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Abstract. Since their introduction, the notions of indistinguishability and non-malleability
have been changed and extended by different authors to support different goals. In this
paper, we propose new flavors of these notions, investigate their relative strengths with
respect to previous notions, and provide the full picture of relationships (i.e., implications
and separations) among the security notions for public-key encryption schemes. We take
into account the two general security goals of indistinguishability and non-malleability,
each in the message space, key space, and hybrid message-key space to find six specific
goals, a couple of them, namely complete indistinguishability and key non-malleability, are
new. Then for each pair of goals, coming from the indistinguishability or non-malleability
classes, we prove either an implication or a separation, completing the full picture of
relationships among all these security notions. The implications and separations are re-
spectively supported by formal proofs (i.e., reductions) in the concrete-security framework
and by counterexamples.
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1 Introduction

Public-key cryptography emerged in 1976 when Diffie and Hellman showed how
two parties can agree on a common secret key via a publicly accessible commu-
nication channel [5]. This idea was also proposed by Ellis at the Government
Communications Headquarters (GCHQ), under the name ‘non-secret encryption’
[8]. Shortly after that, in 1977, Rivest, Shamir and Adleman invented the most im-
portant public key cryptosystems, namely RSA (essentially, the same scheme was
also invented by Cocks at GCHQ in 1973 [4]). Public-key encryption is evaluated
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by security goals that it achieves. The basic goal introduced by Bellare et al. in [2]
is confidentiality. It requires that an adversary does not learn any useful informa-
tion about the plaintext from ciphertext. A different goal formulated by Dolev in
[6] is non-malleability. It is defined as inability of the adversary to convert a given
ciphertext into another one in such a way that the plaintexts for the two cipher-
texts are related in some way. Bellare et al. introduced the so-called key privacy
or anonymity and the notion of key indistinguishability in [1]. Fischlin generalized
the standard notion of non-malleability to complete non-malleability [9] in order
to prove security for some higher-level protocols.

In this paper, we propose two new notions of security for public-key encryp-
tion, which we call complete indistinguishability (IND*) and key non-malleability
(KNM). The former, complete indistinguishability, asserts that the encryption pro-
vides both data and key privacy. In other words, given two public keys pk0 and
pk1, two messages x0 and x1, and the ciphertext y D Epkb

.xc/, for b; c 2 ¹0; 1º,
no polynomial-time adversary should be able to find which public key and which
message have been used to obtain y. The latter, i.e., key non-malleability, states
that a ciphertext must not allow an adversary to generate another ciphertext for the
same message and a related key. More precisely, given a public key pk and a ci-
phertext y D Epk.x/, no polynomial-time adversary should be able to find another
ciphertext y� D Epk�.x/ for the same message x encrypted under a different, yet
related, public key pk�.

In addition to definitional contributions (i.e., complete indistinguishability and
key non-malleability), we will compare relative strengths of indistinguishability
and non-malleability notions, and derive appropriate implications or separations.

1.1 Motivation

Key non-malleability. To begin with, consider someone wants to send a secret
message x to user B . So he encrypts the message x using the public key of B to
obtain the ciphertext y D Epk.x/, and sends y to B over an insecure channel. If
an eavesdropper A obtains y and transforms it (without decrypting it) to another
ciphertext y� D Epk�.x/ for which pk� and pk are related according to a binary
relation Rk.�; �/, then the owner of the secret key sk� can decrypt y� and obtain
the secret message x.

Following the point mentioned above, we note that public encryption is often
used as the building block for complex protocols whose security depends on prop-
erties of the encryption. Fischlin makes this argument in [9] when he considers
the possibility of constructing non-malleable commitments on top of NM*-CCA2
secure encryption. He argues that this can be done by assuming that the com-
mitting party selects a public key, encrypts the message and sends the encryption
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as commitment. The opening is performed by sending the randomness used for
encryption. Obviously a man-in-the-middle adversary could select a related pub-
lic key in order to compute a related encryption and thus a related commitment.
The KNM-CCA2 security guarantees the failure of the adversary. Putting all to-
gether, we can view KNM security as a stepping-stone toward NM* security and
a prerequisite for achieving NM* security.

Complete indistinguishability. The main motivation for introducing the com-
plete indistinguishability (IND*) notion is the usage of public-key encryption in
multi-user settings where both message and key indistinguishability are required.
Message indistinguishability is needed to provide message confidentiality while
key indistinguishability guarantees anonymity of the ciphertext receiver. The com-
plete indistinguishability, therefore, is a stronger notion as the adversary gets no
information about the message and the receiver (cryptographic key).

Relations between notions. The paper investigates the relations among differ-
ent indistinguishability and non-malleability notions. This is because in different
applications of encryption schemes one needs different primitives with different
security levels. So it is important to have a clear picture about which benefits can
be provided by each definition. Our results are represented in the form of a dia-
gram with implications and separations. The diagram can be easily used to derive
the relations for an instance of public-key encryption once the security strength of
the encryption is established.

