J. Math. Cryptol. 6 (2012), 1-20
DOI 10.1515/jmc-2012-0002 © de Gruyter 2012

Finding discrete logarithms
with a set orbit distinguisher

Robert P. Gallant

Communicated by Ronald Cramer

Abstract. We consider finding discrete logarithms in a group G of prime order p when
the help of an algorithm D that distinguishes certain subsets of G from each other is
available. If the complexity of D is a polynomial, say d(log(p)), then we can find dis-
crete logarithms faster than square-root algorithms. We consider two variations on this
idea and give algorithms solving the discrete logarithm problem in G with complexity

(9(p% log(p)? + p%d(log(p)) and G(p% log(p)® + p%d(log(p)) when p — 1 has fac-
tors of suitable size. When multiple distinguishers are available and p — 1 is sufficiently
smooth, logarithms can be found in polynomial time. We discuss natural classes of algo-
rithms D that distinguish the required subsets, and prove that for some of these classes no
algorithm for distinguishing can be efficient. The subsets distinguished are also relevant
in the study of error correcting codes, and we give an application of our work to bounds
for error-correcting codes.

Keywords. Discrete logarithm problem, complexity, sparse polynomial, quadratic
residue codes.

2010 Mathematics Subject Classification. 11T71, 94A60, 11Y16.

1 Introduction

Let G be a group with generator G of prime order p. Since G generates G, for any
element W € G there is a unique integer w € [0, p — 1] such that W = G". The
integer w is said to be the discrete logarithm of W to the base G. An algorithm
computing the discrete logarithm of W to the base G, for a randomly chosen
element W € G, is said to solve the discrete logarithm problem (DLP) in G. The
DLP is fundamental in cryptography, see [14, 17] for example. In cryptographic
protocols based on the DLP one uses a group where it is assumed that solving the
DLP is computationally difficult. For such protocols the group is usually a prime-
order multiplicative subgroup of a finite field or a prime order subgroup of an

This research was supported by NSERC grant 327473-06.

2 R.P. Gallant

elliptic curve group, and a standard assumption in these groups is that algorithms
solving the discrete logarithm problem require at least ®(,/p) bit operations.

In Section 2 we outline algorithms for computing discrete logarithms. The
theme in each case is that given a polynomial-time algorithm D that can distin-
guish the orbits of a prime-order group G (under exponentiation) from each other,
we can find discrete logarithms in less than ©(,/p) operations.

Specifically, suppose p — 1 = AB,and B € F l’,“ has order B. Then the action
of x > x# on G partitions the non-identity elements of G into orbits of size B.
We consider algorithms D doing one of two things: (1) determining whether an
element X is in a given orbit (in which case we call D a ‘type-1’ distinguisher),
or (2) determining a unique bitstring for the orbit containing X (in which case we
call D a ‘type-2’ distinguisher).

It is easy enough to construct algorithms that distinguish the required orbits.
What is not clear is how small the complexity of such algorithms may be. A
lower bound on the complexity of distinguishing these orbits could be obtained
from assuming a lower bound on the complexity of solving the discrete logarithm
problem, and using the algorithms of this paper as a reduction. Such an approach
is taken in [4], for example. Similarly the algorithms in this paper imply that an
assumed lower bound of ®(/p) for the complexity of the discrete logarithm prob-
lem implies a complexity of at least ®(,/p) for any such algorithm D. We discuss
a polynomial reduction also. In Section 3, our main focus is to determine lower
bounds on the complexity of such an algorithm D, under assumptions about the
type of algorithm, instead of assumptions about the difficulty of the DLP. There
we discuss natural approaches to constructing such algorithms, such as evaluat-
ing indicator polynomials. We give lower bounds on the sparsity of the relevant
polynomials.

The orbits we consider, and polynomials zero on these orbits, are connected
with error correcting codes. In [5], Philippa Charters considers a generalization
of quadratic residue codes, and gives a bound on the minimal distance of such
codes. She states: “Ideally, we would like to see this gth-root bound hold for all
codewords ...” In Section 3.3 we show how our bound from Section 3.2 can be
interpreted as such a gth-root bound.

Many works study the connections between problems and assumptions used
in cryptography, such as relating the complexity of the Diffie-Hellman Problem
to that of the DLP; see, e.g., [11, 13]. Works such as [8, 12] consider polynomi-

! Even for subgroups of finite fields, where subexponential-time index calculus techniques are
available, the sizes of the field and subgroup are often chosen so that this assumption is reason-
able.

Finding discrete logarithms with a set orbit distinguisher 3

als solving cryptographic problems and bound their degree or sparsity, as do the
results of this paper.

Both the One-More Diffie-Hellman Problem [1] (see also [13]) and the
Strong Diffie-Hellman Problem [2] are variants of the standard Diffie—Hellman
Problem where certain additional information is also available, and in the same
sense we are considering the discrete logarithm problem when additional informa-
tion (the distinguisher algorithm) is available.

Essentially, the algorithms presented here use the additional information pro-
vided by the distinguisher D to perform a Pohlig—Hellman type algorithm in the
‘exponent space’ (namely F7). This technique is first used in [7] to relate the
equivalence of the computational Diffie-Hellman and discrete logarithm prob-
lems. See [10] for more recent work along the same lines.

The techniques used in [6] and in [4] are also related with those of this paper. In
those papers, algorithms are given a discrete logarithm challenge W and use addi-
tional information to first compute a power of W, where the power is in the same
orbit (under exponentiation by a particular element § € IF;,‘) as the group gener-
ator. Thus these papers can be viewed as special case of what we consider here,
and so the distinguishers we consider here are fundamentally related to the dis-
crete logarithm problem. An important distinction between those works and ours
is that the distinguishers we consider help find logarithms of arbitrary elements
in the group, whereas with a static Diffie-Hellman oracle, for example, the ora-
cle ‘knows’ just one specific logarithm and is not useful for finding other discrete
logarithms.

