:
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Proof. )W Assume that s1c2d2 � c1d1s2 D 0. Solving the equations s1c2d2 �

c1d1s2 D 0, bs2
2 C c

2
2 D 1 and as2

2 C d
2
2 D 1 simultaneously for s2, c2, and d2

gives S . All entries in S are defined since s1 ¤ 0.
(W The claims follow trivially by substitution.

The following lemma shows that if one of the summands is of odd order then in
the presence of an exception, the other summand is always of even order.

Lemma 4.20. Let a; b; s1; c1; d1; s2; c2; d2 be defined as in Lemma 4.19. Assume
that P1 D .s1; c1; d1/ is a fixed point of odd order. Assume that P2 2 Sn¹P1º.
Then P2 is of even order.

Proof. Note that points at infinity (over the extension of K where they exist) are
of even order. Assume that P1 D .s1; c1; d1/ is a fixed point of odd order hence
not a point at infinity. Suppose that P2 is of odd order hence not a point at infinity.
It follows that P1 ˙ P2, M D 2P1, and N D 2P2 are all of odd order hence not
points at infinity.

Assume that P2 2 Sn¹P1º. So, P1 ¤ P2. Plus, s1c2d2 � c1d1s2 D 0 by
Lemma 4.19. It follows that P1 ¤ �P2, for otherwise, s1c2d2 � c1d1s2 D

2s1c1d1 D 0 which means that c1d1 D 0 since s1 ¤ 0. But then P1 would be of
even order.

It is possible to continue in a similar way used in the previous sections however
this time computer algebra will be used. The following Maple script verifies that
s.M/2 D s.N /2, c.M/2 D c.N /2, and d.M/2 D d.N /2.

> Q:=(s,c,d)->(b*s^2+c^2-1,a*s^2+d^2-1):
> sM:=2*s1*c1*d1/(c1^2+b*s1^2*d1^2): cM:=(c1^2-b*s1^2*d1^2)/(c1^2+b*s1^2*d1^2):
> dM:=(2*d1^2-c1^2-b*s1^2*d1^2)/(c1^2+b*s1^2*d1^2):
> sN:=2*s2*c2*d2/(c2^2+b*s2^2*d2^2): cN:=(c2^2-b*s2^2*d2^2)/(c2^2+b*s2^2*d2^2):
> dN:=(2*d2^2-c2^2-b*s2^2*d2^2)/(c2^2+b*s2^2*d2^2): simplify([sM^2-sN^2,cM^2-cN^2,
> dM^2-dN^2],[s1*c2*d2-c1*d1*s2=0,Q(s1,c1,d1),Q(s2,c2,d2)]);
[0,0,0]

Therefore, s.M/ D ˙s.N /, c.M/ D ˙c.N /, and d.M/ D ˙d.N /. Now,

� s.M/ D ˙s.N /, c.M/ D c.N /, d.M/ D d.N /:
M �N D .0; 1; 1/. So, M �N D 2P1 � 2P2 D 2.P1 � P2/ D .0; 1; 1/;

� s.M/ D ˙s.N /, c.M/ D �c.N /, d.M/ D d.N /:
M ˙ N D .0;�1; 1/. So, 2.M ˙ N/ D 2.2P1 ˙ 2P2/ D 4.P1 ˙ P2/ D

.0; 1; 1/;

� s.M/ D ˙s.N /, c.M/ D c.N /, d.M/ D �d.N /:
M ˙ N D .0; 1;�1/. So, 2.M ˙ N/ D 2.2P1 ˙ 2P2/ D 4.P1 ˙ P2/ D

.0; 1; 1/;
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� s.M/ D ˙s.N /, c.M/ D �c.N /, d.M/ D �d.N /:
M �N D .0;�1;�1/. So, 2.M �N/ D 2.2P1 � 2P2/ D 4.P1 � P2/ D

.0; 1; 1/.

Since P1 ¤ ˙P2, in all cases P1 ˙ P2 is of even order, contradiction. In conclu-
sion, P2 2 Sn¹P1º is of even order because P1 is of odd order.