1.2 Literature review

In the papers of Bellare et al. [2] and of Bellare and Sahai [3], relations between
security notions for public-key encryption have been extensively studied. These
papers continue the research initiated by Goldwasser and Micali [11] who defined
the notion of polynomial security also called indistinguishability or IND for short.
Later Naor and Yung [13] and Rackoff and Simon [14] considered stronger scenar-
ios of attacks. This led Dolev, Dwork and Naor [6,7] to propose a stronger security
notion that is the non-malleability. Bellare et al. in [1] extended the indistinguisha-
bility notion to cover key privacy or ciphertext anonymity. This notion is called key
indistinguishability and requires from a ciphertext y D Epk.x/ not to disclose any
information about the public key pk. Later Zhang et al. examined the relation
between the standard notion of indistinguishability and key privacy [19]. They
proved informally that message indistinguishability (IND) and key indistinguisha-
bility (KI) are orthogonal notions, and none of them implies the other. Fischlin [9]
introduced the notion of complete non-malleability (NM*). The notion requires
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the adversary to get no help from a ciphertext y D Epk.x/ when trying to generate
another ciphertext y� D Epk�.x

�/ for a message x� under a public key pk� (at
least one of y� and pk� should be different from their original counterparts x and
pk). Ventre and Visconti continued this line of research and examined the relation
between complete non-malleability and standard non-malleability. They showed
informally that standard NM does not imply NM* [18].

1.3 Contributions of the paper

New security notions. We present a unified and complete picture of indistin-
guishability and non-malleability notions for public-key encryption. In particular,
we introduce the following two new security notions:

(1) Complete indistinguishability (IND*) – this notion states that a ciphertext
y D Epk.x/ should not give any information about the corresponding plaintext
x or the public key pk. This is a stronger notion compared to message indis-
tinguishability (IND) and key indistinguishability (KI) notions as the adver-
sary gets no information about the message and/or the receiver (cryptographic
key). Note that there are other ways that the definition could be strengthened,
for example, by increasing the power of the decryption oracle using a def-
inition similar to the strong decryption oracle used in certain certificateless
encryption definitions.

(2) Key non-malleability (KNM) – this notion requires that a ciphertext y D
Epk.x/ should not help the adversary to generate a new ciphertext y� D
Epk�.x/ for the same plaintext but under a new, yet related, public key pk�.

Relations between notions. We study the two security notions (indistinguisha-
bility and non-malleability) in the two dimensions, namely, message and key
spaces. Thus we are considering the six following security notions:

(1) message indistinguishability (IND),

(2) key indistinguishability (KI),

(3) complete indistinguishability (IND*),

(4) message non-malleability (NM),

(5) key non-malleability (KNM), and

(6) complete non-malleability (NM*).

Among these six notions, IND* and KNM are new (see Table 1). In this pa-
per we work out the relations between every pair of notions. So for every pair
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Notion Reference Notion Reference

IND Bellare et al. [2] NM Dolev et al. [6]
KI Bellare et al. [1] KNM This paper
IND* This paper NM* Fischlin [9]

Table 1. Notions of security for public-key encryption
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Figure 1. Relations between notions of security. An arrow shows an implication,
and a negated arrow represents a separation. Dashed arrows indicate trivial relations
while solid arrows represent nontrivial relations. The number above or below any
arrow indicate the theorem number which proves the relation.

of notions N1; N2 2 ¹IND-ATK, KI-ATK, IND*-ATK, NM-ATK, KNM-ATK,
NM*-ATKº, where ATK 2 ¹CPA, CCA1, CCA2º, we show one of the following:

� N1 ) N2: a proof that shows if a public-key encryption PE meets the
security notion N1 then it also meets the security notion N2 (implication).

� N1 » N2: a construction for a public-key encryption PE that meets the
security notion N1 but does not meet the security notion N2 (separation).

The results are illustrated in Figure 1. We have used arrows to represent im-
plications, and negated arrows to represent separations. The label associated with
each arrow indicates the theorem number related to that implication or separation.
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The rest of the paper is structured as follows. Section 2 introduces the neces-
sary definitions of the security notions for public-key encryption. Section 3 is the
main part of the paper and examines relations, i.e., implications and separations,
between different security notions. Section 4 discusses future works and open
problems.

2 Definitions of security

The notations and conventions used here are the standard ones for writing proba-
bilistic algorithms and experiments. If A is a probabilistic algorithm, then
A.x0; x1; : : : I r/ is the result of running algorithm A on inputs x0; x1; : : : and
coins r . We use y  A.x0; x1; : : : / to denote the experiment of picking r uni-
formly at random and letting y be the output of A.x0; x1; : : : I r/. For a finite set
S , we use x  S to denote the operation of picking an element uniformly at ran-
dom from S . For an ˛ neither an algorithm nor a set, x  ˛ is used to denote a
simple value assignment statement. We say that y can be output by A.x0; x1; : : : /

if there is some random r such that A.x0; x1; : : : I r/ D y. Also we use jxj to
denote the bit-length of string (or message) x, and x to denote the bit complement
of x. Finally, we use xky to denote concatenation of x and y.

Definition 2.1 (Public-key encryption). A public-key encryption scheme, noted as
PE , is a triplet .KIEID/ with the following polynomial-time algorithms:

� K is a probabilistic key generation algorithm which, given a security param-
eter k (usually viewed as a unary input 1k) produces , from its random source
!, a pair .pkI sk/ of public and secret keys.

� E is a probabilistic encryption algorithm which, given a public key pk gener-
ated by K and a message x, produces y, called the encryption of x under pk.