2 Finding discrete logarithms using an orbit distinguisher

In this section we assume G is a group and that group elements have a unique (ef-
ficient) representation as bitstrings. We write the group operation multiplicatively.
We assume G is generated by G, of prime order p, and that p = AB + 1, for
integers A, B > 2, with gcd(A4, B) = 1, and that w € [F, is primitive, and finally
that = w8 and g = w4,

The element o €]F; has multiplicative order ord,(e) = A, and similarly
ord,(B) = B. Because gcd(4, B) = 1, the elements « and B generate F}, so
any element of IF;‘ can be written as o/ B/ for appropriate integers i, j. Since G
has order p, exponentiation of elements in G by elements of I, is well-defined.
Thus, G consists of the identity element 1 = G? along with the elements in the
set {G* B |0<i<A,0<j <B).

Consider the action on G of the function taking x — x#. The image of element
GY'B s G"‘[BHI, and as ,BB =1, we see for each i, 0 < i < A, that the set

4 R.P. Gallant

0; = {G*B’ | 0 < j < B} is an orbit under the action of this function. The
orbits partition G; there are A orbits of size B, and one orbit Qf sjze 1 (the orbit
containing the identity element ‘1’ in G). Raising element G*' B’ in orbit O; to
a power a* 8”7 (an element of IF;‘) will result in an element in orbit O; 4 x mod 4,
which will be a different orbit if x is nonzero modulo A. Later we use the following
consequence of this.

Lemma 2.1. If A € F is such that A|ord, (), and R in G has order p, then no

2 A—1 . .
two of the elements R, R’l, R* e R* are in the same orbit O;, and each
orbit of size B contains exactly one of these elements.

Proof. Suppose A = !B/ and R = G%“B” It R* and R*" are in the same
orbit, then a%a'™ = a®a'?, so that i (u —v) = 0 mod A. As ord,(A) is a multiple
of A, we have gcd(i, A) = 1, and thus ¥ = v mod A. O

The orbits O; do not depend on the particular element of order B we use for
exponentiation, since any element of order B is a power of any other element of
order B in F ;. For the rest of this paper, by ‘B-orbit of G” we mean an orbit of G
of size B under the action of exponentiation by an element 8 in IF;,‘ of order B as
described above. We will sometimes say ‘orbit” when the value B and group G is
clear.

We now consider two different ways that an algorithm might distinguish the
orbits of G from each other, and in each case exploit this to find discrete logarithms
in G.

2.1 Type-1 distinguisher: indicator for a single orbit

Suppose S is a fixed B-orbit of G and that algorithm D, on input element X € G,
(a) outputs 1if X € S, and

(b) outputs 0if X ¢ S.

We will call D a type-1 distinguisher for G. It is simply an indicator function
for the orbit .

Observe that if one is given such an algorithm D that determines whether an
input X in the group is in one particular orbit of S, then, fixing an exponent e at
random, and forming the algorithm that on input X returns D(X¢), one obtains an
algorithm that distinguishes a random orbit of G.

Given a type-1 distinguisher D for G, we will want to know ‘which’ orbit it
distinguishes, in that we want to know, for a given generator G of G, the unique

Finding discrete logarithms with a set orbit distinguisher 5

integer a in [0, A — 1] such that D(G“'a) = 1. It is possible to find which orbit is
distinguished by checking each D(G"‘l), fori =0,...,A— 1. In the worst case
this will take A calls to the distinguisher.

We will assume that function d is an upper bound on the time-complexity of
D, meaning that when D is given an input of length /, then D requires at most
d(l) operations to complete. In particular, when G has order p we assume that
evaluating D at any element X € G requires at most d(log(p)) bit operations. We
will say D is a polynomial-time algorithm if there exists a polynomial / such that
d(l) < h(I) for all allowable input lengths /.2

Algorithm 1 takes as input W € G, and outputs the integer w € [0, p — 1] such
that G¥ = W. The loops in Step 2 and Step 3 query the oracle D and serve to
place a power G’ of G and a power W’ of W in the orbit S distinguished by D,
and then in Step 4 a Baby-Step-Giant-Step search is applied inside S to find the
logarithm of W’ to the base G'.

It is easy to see why this algorithm works; the values m and n determined
in Step 4 satisfy G’#"" = W™ and so G*'B"" = We"F™" and thus the
logarithm of W to the base G is %Tm_] (mod p).

The computations required by this algorithm are at most: 24 exponentiations of
elements of G to the power «, 2J exponentiations of elements of G to the power
B, 2A evaluations of D, 24 + 1 comparisons, the cost of finding elements from
two sets each of size at most J with a common first coordinate (which can be done
using merge sort with at most O (J log(J)) comparisons of group elements), and
a constant number (independent of p) of multiplications in]F; . Assuming each
exponentiation can be done in at most @ (log(p)?) bit operations, and recalling
that J = [+/B], we find this algorithm thus has complexity

o4 log(p)® + v/Blog(p)® + Ad(log(p)))-

As a result we have the following theorem.

Theorem 2.2. Assume G is a group with generator G of prime order p, and that
p = AB + 1, for integers A, B = 2, with gcd(A, B) = 1, and assume D is a
type-1 distinguisher for G with complexity d. Then there is an algorithm to find
the discrete logarithm of an arbitrary element in G with complexity

o4 log(p)® + v/Blog(p)® + Ad(log(p))).

2 To use the notion of polynomial-time, we assume algorithm D distinguishes an orbit in a group
of size p for infinitely many primes p. Given only a single distinguisher, Algorithm 1 may still
be faster than standard square-root algorithms; see the discussion below.