A practical solution is now provided to prevent the exceptional cases of (4.17),
(4.18), and (4.19).

Lemma 4.21. Let K be a field of odd characteristic. LetEI;b;a be a twisted Jacobi
intersection curve defined over K. Let P1 D .s1; c1; d1/ and P2 D .s2; c2; d2/

be points on EI;b;a. Assume that P1 and P2 are of odd order with P1 ¤ P2. It
follows that s1c2d2 � c1d1s2 ¤ 0.

Proof. Assume that P1 and P2 are of odd order with P1 ¤ P2. Suppose that
s1 D 0 and s2 D 0. Then, P1 D P2 D .0; 1; 1/, contradiction. So, either s1 ¤ 0

or s2 ¤ 0. Suppose that s1 ¤ 0 and s2 D 0 or s1 D 0 and s2 ¤ 0 then the claim
follows trivially. Now, s1s2 ¤ 0. The claim then follows from Lemma 4.19 and
Lemma 4.20 (by swapping P1 and P2 when necessary).

Unified addition. Alternative addition formulae on EI;b;a are given by
.s1; c1; d1/C .s2; c2; d2/ D .s3; c3; d3/ where

s3 D
�
s1c2d2 C c1d1s2

�ı�
1 � abs2

1s
2
2

�
; (4.20)

c3 D
�
c1c2 � bs1d1s2d2

�ı�
1 � abs2

1s
2
2

�
; (4.21)

d3 D
�
d1d2 � as1c1s2c2

�ı�
1 � abs2

1s
2
2

�
(4.22)

assuming that 1 � abs2
1s

2
2 ¤ 0. These formulae work for identical summands in

most of the cases hence the name unified.
If .s1; c1; d1/C.s2; c2; d2/ is a point at infinity then 1�abs2

1s
2
2 D 0. Otherwise,

.s1; c1; d1/C .s2; c2; d2/ would be an affine point since it can be shown using the
relations bs2

1 C c
2
1 D 1; as

2
1 C d

2
1 D 1 and bs2

2 C c
2
2 D 1; as

2
2 C d

2
2 D 1 that the

algebraic expressions for .s3; c3; d3/ satisfy bs2
3 C c

2
3 D 1; as2

3 C d
2
3 D 1. The

converse, however, does not necessarily apply. This means that if 1� abs2
1s

2
2 D 0

then .s1; c1; d1/C .s2; c2; d2/ may not be a point at infinity. Therefore it is worth
investigating the exceptional cases. The denominators of (4.20), (4.21), and (4.22)
vanish for some summands which are described in the following lemma explicitly.
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Lemma 4.22. Let a; b; s1; c1; d1; s2; c2; d2 be defined as in Lemma 4.19. It follows
that 1 � abs2

1s
2
2 ¤ 0 if and only if .s2; c2; d2/ 2 S

0 where

S 0 D
h� 1

˛ˇs1
;
�d1

˛s1
;
c1

ˇs1

�
;
� 1

˛ˇs1
;
d1

˛s1
;
�c1

ˇs1

�
;
�
�1

˛ˇs1
;
d1

˛s1
;
c1

ˇs1

�
;�

�1

˛ˇs1
;
�d1

˛s1
;
�c1

ˇs1

�
;
� 1

˛ˇs1
;
d1

˛s1
;
c1

ˇs1

�
;
� 1

˛ˇs1
;
�d1

˛s1
;
�c1

ˇs1

�
;�

�1

˛ˇs1
;
�d1

˛s1
;
c1

ˇs1

�
;
�
�1

˛ˇs1
;
d1

˛s1
;
�c1

ˇs1

�i
:

Proof. )W Assume that 1 � abs2
1s

2
2 D 0. Solving the equations 1 � abs2

1s
2
2 D 0,

bs2
2 C c

2
2 D 1, and as2

2 C d
2
2 D 1 simultaneously for s2, c2, and d2 gives S 0. All

entries in S 0 are defined since s1 ¤ 0.
(W The claims follow trivially by substitution.