� D is a deterministic decryption algorithm which given a secret key sk and
a ciphertext y, produces either a message x or a special symbol ? to state
that y is an invalid ciphertext. It is required that for every message x and
for every pair .pkI sk/ output by K , Dsk.Epk.x// D x. It is possible that
Dsk0.Epk.x// D x

0 for some x0 ¤ ?; this means that using a wrong key may
result in a valid message.

Recall that a real-valued function " W N ! R is negligible if for every constant
c � 0 there exists an integer kc such that j".k/j � k�c for all k > kc .
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Note. We are assuming that the message and/or public key spaces are closed un-
der bitwise complement. This is just to simplify the proofs though our proofs work
for any closed (in the message space or the public key space, respectively), effi-
ciently computable, and length-preserving unary operator put in place of bitwise
complement. This operator does not have to be secret, hence can be a publicly
defined function. Regarding Lemmas 3.18 and 3.27 which we have used bitwise
complement as an involution (i.e., x D x), the only modification needed is replac-
ing the bitwise complement operator in A2 (i.e., m1) with the inverse of the unary
operator used in A1. Therefore, the operator should be reversible as well. This
means that some of our results are not completely general.

Regarding the existence of public-key encryption schemes with public key
space closed under some unary operator, we argue that some important systems
satisfy this condition, e.g. in the “dual” version of Regev’s lattice-based system
[15], the public key is of the form u D e � A for a small vector e, where u 2 Zn

q ,
e 2 Zm

q withm sufficiently larger than n� log q. In this case, every vector u0 2 Zn
q

is a valid key since it has a corresponding secret key e0 with u0 D e0 �A (with very
high probability over a random matrix A). In regard to the existence of public-key
encryption schemes with message space closed under some unary operator, we in-
sist that an encryption scheme with a k-bit message space ¹0; 1ºk would be closed
under any length-preserving function f ; for a concrete example with 1-bit mes-
sages (extendable to k-bit messages), see the completely non-malleable scheme
proposed by Sepahi et al. [16].

2.1 Definitions of indistinguishability

Message indistinguishability (IND). Message indistinguishability, or briefly
indistinguishability, is the first and most important notion for public-key encryp-
tion. This notion defines the data privacy of public-key encryption and formalizes
an adversary’s inability to learn any information about the plaintext x from a chal-
lenge ciphertext y. In other words, given a public key pk, two messages x0 and
x1, and a ciphertext y D Epk.xb/, for b 2 ¹0; 1º, no polynomial-time adversary is
able to find which message has been used to obtain the challenge ciphertext y.

Consider a two-step adversary A D .A1;A2/ whose goal is to attack indistin-
guishability of public-key encryption. (1) Algorithm A1 takes in the public key
pk, and returns two plaintext messages x0 and x1, plus a string SA encoding state
information to be handed to A2. (2) A message xb , for b 2 ¹0; 1º, is chosen uni-
formly at random from the set ¹x0; x1º and encrypted into a challenge ciphertext y.
(3) Algorithm A2 is given the input .y; SA/ and has to guess the index b of the
plaintext being encrypted. The advantage of A is measured by the probability that
it outputs the correct index bit of the challenge. The scheme is indistinguishable if
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no adversary obtains an advantage significantly greater than one would obtain by
flipping a coin. The formal definition of this notion is as follows [2]:

Definition 2.2 (Indistinguishability (IND)). Let PE D .K;E;D/ be a public-key
encryption and let A D .A1;A2/ be an adversary. For ATK 2 ¹CPA, CCA1,
CCA2º, k 2 N, and b a random value in ¹0; 1º, let,

AdvIND-ATK
PE;A .k/ D

ˇ̌̌
2 � Pr

�
ExptIND-ATK-b

PE;A .k/ D b
�
� 1

ˇ̌̌
where, for b 2 ¹0; 1º,

Experiment ExptIND-ATK-b
PE;A .k/

.pk; sk/ K.k/I .x0; x1; SA/ A
O1

1 .pk/I

y  Epk.xb/I

b�  A
O2

2 .y; SA/I return .b�/I

and the oracles O1;O2 are defined as follows:

� if ATKD CPA, then O1 D " and O2 D ";

� if ATKD CCA1, then O1 D Dsk.�/ and O2 D ";

� if ATKD CCA2, then O1 D Dsk.�/ and O2 D Dsk.�/.

We say that PE is secure in the sense of IND-ATK if a polynomial-time A

implies that AdvIND-ATK
PE;A .�/ is negligible. We assume that jx0j D jx1j. In the

case of CCA2, we further assume that A2 does not ask its oracle to decrypt the
challenge ciphertext y.

Key indistinguishability (KI). Message indistinguishability (IND), as defined
before, is about the message privacy of encryption, and does not guarantee that
some information about the underlying key is leaking. Another important secu-
rity notion for public-key encryption is key indistinguishability (KI). It is espe-
cially crucial for multi-user protocols, where privacy of ciphertexts (anonymity)
is required. Key privacy formalizes the inability of an adversary to learn any in-
formation about the underlying key from the observed ciphertext(s). Being more
specific, given two public keys pk0 and pk1, and the ciphertext y D Epkb

.x/ for
b 2 ¹0; 1º, no polynomial-time adversary should be able to find which public key
has been used to generate y.