6 R.P. Gallant

Algorithm 1 with inputs (W, G, p,a, A, 8, B, D):
(1) If W = 1, then the algorithm outputs w = 0 and exits.
(2) Foreachu € {0,1,...,4A—1}:
« If D(G*") = 1 then goto (3)
(3) Foreachv € {0,1,..., 4 —1}:
« If D(W?") = 1 then goto (4)
(4) Set J = [v/B]. Set G’ = G*", W = W". Find an element from the sets

((G™7 iy 1i=0,....0 =1}, (WP i)li=0,..,J-1)

with first coordinates equal (as group elements). The second coordinates
. . J —
provide integers m, n such that G’8"" = w’B™",

(5) Output % (mod p).

If both A and +/B are approximately p'/3, which can happen if p — 1 factors
appropriately, then the algorithm complexity is @ (p'/3 log(p)? + p'/3d(log(p)),
which, if D is a polynomial-time algorithm, is asymptotically less than pl/ 2. The
use of precomputed powers of G and W can improve the logarithmic factors in
the algorithm. See Appendix A for a technique for dealing with the large storage
requirement.

If d is an exponential function in log(p), it is still possible for this algorithm
to be asymptotically smaller than p!/2; for example when 4 ~ p'/5, B ~ p*/3,
and d(log(p)) ~ p/°. In an extreme case we might have A ~ p€, B ~ pl~¢,
and d(log(p)) ~ p'/273¢/2 for which the resulting complexity is still asymp-
totically smaller than pl/ 2. Thus there may be distinguisher algorithms D with
non-polynomial complexity for which Algorithm 1 finds logarithms faster than
square-root algorithms. This suggests that even in the non-asymptotic setting, say
when a distinguisher for only one group is available, and one cannot neglect loga-
rithmic and other factors, that even rather “expensive” distinguishers may be useful
when finding discrete logarithms.

If one chooses the group order p so that p = 2r + 1, where r is also prime,
then the algorithm presented here (and the variant in the next section) will not be
faster than standard methods.

Is it possible to have a polynomial-time algorithm D with the required proper-
ties? In Section 3 we discuss these issues further, but the “devil’s advocate” might
argue the affirmative as follows. For a coset of a subgroup of order p in IF; , there

Finding discrete logarithms with a set orbit distinguisher 7

is a polynomial of the form x? — C that is zero on the coset and nonzero at other
elements of IF;. Thus one can efficiently distinguish one coset from the others.
Arguably, the special property of the coset that allows for such an easily-evaluated
polynomial to test for inclusion in the coset is the closure of the subgroup. The
orbits of x — x# on G have a similar closure property (closure under exponen-
tiation by the power B). Is it not possible then that for some groups this can be
exploited to efficiently distinguish these orbits?

With the exception of the distinguisher D, the algorithm above is generic, in
the sense of [16]. One can implement a distinguisher D that is also generic, and
(unsurprisingly) the natural way gives a distinguisher with complexity O(vVB),
and so we do not contradict the lower bound in [16].> In Section 3 we discuss
the possibility of other, efficient, distinguishers; for example, perhaps the group
is a subgroup of a finite field and a short straight-line program for the indicator
polynomial of orbit S exists. However such a distinguisher would certainly use
field addition as well as field multiplication, and so would require operations not
available through a generic-group oracle, and so again we do not contradict [16].

2.2 Type-2 distinguisher: identifies the containing orbit

In this variation, we consider a more powerful, but still somewhat natural, way that
the orbits might be distinguished. Here we consider distinguishers that can tell us
‘which’ orbit of size B contains a given element X € G.

Suppose there exists an algorithm D, taking as input an element of G, and
giving as output a bitstring such that

(a) the outputs D(u) and D(v) are the same if # and v are in the same orbit, and
(b) the outputs D(u) and D(v) are different if ¥ and v are in different orbits.

We will call such an algorithm a type-2 distinguisher for G.

As before we suppose evaluating algorithm D costs at most d (log(p)). Whereas
in Section 2.1 the algorithm D could distinguish one of the orbits from the oth-
ers, here we assume D can distinguish any two orbits from each other, and in
fact ‘label’ (with the bitstring output) the orbit in which an element lies, which is
requiring considerably more of algorithm D.

Algorithm 2 takes as input W € G, and outputs the integer w € [0, p — 1] such
that G¥ = W. It is similar to the previous algorithm, but leverages the fact that
oracle D can now label the orbit in which an element lies to perform an initial
square-root search to find an orbit containing a power G’ of G and a power W’ of
W (instead of the linear search used in the previous algorithm.)

3 We may interpret the lower bound in [16] as a proof that in the generic group model no distin-
guisher can be polynomial-time.

8 R.P. Gallant

Algorithm 2 with inputs (W, G, p,a, A, 8, B, D):
(1) If W = 1, then the algorithm outputs w = 0 and exits.
(2) Set K = [+/A]. Find an element from the sets

(DG)i)i=0,... . K—-1), {(DOW*)i)]i=0,... . K-1)

with first coordinates equal. The second coordinates provide integers m, n
such that D(G*"™) = D(We™).

(3) Set J = [v/B]. Set G/ = G"‘mK, W' = W " Find an element from the
sets

(G i) 11 =0T =1y (WP 1) |1 =0T — 1)

with first coordinates equal (as group elements). The second coordinates
. . J -
provide integers u, v such that G’8"" = w'F™",

(4) Output z"ffgf,f (mod p).

mK

After Step 2, the values m, n satisfy D(G¥"") = D(W® "), and therefore
G*"* and W™ are in the same orbit. Hence the search in Step 3 succeeds in
finding integers u, v such that G’ = W™ Thus G¥"*#" = we™"B™",
which gives the logarithm of W to the base G, namely %

The computations required by Algorithm 2 are at most: 2K exponentiations
of group elements to the power «, 2J exponentiations of group elements to the
power B, 2K evaluations of D, the cost of finding the set elements with common
first coordinates which is @ (K log(K) + J log(J)), and a constant number (inde-
pendent of p) of multiplications in IE‘;‘. As before, assuming the exponentiations
cost O (log(p)?), we find the complexity of Algorithm 2 is thus

O(vVAlog(p)® + VBlog(p)® + «/Zd(log(p))).