This lemma and Lemma 4.19 exclude s1 D 0. For s1 D 0 the denominators in
(4.20), (4.21) and (4.22) are defined and equal to 1.

The following lemma shows that if one of the summands is of odd order then
in the presence of a vanished denominator, the other summand is always of even
order.

Lemma 4.23. Let a; b; s1; c1; d1; s2; c2; d2 be defined as in Lemma 4.22. Assume
thatP1 D .s1; c1; d1/ is a fixed point of odd order and thatP2 D .s2; c2; d2/ 2 S

0.
Then, P2 is of even order.

Proof. The proof is similar to the proof of Lemma 4.20. The only difference is
that the expression s1*c2*d2-c1*d1*s2=0 should be changed to 1-a*b*s1*s1*s2*s2=0 in
the Maple script and the claim follows.

The points at infinity on the projective closure of EI;b;a are not defined over K
if a is not a square in K. Having noted this, the following lemma implies that these
addition formulae are complete if a is not a square in K.

Lemma 4.24. Let a; b; s1; s2 2 K. Assume that ab is non-square. Then

1 � abs2
1s

2
2 ¤ 0:

Proof. See the proof of Lemma 4.7 in Section 4.1.

In the following lemma, with reasonable assumptions, it is shown that excep-
tions can be prevented regardless of any assumption on the curve constants.
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Lemma 4.25. Let K be a field of odd characteristic. LetEI;b;a be a twisted Jacobi
intersection curve defined over K. Let P1 D .s1; c1; d1/ and P2 D .s2; c2; d2/

be points on EI;b;a. Assume that P1 and P2 are of odd order. It follows that
1 � abs2

1s
2
2 ¤ 0.

Proof. Assume that P1 and P2 are of odd order. If s1s2 D 0 then 1� abs2
1s

2
2 ¤ 0

as desired. If s1s2 ¤ 0 then the claim follows from Lemma 4.22 and Lemma 4.23
(by swapping P1 and P2 when necessary).

Exception handling in the general case. Algorithm 4.26 provides a complete
addition on all twisted Jacobi intersection curves.

The correctness of the algorithm follows from two observations. Firstly, when
a point at infinity is involved as the sum or as one of the summands along lines
2 to 41, it is tedious but straightforward to check that the output of the algo-
rithm is correct using the implicit technique mentioned at the start of the sec-
tion. Line 1 conditionally swaps the inputs to eliminate half of the input-wise
symmetric branches. The second observation is that glueing together the unified
addition and the dedicated addition formulae is enough to handle all exceptions
when both of the summands and the sum are affine points. This fact follows from
Lemma 4.22 and Lemma 4.19 by observing that #.S 0 \ S/ D 4. This means that
if .s2; c2; d2/ 2 S

0 \ S then the output must be a point at infinity (lines 37 to
40) since there are exactly four points at infinity. The remaining exceptional cases
which occur at .s2; c2; d2/ 2 S

0n.S 0 \ S/ are handled by the dedicated addition
formulae (lines 27 to 30). Similarly the exceptions at .s2; c2; d2/ 2 Sn.S

0 \ S/

are handled by the unified addition formulae (lines 32 to 34).
Algorithm 4.26 complies with the completeness criterion since only the lines 32

to 35 are necessary in this case. Note that the assumption on the curve constants
a and b limits the number of curves in twisted Jacobi intersection form for which
the unified addition formulae are complete.

Algorithm 4.26 also complies with Lemma 4.25. If P1 and P2 are points of odd
order then all branches are eliminated and the lines 32 to 35 suffice. This technique
applies to all twisted Jacobi intersection curves.

Algorithm 4.26 also complies with Lemma 4.21. IfP1 andP2 are distinct points
of odd order then all branches are eliminated and the lines 27 to 30 suffice. This
technique applies to all twisted Jacobi intersection curves. The doubling formulae
(4.14), (4.15) and (4.16) are enough to handle the special case P1 D P2.