Consider a two-step adversary A D .A1;A2/ who is attacking key indistin-
guishability of public-key encryption. (1) Algorithm A1 is run on input the two
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public keys pk0; pk1 and outputs a plaintext message x and the state information
SA, to be handed to A2. (2) A key pkb , for b 2 ¹0; 1º, is chosen uniformly at ran-
dom from the set ¹pk0; pk1º and used to encrypt the message x into the challenge
ciphertext y. (3) Algorithm A2 is given the input .y; SA/, and has to guess the
index bit b of the public key used for encryption. The advantage of A is measured
by the probability that it outputs the correct index bit of the challenge. The scheme
is key indistinguishable if no adversary obtains an advantage that is significantly
greater than random coin flipping. The formal definition of key indistinguishability
(KI) is as follows [1]:

Definition 2.3 (Key indistinguishability (KI)). Let PE D .K;E;D/ be a public-
key encryption and let A D .A1;A2/ be an adversary. For ATK 2 ¹CPA, CCA1,
CCA2º, k 2 N, and b a random value in ¹0; 1º, let

AdvKI-ATK
PE;A .k/ D

ˇ̌̌
2 � Pr

�
ExptKI-ATK-b

PE;A .k/ D b
�
� 1

ˇ̌̌
where, for b 2 ¹0; 1º,

Experiment ExptKI-ATK-b
PE;A .k/

.pk0; sk0/ K.k/I .pk1; sk1/ K.k/I

.x; SA/ A
O1

1 .pk0; pk1/I y D Epkb
.x/I

b�  A
O2

2 .y; SA/I return .b�/I

and the oracles O1;O2 are defined as follows:

� if ATKD CPA, then O1 D " and O2 D ";

� if ATKD CCA1, then O1 D .Dsk0
.�/;Dsk1

.�// and O2 D ";

� if ATKD CCA2, then O1 D .Dsk0
.�/;Dsk1

.�// and O2 D .Dsk0
.�/;Dsk1

.�//.

The scheme PE is said to be KI-ATK secure if the function AdvKI-ATK
PE;A .�/ is

negligible for any adversary A whose time complexity is polynomial in k. In the
case of CCA2, we assume that A2 does not ask its oracle to decrypt the challenge
ciphertext y.

Complete indistinguishability (IND*). Although message indistinguishability
and key indistinguishability reflect two main facets (i.e., data privacy and key pri-
vacy) of encryption, for some application we need a stronger notion that cov-
ers simultaneously both message and key privacy. Complete indistinguishability
(IND*) is a notion that combines both requirements. Informally, it requires that
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given two public keys pk0 and pk1, two messages x0 and x1, and the ciphertext
y D Epkb

.xc/, for b; c 2 ¹0; 1º, there is no polynomial-time adversary who is able
to find the public key (i.e., the value of index b) or the message (i.e., the value of
index c) that have been used to generate the challenge ciphertext y.

Consider a two-step adversary A D .A1;A2/ who is attacking complete indis-
tinguishability of public-key encryption. (1) Algorithm A1 is run on input of the
public keys pk0; pk1 and outputs two plaintexts messages x0 and x1 plus a string
SA encoding information to be handed to A2. (2) A key pkb , b 2 ¹0; 1º, from
the set ¹pk0; pk1º and a message xc , c 2 ¹0; 1º, from the set ¹x0; x1º is chosen
uniformly at random, and the message xc encrypted using the public key pkb into
a challenge ciphertext y. (3) Algorithm A2 is given the input .y; SA/ and has to
guess which public key or which plaintext is used to obtain the challenge cipher-
text. The advantage of A is measured by the probability that it outputs at least one
correct index bit b or c of the challenge. The scheme is completely indistinguish-
able if no adversary obtains an advantage significantly greater than random flips
of two coins. Formally, we can write it as follows:

Definition 2.4 (Complete indistinguishability (IND*)). Let PE D .K;E;D/ be a
public-key encryption and let A D .A1;A2/ be an adversary. For ATK 2 ¹CPA,
CCA1, CCA2º, k 2 N, and b; c two random values in ¹0; 1º, let,

AdvIND*-ATK
PE;A .k/ D

ˇ̌̌
4 � Pr

�
ExptIND*-ATK-.b;c/

PE;A
.k/ ' .b; c/

�
� 3

ˇ̌̌
(2.1)

where, for b; c 2 ¹0; 1º,

Experiment ExptIND*-ATK-.b;c/
PE;A

.k/

.pk0; sk0/ K.k/I .pk1; sk1/ K.k/I .x0; x1; SA/ A
O1

1 .pk0; pk1/I

y D Epkb
.xc/I .b

�; c�/ A
O2

2 .y; SA/I return .b�; c�/I

in which .b�; c�/ ' .b; c/ whenever .b� D b/_ .c� D c/, and the oracles O1;O2

are defined exactly as in Definition 2.3.
The scheme PE is said to be IND*-ATK secure if the function AdvIND*-ATK

PE;A .�/

is negligible for any adversary A whose time complexity is polynomial in k. We
assume that jx0j D jx1j. In the case of CCA2, we further assume that A2 does not
ask its oracle to decrypt the challenge ciphertext y.