As a consequence we have the following result.

Theorem 2.3. Assume G is a group with generator G of prime order p, and that
p = AB + 1, for integers A, B = 2, with gcd(A, B) = 1, and assume D is a
type-2 distinguisher for G with complexity d. Then there is an algorithm to find
the discrete logarithm of an arbitrary element in G with complexity

O(v/Alog(p)® + VB log(p)® + v Ad(log(p))).

Finding discrete logarithms with a set orbit distinguisher 9

If A and B are both about pl/ 2 the complexity of Algorithm 2 is

O(p"*1og(p)® + p'/*d(log(p))).

If D is a polynomial-time algorithm, then Algorithm 2 has complexity smaller
than pl/ 2| though as before it is possible for this to occur with d an exponential
function also. As with Algorithm 1, when the group order p is chosen so that
p = 2r 4 1, where r is also prime, Algorithm 2 will not be faster than standard
methods.

2.3 Multiple distinguishers give a polynomial reduction to DLP

In the previous sections, we considered having access to only one distinguisher for
an orbit under a single given exponent §. In this section, we consider the case that
the factors of p — 1 are of size polynomial in log(p), and for several distinct values
of B dividing p — 1, we have a type-1 distinguisher for an orbit of length B in G.
In this case we can find discrete logarithms in G in a polynomial number of steps.

Lemma 2.4. Suppose G generates group G of prime order p, with p — 1 = AB,
that w is primitive in Fp, o = w8, and that B = wA. Suppose X = G, and
that X** and G are in the same length-B orbit of G under exponentiation to
power B. Then x = B(c —d) mod A.

Proof. Since (wa)“d and G“c. are in the same length- B orbit, there is an integer
i such that G¥ @’ = (G2)B" and thus w¥a? = «B’ (in Fp). So, we have
w* = @¢"9p and w* = wBC—D+TAi Agy has order p — 1 = AB, we have
x = B(c —d) + Ai mod AB and thus x = B(c —d) mod A. |

Theorem 2.5. Suppose G generates a group G of prime order p, and that w is
primitive in I, and that p — 1 = A1A2A3 ... Ay, with the A; pairwise relatively
prime, and for each B; = (p — 1)/A; we have a Bj-orbit (type-1) distinguisher
D;. Then given an arbitrary element X in G, X # 1, there is an algorithm to find
an integer x satisfying X = Gv* requiring at most 2A; calls to each distinguisher
D;, and a number of bit operations and group multiplications that are at most a
polynomial in log(p).

Proof. An existential proof is provided by Algorithm 3 below, for which the com-
plexity claims are easily verified. i

When the factors A; are each of size polynomial in log(p), then the complex-
ity of Algorithm 3 is also polynomial in log(p). In this case Theorem 2.5 can

10 R.P. Gallant

Algorithm 3 with inputs (G, p,w, Ay, Az, ..., A, X, D1, D3, ..., D)
(1) Fori =1,2,...,k do
a. Seta; = wBi,ﬂi = wii,
b. Determine ¢; such that D; (G"‘fi) =1
c¢. Determine d; such that D; (X o i) — 1. Observe that since G% ' and

dj
X% are in the same B;-orbit, Lemma 2.4 gives x = Bj(c; — d;) mod
A;.

(2) Use the Chinese Remainder Theorem to explicitly find the unique positive
integer x € [0, p — 1] such that x = B;(¢; — d;) mod A; fori € 1,...,k.

(3) Output this x.

be viewed as a polynomial-time reduction from the problem of finding discrete
logarithms in G to the problem of distinguishing the B;-orbits. Clearly an algo-
rithm that can find discrete logarithms in G can be used to efficiently construct
distinguishers D;, so when p — 1 is sufficiently smooth, distinguishing orbits and
finding discrete logarithms are polynomially equivalent.

2.4 A connection to a conjecture of Boneh and Lipton

In the previous section we considered having access to multiple distinguishers
D; for a given group. In this section we discuss whether having access to a single
distinguisher can give a polynomial time algorithm for finding discrete logarithms,
when the group G is an order p subgroup of a finite field IF,.

In this case a type-1 distinguisher D identifies when an element X € [, isina
particular B-orbit, say the orbit consisting of elements GY'p j, j=0,....,B—1
As noted earlier to determine the value of a, we can evaluate the distinguisher at
A elements of the form G* . When X is in the distinguished orbit, the element
x € F, satisfying X = G* can be written as x = «%B/ for some j, and so as
B has order B this implies the value x is a root of 8 — @48 = 0; namely when
t = x, this equation is satisfied.

It may be helpful to interpret the previous paragraph as follows: D(X) = 1
when the discrete logarithm (to the base G) of X is in a particular coset of the
order B subgroup of F¥, namely the same coset of the subgroup () as the element
af.

We continue by focusing on a special case. Suppose B = (p —1)/2and D is a

type-1 distinguisher for the orbit consisting of elements G"B’ ,j=0,...,B—-1,

Finding discrete logarithms with a set orbit distinguisher 11

and that for some element X € (G), we have D(X) = 1. This tells us that
the unique x € IF, satisfying X = G* has the property that it can be written
as x = a%B/ for some j; or in other words, that x = B/ for some j, which
implies that x8 — 1 = 0 since B has order B. In this case this means (since
B = (p — 1)/2) that the discrete logarithm x is a quadratic residue in IF,,. So this
distinguisher determines whether the discrete logarithm (to the base G) of its input
X is a quadratic residue in [Fp,.