The negation formulae were previously noted as �.s1; c1; d1/ D .�s1; c1; d1/

for an affine point .s1; c1; d1/. To complete the negation law, it is sufficient to note
that ��1 D �4, ��4 D �1, ��2 D �3, and ��3 D �2.
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Algorithm 4.26. Addition law in affine coordinates for twisted Jacobi inter-
section form

Input : P1; P2; �1; �2; �3; �4 2 EI;b;a.K/ and fixed ˛; ˇ 2 K such that ˛2 D �a and
ˇ2 D �b.

Output : P1 C P2.

1 if P1 2 ¹�1; �2; �3; �4º then Pt  P1, P1  P2, P2  Pt .
2 if P2 D �1 then
3 if P1 D �1 then return .0;�1;�1/. else if P1 D �2 then return .0;�1; 1/.
4 else if P1 D �3 then return .0; 1;�1/. else if P1 D �4 then return .0; 1; 1/.
5 else if P1 D .0; 1; 1/ then return �1. else if P1 D .0; 1;�1/ then return �2.
6 else if P1 D .0;�1; 1/ then return �3. else if P1 D .0;�1;�1/ then return �4.
7 else return .�1=.˛ˇs1/; d1=.˛s1/; c1=.ˇs1//.
8 else if P2 D �2 then
9 if P1 D �1 then return .0;�1; 1/. else if P1 D �2 then return .0;�1;�1/.

10 else if P1 D �3 then return .0; 1; 1/. else if P1 D �4 then return .0; 1;�1/.
11 else if P1 D .0; 1;�1/ then return �1. else if P1 D .0; 1; 1/ then return �2.
12 else if P1 D .0;�1;�1/ then return �3. else if P1 D .0;�1; 1/ then return �4.
13 else return .1=.˛ˇs1/; d1=.˛s1/;�c1=.ˇs1//.
14 else if P2 D �3 then
15 if P1 D �1 then return .0; 1;�1/. else if P1 D �2 then return .0; 1; 1/.
16 else if P1 D �3 then return .0;�1;�1/. else if P1 D �4 then return .0;�1; 1/.
17 else if P1 D .0;�1; 1/ then return �1. else if P1 D .0;�1;�1/ then return �2.
18 else if P1 D .0; 1; 1/ then return �3. else if P1 D .0; 1;�1/ then return �4.
19 else return .1=.˛ˇs1/;�d1=.˛s1/; c1=.ˇs1//.
20 else if P2 D �4 then
21 if P1 D �1 then return .0; 1; 1/. else if P1 D �2 then return .0; 1;�1/.
22 else if P1 D �3 then return .0;�1; 1/. else if P1 D �4 then return .0;�1;�1/.
23 else if P1 D .0;�1;�1/ then return �1. else if P1 D .0;�1; 1/ then return �2.
24 else if P1 D .0; 1;�1/ then return �3. else if P1 D .0; 1; 1/ then return �4.
25 else return .�1=.˛ˇs1/;�d1=.˛s1/;�c1=.ˇs1//.
26 else if s1c2d2 � c1d1s2 ¤ 0 then
27 s3  .s21 � s

2
2/=.s1c2d2 � c1d1s2/.

28 c3  .s1c1d2 � d1s2c2/=.s1c2d2 � c1d1s2/.
29 d3  .s1d1c2 � c1s2d2/=.s1c2d2 � c1d1s2/.
30 return .s3; c3; d3/.
31 else if 1 � abs21s

2
2 ¤ 0 then

32 s3  .s1c2d2 C c1d1s2/=.1 � abs
2
1s

2
2/.

33 c3  .c1c2 � bs1d1s2d2/=.1 � abs
2
1s

2
2/.

34 d3  .d1d2 � as1c1s2c2/=.1 � abs
2
1s

2
2/.