Note that equation (2.1) can be viewed as the (rescaled) excess of the probability
of correct guess by the adversary, i.e., PrŒExptIND*-ATK-.b;c/

PE;A
.k/ ' .b; c/�, over the

probability of random guess, i.e., 3=4.
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Note 1. The notion of complete indistinguishability presented here is different
from the notion of recipient anonymity (RA) introduced by Gentry [10] for iden-
tity-based encryption. Firstly, we claim that our notion is more intuitive. Recall
that ‘a chain is only as strong as its weakest link’. In the context of public-key
encryption, this means that such a scheme is insecure if an adversary can break
its privacy, i.e., finding c, or its anonymity, i.e., finding b, or both of them. This
is exactly our notion of IND*. On the other hand, the notion of RA proposed by
Gentry says that a scheme is insecure if an adversary can break both its privacy and
its anonymity at the same time. Obviously, this is far from the intuition mentioned
above.

Note 2. Our notion of complete indistinguishability is different from a notion with
the same name introduced by van Liesdonk [17] as well. The latter notion consid-
ers only one index b for both the plaintext and the public key. So, the adversary
should distinguish between two pairs .x0; pk0/ and .x1; pk1/ in a game similar to
ours. Again our notion is more realistic since it considers privacy and anonymity
like two separate features, as they are (see Theorems 3.1 and 3.4).

2.2 Definitions of non-malleability

Non-malleability (NM). The indistinguishability is the main security notion for
public-key encryption. However, in some applications this is not enough. This
observation was made by Dolev et al. [6] who studied bidding protocols. To prove
the security of protocols, they had to assume that the encryption used was non-
malleable (NM). The encryption is non-malleable if knowing a challenge cipher-
text y, the adversary cannot produce another valid ciphertext y� such that the
underlying plaintexts x; x� are “meaningfully related” (for example, x� D xC1).
In other words, given a public key pk and a ciphertext y D Epk.x/, there is no
polynomial-time adversary to find another ciphertext y� D Epk.x

�/ of a related
message x� encrypted under the same public key pk.

Consider an adversary A D .A1;A2/ who attacks non-malleability of public-
key encryption. (1) The Turing machine A1 is run with input of a public key
pk and outputs the description of a probabilistic polynomial-time Turing machine
M as the message sampler, and a state string SA for further computation. (2) A
message x is randomly chosen by running message samplerM , and its encryption
y under pk is given to A2. (3) The goal of A2 is to output a binary relationRx.�; �/

and a ciphertext y� ¤ y whose decryption x� is related to x according to Rx.�; �/,
i.e., Rx.x

�; x/ D true. The scheme is non-malleable if for any adversary, the
probability that R.x�; x/ holds is not significantly better than the probability that
R.x�; Qx/ holds for a random hidden Qx 2M .
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The formal definition, due to Dolev et al. [6], is as follows:

Definition 2.5 (Non-malleability (NM)). Let PE D .K;E;D/ be a public-key
encryption and let A D .A1;A2/ be an adversary. For ATK 2 ¹CPA, CCA1,
CCA2º and k 2 N let,

AdvNM-ATK
PE;A .k/ D

ˇ̌̌
Pr
�
ExptNM-ATK-1

PE;A .k/ D 1
�
� Pr

�
ExptNM-ATK-0

PE;A .k/ D 1
�ˇ̌̌

where, for b 2 ¹0; 1º,

Experiment ExptNM-ATK-b
PE;A .k/ (2.2)

.pk; sk/ K.k/I .M; SA/ A
O1

1 .pk/I

x0; x1  M I y  Epk.x1/I

.y�; Rx/ A
O2

2 .y; SA/I x
�
 Dsk.y

�/I

if .x� ¤ ?/ ^ .y� ¤ y/ ^ .Rx.x
�; xb/ D true/ then

d  1I

else

d  0I

return .d/I

and the oracles O1;O2 are defined as follows:

� if ATKD CPA, then O1 D " and O2 D ";
� if ATKD CCA1, then O1 D Dsk.�/ and O2 D ";
� if ATKD CCA2, then O1 D Dsk.�/ and O2 D Dsk.�/.

In Experiment (2.2), Rx.�; �/ is a probabilistic polynomial-time Turing machine
taking two inputs, say a; b, and producing as output either 0 (if the inputs a and b
are not related as required byRx), or 1 (if the inputs a and b are related as required
by Rx).

It is said that PE is secure in the sense of NM-ATK if any adversary A whose
running time is given by a polynomial p.k/ outputs a description of a message
space M described by a sampling algorithm M , and a relation Rx.�; �/ with a
negligible advantage AdvNM-ATK

PE;A .�/. We assume that M is valid, i.e., jxj D jx0j
for any x and x0 that are given non-zero probability in the message space M . In
the case of CCA2, we further assume that A2 does not ask its oracle to decrypt the
challenge ciphertext y. We insist that the running time of the attacker A includes
the time taken to runM andRx , and that the combined run time is always bounded
by a polynomial in the security parameter.
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Key non-malleability (KNM). As in the case of indistinguishability, we can ex-
tend the notion of non-malleability to cover key non-malleability. In other words,
given a public key pk and a ciphertext y D Epk.x/, there is no polynomial-time ad-
versary who is able to find another y� D Epk�.x/ of the same message x encrypted
under a related public key pk�.