Similarly, suppose also that the product XG # 1 and D(X - G) = 0; then we
know XG = G**+! must lie in the orbit G*'#’ (since in this case there are only
two orbits of length B) and so (x + 1)B —aB = 0. In this case « has order A = 2,
and gcd(A, B) = 150 B is odd and so the equation is simply (x + 1) + 1 = 0.
In other words, x + 1 is a quadratic non-residue in I,.

We could continue in this way (determining the orbit containing XG2, XG?3, ..)
to find several polynomials (of degree (p — 1)/2, but that have very short straight-
line programs) which all have x as a root. If it were possible to easily find this
common root (by taking gcd’s, for example), we would have the desired loga-
rithm x.

A similar situation is discussed in [3], where Boneh and Lipton define the sig-
nature of x € IF,, as the vector

e = ((2). (55, (25).

where k = [2log? p], and they conjecture that for sufficiently large p, any two
distinct x, y have sig(x) # sig(y). They also state that there is no known polyno-
mial time algorithm for finding x given sig(x). This problem is a special case of
the Hidden Root Problem, see [18].

3 Distinguishing orbits efficiently

In summary, in Section 2 we considered how algorithms capable of distinguishing
orbits of the group G under exponentiation can help solve the discrete logarithm
problem in G. We now turn our attention to direct consideration of how difficult it
might be to find such distinguishers.

The algorithms in the previous section required an algorithm D that distin-
guished the orbits of a generic group G under the action of exponentiation by a
fixed integer. In this section we discuss some natural ways one might implement
such an algorithm when the group G is a prime order subgroup of a finite field Iy,
and in a few cases give lower bounds on the resulting complexity.

12 R.P. Gallant

3.1 An indicator polynomial for an orbit

Given any B-orbit S in G, the polynomial /g(x) = [[,cg(x —r) is zero on S
and nonzero on G \ S. For any polynomial (x) € Fy[x] with no zerosin G \ S,
the polynomial f(x) = h(x)Is(x) is also zero on S and nonzero on G \ S. An
algorithm determining whether such a polynomial is nonzero at a point (such as
‘evaluate the polynomial using Horner’s rule and test if the result equals zero’)
is thus a type-1 distinguisher, as in Section 2.1. To be useful for finding discrete
logarithms, the orbit size would be rather large, for example approximately p2/ 3,
In this case the degree of f will be large. Can any such polynomial be evaluated
efficiently, that is, in time at most some polynomial in log(p)?

This can occur if f has relatively few nonzero coefficients, but it is unclear
whether one can find an orbit S and a polynomial % such that #(x)/g(x) is rel-
atively sparse. In Section 3.2 we give a lower bound on the number of nonzero
coefficients in a polynomial that is zero on an orbit. The bound is only useful for
small values of A, but it also provides a link between coding theory and cryptog-
raphy which we illustrate by applying the bound to a problem in error correcting
codes.

Another possibility is that there are polynomials zero on S and nonzero on G\ S
having many nonzero coefficients but that can still be evaluated efficiently. For
example, perhaps a polynomial of this form can have a short straight-line program.
We do not know how to rule out this possibility.

Given the A different orbits of G of size B, we can construct (using interpo-
lation) many polynomials D(x) such that D(u) = D(v) if u and v are in the
same orbit, and D(u) # D(v) if u and v are in different orbits. Algorithms eval-
uating such polynomials are type-2 distinguishers. In Section 3.4 we show such
a polynomial must have at least B nonzero coefficients. It is unknown whether
a polynomial with this property can be represented by an efficient straight-line
program.

The previous examples are straightforward ways one might try to construct a
type-1 or type-2 distinguisher, but there are many other approaches. As a final
example: perhaps one can find an efficient function that produces a square 2/3 of
the time on some ‘random’ half of the orbits, and only 1/3 of the time on the other
half. Such a function can be used to create an efficient type-2 distinguisher.

We are not suggesting that efficient versions of such distinguishers exist. We
simply note that such distinguishers do not seem to have been considered before
in this context, and that if it is possible for them to be computationally efficient,
then there are implications for the discrete logarithm problem. We now show that
some of the possible ways to implement distinguishers can never be efficient.

Finding discrete logarithms with a set orbit distinguisher 13

3.2 Sparsity of a polynomial zero on an orbit

In this section we give a lower bound on the number of nonzero coefficients in a
polynomial that is zero on an orbit. The bound is useless for values of A larger than
log(p), and so is of limited use in the cryptographic context we are considering.
However the bound is nontrivial when the number of orbits A is small (Iess than
log(p)), which we illustrate by applying the bound to a problem in error correcting
codes. The fact that the problem of distinguishing orbits provides a link between
cryptography and error-correcting codes may also be of interest.
We use the following fact which we state without proof.

Lemma 3.1. Let F be a field, and let p a positive integer. Let f € F[x] have the

form f(x) =Y.', fixt. Then f(x) is divisible by (xP — 1) if any only if for
each integer r € [0, p — 1] we have

> fi=o.

{jlj=r mod p}

Informally this says that the polynomial f(x) is a multiple of (x? — 1) if and
only if the polynomial resulting from reducing every exponent of x modulo p is
the zero polynomial.

Theorem 3.2. Assume G is a multiplicative subgroup of prime order p of the finite
field Py, and that p—1 = AB for integers A, B = 2 with gcd(A, B) = 1, and that
integers a, B satisfy 1 < «a, 8 < p and ordy(a) = A and ord,(B) = B. Assume
that f € Fy[x] is zero on an orbit S of size B of the function x — xB on group
G, but not zero everywhere on G. Then the number of nonzero terms in f(x) is at

least A,/ % (with ¢ the totient function.)