35 return .s3; c3; d3/.
36 else
37 if P2 D .1=.˛ˇs1/;�d1=.˛s1/;�c1=.ˇs1// then return �1.
38 else if P2 D .�1=.˛ˇs1/;�d1=.˛s1/; c1=.ˇs1// then return �2.
39 else if P2 D .�1=.˛ˇs1/; d1=.˛s1/;�c1=.ˇs1// then return �3.
40 else return �4.
41 end
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Literature notes. Other results related to the affine formulae for twisted
Jacobi intersection form can be found in the literature. The group law on Jacobi
intersection curves are typically derived directly from Jacobi elliptic functions,
cf. [11, 13, 28, 43].

5 Conclusion

This paper has focused on the group law on elliptic curves. In this context, an
automated method of finding cryptographically interesting point addition formulae
is described. Three forms of elliptic curves are revisited and many missed low-
degree formulae are detected. With these new formulae a complete description of
the group law is made in affine coordinates.

Section 2 reviewed the elliptic curve group law on Weierstrass curves together
with definitions of frequently used technical terms. Birational equivalences be-
tween selected curves and suitable Weierstrass curves were demonstrated using
literature results and computer algebra. Section 2 also compared the estimated
coverage of each studied form of elliptic curves.

Section 3 brought together several computational tools using fundamental re-
sults in algebraic geometry: the Riemann–Roch theorem and products of curves,
and in arithmetic of function fields: Gröbner basis computations and rational sim-
plifications. The final product is a toolbox for optimizing the group law arising
from elliptic curves given in some particular form. The first tool is capable of
finding group laws on elliptic curves using computer algebra. This is a high-level
tool which produces massive and inefficient formulae. This tool uses birational
maps between curves and symbolically deduces the group law for some form of
an elliptic curve. The second tool is responsible for rational simplification for
finding lowest-degree point addition/doubling formulae. The notion of finding the
lowest-degree rational expression modulo a prime ideal was developed in [36]. To
the best of the authors’ knowledge, combining these two stages and systemati-
cally finding the lowest-degree group laws is an outcome of this paper and of the
authors’ previous works in [24–26].

Section 4 presented low-degree point addition formulae, some of which are
outcomes of this paper. The new formulae include dedicated addition formulae for
extended Jacobi quartic ((4.3), (4.4)), twisted Edwards ((4.10), (4.11)), and twisted
Jacobi intersection forms ((4.17), (4.18), (4.19)) and a set of minimal-degree dou-
bling formulae for extended Jacobi quartic form ((4.1), (4.2)). Each of these new
formulae have a lower total degree than original formulae presented in the litera-
ture. A complete statement of the group law in affine coordinates was presented
for each of the studied forms. These complete descriptions in affine coordinates
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cannot be found in the literature. The algorithms contributed are Algorithm 4.9
in Section 4.1, Algorithm 4.17 in Section 4.2, and Algorithm 4.26 in Section 4.3.
In order to justify these algorithms each section contains a series of lemmas to
systematically investigate exceptional situations that might appear in the compu-
tation. All of the proposed algorithms contain several conditional branches. In
an optimized implementation these branches are best eliminated. This is achieved
with two methods. The first method was initiated by Bernstein and Lange in [8] for
Edwards curves and was extended to suitable classes of elliptic curves in twisted
Edwards form in [3] and to twisted Hessian form in [6]. This technique forces the
point(s) at infinity to be defined over a proper extension of K but not defined over
K. Therefore, all points on the selected curve are affine points. The rest of the
method is composed of finding a single set of addition formulae with a denomi-
nator which cannot vanish for any pair of summands. This section has extended
the same idea for suitable classes of elliptic curves in extended Jacobi quartic and
twisted Jacobi intersection forms, see Section 4.1 and 4.3 respectively. The second
method selects a suitable subgroup of points which does not contain any points at
infinity. The rest of the method is again composed of finding a single set of addi-
tion formulae with denominators which cannot vanish for any pair of summands.
Using this method, it was shown how to prevent all exceptions of dedicated addi-
tion formulae for distinct inputs. This latter contribution is perfectly suited to the
context of fast scalar multiplications, since dedicated additions are more efficient
than unified additions in almost all cases.
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helpful suggestions.
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