Consider a two-step adversary A D .A1;A2/who attacks key non-malleability
of public-key encryption. (1) The Turing machine A1 is run with input of a pub-
lic key pk and outputs the description of a probabilistic polynomial-time Turing
machine M as the message sampler, and a state string SA for further computation
handed to A2. (2) A message x is randomly chosen by running the message sam-
pler M , and its encryption y is given to A2. (3) The goal of A2 is to output a bi-
nary relation Rk.�; �/, a public key pk�, and a new ciphertext y� D Epk�.x/ whose
decryption using the associated secret key sk� is exactly x, but pk� is related to
the original public key pk according to Rk.�; �/. The scheme is key non-malleable
if for any adversary the probability that y� D Epk�.x/ ^ Rk.pk�; pk/ holds is not
significantly better than the probability that y� D Epk�. Qx/^Rk.pk�; pk/ holds for
a random hidden Qx 2M . The formal definition is as follows:

Definition 2.6 (Key non-malleability (KNM)). Let PE D .K;E;D/ be a public-
key encryption and let A D .A1;A2/ be an adversary. For ATK 2 ¹CPA, CCA1,
CCA2º and k 2 N, let

AdvKNM-ATK
PE;A .k/ D

ˇ̌̌
Pr
�
ExptKNM-ATK-1

PE;A .k/ D 1
�
� Pr

�
ExptKNM-ATK-0

PE;A;$ .k/ D 1
�ˇ̌̌

where, for b 2 ¹0; 1º,

Experiment ExptKNM-ATK-b
PE;A .k/

.pk; sk/ K.k/I .M; SA/ A
O1

1 .pk/I

x0; x1  M I y D Epk.x1/I

.y�; pk�; Rk/ A
O2

2 .y; SA/I

if .y� D Epk�.xb// ^ .pk� ¤ pk/ ^ .Rk.pk�; pk/ D true/ then

d  1I

else

d  0I

return .d/I

in which the oracles O1;O2 are defined exactly as in Definition 2.2, and Rk.�; �/ is
a probabilistic polynomial-time Turing machine taking two inputs, and producing
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as output either 0 or 1. Also, the equality check y� D Epk�.xb/ in the “if” clause
means that there should exist random coins such that Epk�.xb/ outputs y�.

It is said that PE is secure in the sense of KNM-ATK if any polynomial-time
adversary A outputs description of a message space described by a sampling algo-
rithm M , and a relation Rk.�; �/ with a negligible advantage AdvKNM-ATK

PE;A .�/. We
assume that M is valid, i.e., jxj D jx0j for any x and x0 that are given non-zero
probability in the message space M . In the case of CCA2, we further assume
that A2 does not ask its oracle to decrypt the challenge ciphertext y. We insist
that the running time of the attacker A includes the time taken to run M and Rk ,
and that the combined run time is always bounded by a polynomial in the security
parameter.

Complete non-malleability (NM*). Fischlin [9] defined the notion of complete
non-malleability (NM*) in order to evaluate security of commitments protocols. In
his proof, he required encryption to be non-malleable for both the message and key
spaces. After that, Ventre and Visconti [18] re-defined this notion using the game-
based scenario. Based on [18], the complete non-malleability is defined as follows.
Given a public key pk and a ciphertext y D Epk.x/, there is no polynomial-time
adversary who is able to find another ciphertext y� D Epk�.x

�/ of a related mes-
sage x� encrypted under a related public key pk� (note that at least one of y� or
pk� should be different from their original counterparts y and pk).

Consider a two-step adversary A D .A1;A2/ who attacks complete non-
malleability of public-key encryption. (1) The Turing machine A1 is run with
input of a public key pk and outputs the description of a probabilistic polynomial-
time Turing machine M to run it at next step as message sampler, and a state
string SA for further computation to be handed to A2. (2) A message x is ran-
domly chosen by running the message sampler M and its encryption y under
pk is given to A2. (3) The goal of A2 is to output description of a relation
R.�; �; �; �; �/, a public key pk�, and a ciphertext y� D Epk�.x

�/ for which the re-
lation R.x�; x; y�; pk�; pk/ is satisfied. The scheme is completely non-malleable
if for any adversary the probability that y� D Epk�.x

�/ ^ .y� ¤ y _ pk� ¤
pk/ ^ R.x�; x; y�; pk�; pk/ holds is not significantly better than the probability
that y� D Epk�.x

�/ ^ .y� ¤ y _ pk� ¤ pk/ ^ R.x�; Qx; y�; pk�; pk/ holds for a
random Qx 2 M . The formal game-based definition of this notion, due to Ventre
and Visconti [18], is as follows:

Definition 2.7 (Complete non-malleability (NM*)). Let PE D .K;E;D/ be a
public-key encryption. Let A D .A1;A2/ be an adversary. For ATK 2 ¹CPA;
CCA1;CCA2º and k 2 N let
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AdvNM*-ATK
PE;A .k/ D

ˇ̌̌
Pr
�
ExptNM*-ATK-1

PE;A .k/ D 1
�
� Pr

�
ExptNM*-ATK-0

PE;A .k/ D 1
�ˇ̌̌

where, for b 2 ¹0; 1º, the experiment ExptNM*-ATK-b
PE;A .k/ is defined as follows:

Experiment ExptNM*-ATK-b
PE;A .k/

.pk; sk/ K.k/I .M; SA/ A
O1

1 .pk/I

x0; x1  M I y D Epk.x1/I .y
�; pk�; R/ A

O2

2 .y; SA/I

if 9x�s:t: .y� D Epk�.x
�// ^ .y� ¤ y _ pk� ¤ pk/ ^

.x� ¤ ?/ ^R.x�; xb; y
�; pk�; pk/ D true then

d  1I

else
d  0I

return .d/I

in which the oracles O1;O2 are defined in the same manner as for Definition 2.2,
and R is a probabilistic polynomial-time Turing machine taking 5 inputs, and pro-
ducing as output either 0 or 1.