Proof. To begin we assume the polynomial f has degree less than p. Since f is
not zero everywhere on G, we can write f(x) = Y ;_; @;x%, with each a; # 0,
and s = 1. By Lemma 2.1, for any A € IFI’,“ of order p — 1, and any element ¢
in G of order p, one of ¢, ¢*, {’12, §A3, e, {AA_] is in S, and so the polynomial
w(x) = f(x)f(xx)f(x'lz) . f(x“_]) is zero at {. Since w(x) is zero at each
element of order p in G, it must be a multiple of the polynomial (x? —1)/(x — 1),
and so w(x) mod (x? — 1) is either 0 or ¢(1 4+ x + x% + --- + xP~1), for some
cely.

Suppose for some A € F I’,“ of order p — 1 that the remainder is c¢(1 + x +
x2 4 .-« 4+ xP71), for some ¢ € F; . The number of nonzero coefficients in
w(x) mod (x? — 1) is at most the number of nonzero coefficients in w(x) itself.

14 R. P. Gallant

Since w(x) has at most s4 nonzero coefficients, and w(x) mod (x? — 1) has P
nonzero coefficients, we have s4 > p and so

sz Yp= Vo(p—1/(A-1).

Otherwise suppose for every primitive A € ' the remainder w(x) mod (x? — 1)
is 0. For each such A, then, the nonzero term

a1ay alxe1+e1)t+---+e1)LA*1

must cancel with other terms to result in a zero remainder modulo x? — 1.

Specifically, for any primitive A € F*, and r = e + e1A + -+ + e A471, by
Lemma 3.1 the sum Sy , =) auyQu, -..du,_, is zero, where the sum is over
(uo,u1,...,ugq—1) €{1,2,.. .,s}A such that the equation

euy + e A+ + euAfl)LA_l =r

holds in IF,. Since this sum contains the nonzero term afl, it must contains at least
one other term.

We count the number N of pairs (A,7) where A is primitive in [and 7 is a
tuple in the set {1,2, ..., s}4\ {{1}4}, say r = (ug,u1,...,us—1), that identifies

aterm dy,ay, - ..dy,_, occurring in some sum Sy , with the term af.

For each primitive A € IFI’;‘, the term af occurs in some sum Sy ,, and that sum
contains at least one other term, so the number of pairs N is at least p(p — 1).

How often can a given tuple (1, uy,...,uq4—1) from {1,2,... s} \ {114}
occur in such pairs? If ay,ay, ...ay,_, occurs in a sum S , with afl, then we
have

euy + e A+ '--—i—euA_l/\A_l =e;+eh 44 e a4

and there are at most A — 1 such values A. Hence the number of pairs N is at most
(s4—1)(A-1).

Thus we have ¢(p — 1) < (s4 — 1)(4 — 1) which gives the bound in this case.

Finally, given a polynomial f of arbitrary degree that is zero on an orbit S
of size B, the remainder R(x) = f(x) mod x? — 1 has f(r) = R(r) for each
r € G, and R has no more nonzero terms than does f. The polynomial R is
also zero on orbit S, and is not zero everywhere on G, and has degree less than
p- So the previous case applies to R and gives a lower bound on the number of
nonzero terms in R, and this is also a lower bound on the number of nonzero terms

in f.]

Finding discrete logarithms with a set orbit distinguisher 15

If, as in the theorem statement, a polynomial f with s nonzero coefficients is
zero on an orbit under exponentiation by an element 8 of order B in F, and if 4 B
also divides p — 1, then one can use f to construct a polynomial having at most
s" nonzero coefficients that is zero on an orbit under exponentiation by an element
of order 7B. So the number of nonzero coefficients in this new polynomial is
bounded by the theorem. One may use this idea to obtain a minor improvement in
the bound of the theorem, where A in the denominator is replaced by the smallest
prime-power dividing A.

One could also obtain a minor improvement to the bound by considering those
A with order a multiple of A instead of just primitive A, as we have in the proof.

In the next section we show how this bound gives a connection between the
discrete logarithm problem and error correcting codes.

3.3 Connection to quadratic residue codes

Theorem 3.2 provides a lower bound on the number of nonzero coefficients in a
polynomial that is zero on an orbit under exponentiation. Such polynomials occur
in the study of error correcting codes.

For our purposes, a quadratic residue code may be defined as follows. Assume
p, | are primes with p odd and / a quadratic residue modulo p, and that Fy is a
finite extension of IF; containing a primitive pth root of unity r, and that Q is the
set of quadratic residues modulo p. Then the polynomial g(x) = [] eco (X —7°)
is in [F;[x]. Polynomials in IF;[x] that are a multiple of g(x) have the common set
of zeros {r¢ | e € Q}. Such polynomials that also have degree less than p are
the quadratic residue code of length p over [F;. The minimum number of nonzero
coefficients among such polynomials is the distance of the code, and so any bound
on the minimum number of nonzero coefficients in such polynomials is a bound on
the minimum distance of the code. See [9] for an introduction to quadratic residue
codes.

The common root set {r¢ | ¢ € Q} of these polynomials is an orbit under
exponentiation by an element 8 € I of order (p — 1)/2. Thus Theorem 3.2 can
be applied. In this case, one obtains the well-known square-root bound for such
codes [9]. Indeed, the first part of the proof of Theorem 3.2 is a typical proof of
the square-root bound.

In [5] a generalization of quadratic residue codes called /th-power residue codes
is considered, and a lower bound on their minimum distance is proved.