It is said that PE is secure in the sense of NM*-ATK if any polynomial-time
adversary A outputs a description of a message space, described by a sampling
algorithm M , and a relation R with a negligible advantage AdvNM*-ATK

PE;A .�/. We
assume that M is valid, i.e., jxj D jx0j for any x and x0 that are given non-zero
probability in the message space M . In the case of CCA2, we further assume that
A2 does not ask its oracle to decrypt the challenge ciphertext y. We insist that the
running time of the attacker A includes the time taken to runM andR, and that the
combined run time is always bounded by a polynomial in the security parameter.

3 Security model

In Section 2 we considered six notions of security for public-key encryption. In
this section we extensively study relative strengths of different notions. Result of
this section is the full picture of relationships (i.e., implications and separations)
among the security notions for public-key encryption schemes, shown in Figure 1.

3.1 Indistinguishability proofs

In this section we examine relative strengths of all indistinguishability notion. To
this end, for every two notions of indistinguishability we prove a theorem that
shows an implication or a separation.
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Zhang et al. [19] informally showed that standard message indistinguishability
and key indistinguishability are orthogonal notions and none of them implies the
other. Below we formally prove this result.

Theorem 3.1. IND-ATK » KI-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists some IND-ATK secure encryption PE D .K;E;D/,
since otherwise the theorem is meaningless. To prove the theorem, based on PE

we construct a new encryption scheme PE 0 D .K 0;E 0;D 0/, which is IND-ATK
secure but not secure in the sense of KI-ATK.

The new encryption scheme PE 0 D .K 0;E 0;D 0/ is defined as follows:

Algorithm K 0.k/ Algorithm E 0pk0.x/ Algorithm D 0sk0.ykpk0/

.pk; sk/ K.k/ y  Epk0.x/ parse sk0 as skkpk
pk0  pk return .ykpk0/ if pk0 D pk then
sk0  skkpk return .Dsk.y//

return .pk; sk/ else return .?/

In other words, a ciphertext in the new scheme PE 0 is a pair ykpk consisting of
the encryption of the message and the public key used for the encryption process.
The second component is ignored during decryption.

Lemma 3.2. PE 0 is not secure in the KI-ATK sense.

Proof. It is intuitively obvious that the scheme PE 0 is not secure in the sense of
KI-ATK since given any ciphertext y D y0kpk0 of PE 0, the adversary can detect
which key has been used to encrypt the corresponding plaintext.

Formally, consider the following KI-CPA adversary: On input .pk0; pk1/ the al-
gorithm A1 outputs .x; SA/ where x is a random plaintext and SA D .pk0; pk1/.
On input .ykpk; SA/ the algorithm A2 outputs b� D 0 if pk D pk0, and b� D 1

otherwise. For this adversary we always have y D E 0pkb�
.x/ and hence

AdvKI-CPA
PE 0;A

.k/ D 1. This shows that PE 0 is KI-CPA insecure and hence KI-ATK
insecure in general.

On the other hand, we prove that PE 0 retains the IND-ATK security of PE:

Lemma 3.3. PE 0 is secure in the sense of IND-ATK.
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Proof. We want to prove that if PE is IND-ATK secure, then PE 0 is IND-ATK
secure, as well. To this end, Let B D .B1;B2/ be a polynomial-time adversary
attacking PE 0 in the sense of IND-ATK. We construct an adversary A D .A1;A2/

that attacks the scheme PE in the IND-ATK sense, as follows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.x0; x1; SB/ B
O01
1 .pk/ b�  B

O02
2 .ykpk; SB/

SA WD .pk; SB/ return .b�/
return .x0; x1; SA/

where O01 and O02 are defined based on the decryption oracle D 0sk.�/ which itself is
defined based on the provided decryption oracle Dsk.�/ as follows: for any input
ykpk we have D 0sk.ykpk/ WD Dsk.y/.

Now note that A succeeds if B succeeds, hence

AdvIND-ATK
PE;A .k/ D

ˇ̌̌
2 � Pr

�
ExptIND-ATK-b

PE;A .k/ D b
�
� 1

ˇ̌̌
D

ˇ̌̌
2 � Pr

�
ExptIND-ATK-b

PE 0;B
.k/ D b

�
� 1

ˇ̌̌
D AdvIND-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.3.

Lemmas 3.2 and 3.3 together complete the proof of Theorem 3.1.

Theorem 3.4. KI-ATK » IND-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume that there exists some KI-ATK secure public-key encryption PE D

.K;E;D/, since otherwise the theorem is insignificantly true. We now construct
a new encryption scheme PE 0 D .K 0;E 0;D 0/ based on PE that is KI-ATK secure
but not secure in the sense of IND-ATK.

The new encryption scheme PE 0 D .K 0;E 0;D 0/ is constructed as follows:

Algorithm K 0.k/ Algorithm E 0pk.x/ Algorithm D 0sk.ykx/

.pk; sk/ K.k/ y  Epk.x/ return .Dsk.y//

return .pk; sk/ return .ykx/

In other words, a ciphertext in PE 0 is a pair ykx consisting of the encryption of
the message, and the message itself. The second component is ignored during
decryption.