That generalization is as follows, though we point out that our description dif-
fers somewhat, and in particular, the role of ¢ in [5] is played by / in the de-
scription below. Assume primes p, [with [|p — 1, and assume / is an /th power
residue mod p. Suppose w generates IF; . Partition IF;‘ into sets 4;, 0 <i <[,

16 R.P. Gallant

where A; consists of those elements in IFI’," whose logarithm to the base w is con-
gruent to i modulo /. (So the A;’s can be thought of as the cosets of the sub-
group (w') in F,.) Suppose r is a primitive pth root of unity in a finite exten-
sion I, of F;. The ideal in the ring [F;[x]/(x? — 1) generated by the polynomial
[Tae 4, (x —r?) is the /th power residue code ;, and the ideal generated by the
polynomial (x — 1) naeAi (x — r?) is the Ith power residue code ;.*

Suppose a is an arbitrary element of the set 4;. Clearly aw! € A; also, because
a € A; implies that the logarithm log,, (a) of a to the base w is congruent to i
modulo /, and so we have log,, (aw) = log,,(a) + ! = i mod [also, so aw! €
A;. Thus the set A; is closed under multiplication by w!, and so the roots of
the polynomial [, A (x — r?) are closed under exponentiation to the power w!.
Similarly the polynomials that make up any /th power residue code are closed
under exponentiation by w!. Thus again we can apply Theorem 3.2 here.

In [5, p. 412], Charters discusses a known /th-root bound that applies to some of
the codewords in an /th power residue code (namely those codewords in 2; \ %f,-),
and writes she “would like to see an /th-root bound hold for all codewords”. The
reason that the existing /th-root bound does not apply to all codewords lies in the
possibility that minimal length codewords in 2(; have the root 7 = 1. This is
precisely the situation that the second part of the proof of Theorem 3.2 deals with,
and indeed that theorem applies to all polynomials in an /th power residue code.

Therefore, taking G to be the order-p subgroup of IF; generated by r, and as-
suming B = (p—1)/1 and A = [are relatively prime, and taking 8 = w’, where
w is primitive in F,, we can apply Theorem 3.2 to any polynomial in 2;, thus
obtaining the following lower bound for the minimum distance of an /th power
residue code, which is an improvement on the bound in [5] (for fixed / and as
p — o).

Theorem 3.3. If primes p,l are primes with (p — 1)/ and [relatively prime, then
the minimum distance of an lth-power residue code of length p satisfies

dmin(?li) = 1 —¢(lp_—11)'

3.4 Polynomials constant on orbits

Here we characterize the structure of polynomials f constant on the orbits of size
B, by which we mean f(u) = f(v) if u, v are in the same orbit. Algorithms that

4 The polynomial has coefficients in F 7 since / is in /th power residue, though we do not use this
fact.

Finding discrete logarithms with a set orbit distinguisher 17

evaluate such polynomials are type-2 distinguishers. The characterization results
in a lower bound on the number of nonzero coefficients in such polynomials.

Lemma 3.4. Assume G is a multiplicative subgroup of prime order p of the finite
field Fy, and that p—1 = AB for integers A, B = 2 with gcd(A, B) = 1, and that
integers o, B satisfy 1 < a, 8 < p and ordp(e) = A and ord,(B) = B. Further
suppose | € Fy[x] is constant on the orbits of x — xB on G. Then f(xB)— f(x)
is divisible by (x? — 1).

Proof. Letr € G. Since f is constant on the orbits of x — x#, we have f(r#) =
f(r). Hence (x —r) is a factor of f(x#)— f(x)in F4[x]. Since this is true for an
arbitrary r in G, we have [[,cg(x —r) = (x? — 1) divides f&P)— f(x). o

The following theorem describes the structure of polynomials that are constant
on the orbits.

Theorem 3.5. Let F be a field, let p be a prime such that p — 1 = AB for
integers A, B = 2, let f € F[x] have deg(f) < p, and let integers «, B satisfy
1 <a,B < pandordy(a) = A,ordy(B) = B. Then f(xP) — f(x) is divisible
by (x? — 1) if and only if there exist C,c; € F such that

A—1 —
f@)=C+ ca Z xB"et
a=0 =

Proof. The “if” direction is trivial, so let us assume f(x#) — f(x) is d1v151ble by
(x? — 1). Further assume f(x) = lp o Cix', and so f(xPy = Zp o Ci xiP
Since f(x#) — f(x) is divisible by (x? — 1), by Lemma 3.1 we know that the

polynomial
p—1 p—1
Z cix(lﬁ mod p) _ Z cix’
i=0 i=0

must be the zero polynomial. Since i and jB are in different residue classes
modulo p if 0 < i < j < p, we see that for each integer n € [0, p — 1] we have
cpx — ¢y = 0, where the integer n* € [0, p — 1] satisfies fn* = n mod p, that
is n* = (nB~! mod p). In other words, Cpg—1 = Cn, Where we understand that
subscripts are taken modulo p. Similarly ¢,g—2 = ¢,g-1, 80 ¢,g—2 = ¢y, and
so on. Hence any two coefficients ¢, and ¢, will be equal if ¥ and v are in the
same orbit of F,, under the action of multiplication by B~!. But since 1 < 8 < p,
multiplication by B is a bijection on [, and so the orbits of multiplication by
B! are the same as the orbits of multiplication by 8. This gives the form of the
polynomial in the theorem statement. |

18 R.P. Gallant

This last result shows that a non-constant polynomial that is constant on the
orbits (of x — xP) must have at least B nonzero coefficients. Thus, the algorithm
D of Section 2.2, if constructed by evaluating such a polynomial using Horner’s
rule (or other ‘one-coefficient-at-a-time’ based approaches), would require at least
B operations, and so the complexity of Algorithm 2 from that section would be at
least ®(+/AB) which is not an improvement on a square root algorithm.

A Parallelized approach

Algorithm 1 from Section 2.1 used a variant of Shanks’ Baby-Step-Giant-Step
algorithm [15], which, though simple to describe, requires much storage and is not
linearly parallelizable. We outline how Algorithm 1 could be implemented using
2m parallel processors and a central processor, using the ideas of [19], which
addresses these deficiencies. Algorithm 2 in Section 2.2 can also be so modified.

Given a generator G of G, an element W € G, where G has order p = AB+1,
and W = GY for some w € [0, p — 1].

Let o, B be elements of F; with ordy(«), the multiplicative order of « in [Fp,
equal to A, and ordp(B) = B, and ged(4, B) = 1, so that o, B generate ;. Then
w = ™1 B%2(mod p) for some integers wy, wp. We find wq, wy, and hence w.

Steps 1, 2, and 3 are as before. Steps 4 and 5 are replaced by the following.

4) Set G/ = G*, W' = W*'. Since D(G') = D(W') = 1, both G’ and W’
are in the orbit distinguished by D.

a. On processors 1, ..., m, start the processor by picking a random integer
r €{0,..., B — 1} and forming the tuple (G2, r, G').

b. On processors m + 1,...,2m, start the processor by picking a random
integer r € {0, ..., B — 1} and forming the tuple (W’8", r, W').

c. On all processors, perform the following walk: Given tuple (P, k, %),
compute a pseudo-random number r determined (only) from a canonical
representation of the element P, and replace tuple (P, k, *) by the tuple
(PB", (r + k) mod B, %).

d. If the new element PA" is distinguished (for example, it contains a spe-
cific bit pattern in its canonical representation), then send this tuple to
the central processor, and restart this processor as above.

e. After approximately VB walk “steps” in total, we expect the central pro-
cessor will receive different tuples containing the same first coordinate.
When this happens, with probability 1/2 one tuple was sent from the
first half of the processors, and the other tuple was sent from the other

Finding discrete logarithms with a set orbit distinguisher 19

half. So we have tuples (M, m, G’) and (M, n, W') with G'B" = w'B",
which gives G*'F" = wa"B"

(5) As G;‘uﬁ " = we"B" we have that the discrete logarithm of W to the base G
. quBpm
is Jugi mod p.

Acknowledgments. The author would like to thank the reviewers of the various
versions of this paper, in particular Alfred Menezes, Steven Galbraith, and Edlyn
Teske.

Bibliography

[1] A. Boldyreva, Efficient threshold signature, multisignature and blind signature
schemes based on the gap-Diffie-Hellman-group signature scheme, in: Proceedings
of PKC 2003, Lecture Notes in Comput. Sci. 2567, Springer (2003), 31-46.

[2] D. Boneh and X. Boyen, Short signatures without random oracles and the SDH as-
sumption in bilinear groups, J. Cryptology 21 (2008), 149-177.

[3] D. Boneh and R. Lipton, Searching for elements in black box fields and applica-
tions, in: Advances in Cryptology — Crypto ’96, Lecture Notes in Comput. Sci. 1109,
Springer (1996), 283-297.

[4] D. R. L. Brown and R. P. Gallant, The static Diffie-Hellman problem, preprint
(2004), http://eprint.iacr.org/2004/306.

[5] P. Charters, Generalizing binary quadratic residue codes to higher power residues
over larger fields, Finite Fields Appl. 15 (2009), 404—413.

[6] J. H. Cheon, Security analysis of the strong Diffie—Hellman problem, Advances in
Cryptology — Eurocrypt 2006, Lecture Notes in Comput. Sci. 4004, Springer (2006),
1-11.

[7] B. den Boer, Diffie-Hellman is as strong as discrete log for certain primes, in: Ad-
vances in Cryptology — Crypto ’88 (Santa Barbara 1988), Lecture Notes in Comput.
Sci. 403, Springer (1990), 530-539.

[8] E. Kiltz and A. Winterhof, Polynomial interpolation of cryptographic functions re-
lated to Diffie-Hellman and discrete logarithm problem, Discrete Appl. Math. 154
(2006), 326-336.

[9] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
North-Holland Math. Library 16, North-Holland, 1977.

[10] U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol
and computing discrete logarithms, in: Advances in Cryptology — Crypto *94 (Santa
Barbara 1994), Lecture Notes in Comput. Sci. 839, Springer (1994), 271-281.

http://eprint.iacr.org/2004/306

20

R.P. Gallant

(1]

[12]

[13]

[14]

[17]
(18]

[19]

U. M. Maurer and S. Wolf, The Diffie-Hellman protocol, Des. Codes Cryptography
19 (2000), 147-171.

W. Meidl and A. Winterhof, A polynomial representation of the Diffie—-Hellman
mapping, Appl. Algebra Eng. Commun. Comput. 13 (2002), 313-318.

A. J. Menezes and N. Koblitz, Another look at non-standard discrete-log and Diffie—
Hellman problems, J. Math. Cryptol. 2 (2008), 311-326.

A.J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1997.

D. Shanks, Class number, a theory of factorization and genera, Proc. Symp. Pure
Math. 20 (1971), 415-440.

V. Shoup, Lower bounds for discrete logarithms and related problems, in: Advances
in Cryptology — Eurocrypt 1997, Lecture Notes in Comput. Sci. 1233, Springer
(1997), 256-266.

D. R. Stinson, Cryptography: Theory and Practice, CRC Press, 1995.

F. Vercauteren, The hidden root problem, in: Pairing, Lecture Notes in Comput. Sci.
5209, Springer (2008), 89-99.

M. J. Wiener and P. C. van Oorschot, Parallel collision search with cryptanalytic
applications, J. Cryptology 12 (1999), 1-28.

Received June 8, 2010; revised February 8, 2012; accepted February 9, 2012.

Author information

Robert P. Gallant, Memorial University (Grenfell Campus), Canada.
E-mail: rpgallant@grenfell .mun.ca

mailto:rpgallant@grenfell.mun.ca