Lemma 3.5. PE 0 is not secure in the IND-ATK sense.
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Proof. It is obvious that the scheme PE 0 is not secure in the sense of IND since
for two messages x0 D mk0 and x1 D mk1, the adversary can distinguish which
message has been used to obtain the ciphertext ykxb , for b 2 ¹0; 1º.

On the other hand, we prove that the new encryption scheme PE 0 retains the
KI-ATK security of PE:

Lemma 3.6. PE 0 is secure in the sense of KI-ATK.

Proof. We show that if PE 0 is insecure in the sense of KI-ATK, then PE is inse-
cure in the sense of KI-ATK. Let B D .B1;B2/ be a polynomial-time adversary
attacking PE 0 in the sense of KI-ATK. We construct an adversary A D .A1;A2/

that attacks the scheme PE in the KI-ATK sense, as follows:

Algorithm A
O1

1 .pk0; pk1/ Algorithm A
O2

2 .y; SA/

.x; SB/ B
O01
1 .pk0; pk1/ yB WD ykx

SA WD .x; SB/ b�  B
O02
2 .yB ; SB/

return .x; SA/ return .b�/

where O01 and O02 are defined based on the decryption oracles D 0ski
.�/ for i 2

¹0; 1º which in turn are defined based on the provided decryption oracles Dski
.�/

as follows: for any input ykx we have D 0ski
.ykx/ WD Dski

.y/.
Now note that A succeeds if B succeeds, hence

AdvKI-ATK
PE;A .k/ D

ˇ̌̌
2 � Pr

�
ExptKI-ATK-b

PE;A .k/ D b
�
� 1

ˇ̌̌
D

ˇ̌̌
2 � Pr

�
ExptKI-ATK-b

PE 0;B
.k/ D b

�
� 1

ˇ̌̌
D AdvKI-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.6.

Lemmas 3.5 and 3.6 together complete the proof of Theorem 3.4.

Theorem 3.7. IND*-ATK) IND-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. We prove the contrapositive; assume that PE is an IND-ATK insecure
encryption. So there is an adversary B D .B1;B2/ attacking PE such that
AdvIND-ATK

PE;B .�/ is non-negligible. We construct an IND*-ATK adversary A D

.A1;A2/ attacking PE such that AdvIND*-ATK
PE;A .�/ is non-negligible.
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Algorithm A
O1

1 .pk0; pk1/ Algorithm A
O2

2 .y; SA/

.x0; x1; SB/ B
O1

1 .pk0/ c�  B
O2

2 .y; SB/

SA WD SB b�  1

return .x0; x1; SA/ return .b�; c�/

Now we calculate the advantage of A:

AdvIND*-ATK
PE;A .k/ D

ˇ̌̌
4 � Pr

�
ExptIND*-ATK-.b;c/

PE;A
.k/ ' .b; c/

�
� 3

ˇ̌̌
D
ˇ̌
4 � PrŒ.b�; c�/ ' .b; c/� � 3

ˇ̌
D
ˇ̌
4 � PrŒb� D b _ c� D c� � 3

ˇ̌
D
ˇ̌
4 � PrŒb� D b�C 4 � PrŒc� D c ^ b� ¤ b� � 3

ˇ̌
D
ˇ̌
4 � PrŒb� D b�C 4 � PrŒc� D cjb� ¤ b� � PrŒb� ¤ b� � 3

ˇ̌
D
ˇ̌
4 � PrŒb D 1�C 4 � PrŒc� D cjb D 0� � PrŒb D 0� � 3

ˇ̌
D

ˇ̌̌
4 �
1

2
C 4 �

1

2
�
�
AdvIND-ATK

PE;B .k/C 1
�
�
1

2
� 3

ˇ̌̌
D AdvIND-ATK

PE;B .k/:

Therefore if PE is an insecure public-key scheme in the sense of IND-ATK, then
PE will be insecure in the sense of IND*-ATK as well. This completes the proof
of Theorem 3.7.

Theorem 3.8. IND*-ATK) KI-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. We prove the contrapositive; assume that PE is a KI-ATK insecure en-
cryption. Therefore there is an adversary B D .B1;B2/ attacking PE such
that AdvKI-ATK

PE;B .�/ is non-negligible. We construct an IND*-ATK adversary A D

.A1;A2/ attacking PE such that AdvIND*-ATK
PE;A .�/ is non-negligible.

Algorithm A
O1

1 .pk0; pk1/ Algorithm A
O2

2 .y; SA/

.x; SB/ B
O1

1 .pk0; pk1/ b�  B
O2

2 .y; SB/

x0  xI x1  x c�  1

SA WD SB return .b�; c�/
return .x0; x1; SA/

Now a calculation similar to the proof of Theorem 3.7 shows that

AdvIND*-ATK
PE;A .k/ D AdvKI-ATK

PE;B .k/:
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This completes the proof of Theorem 3.8.

Theorem 3.9. IND-ATK » IND*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume that IND-ATK) IND*-ATK. According to Theorem 3.8 we have
IND*-ATK ) KI-ATK. Hence we should have IND-ATK ) KI-ATK. But this
contradicts Theorem 3.1. Consequently, IND-ATK » IND*-ATK.

Theorem 3.10. KI-ATK » IND*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume that KI-ATK) IND*-ATK. According to Theorem 3.7, we have
IND*-ATK) IND-ATK. Therefore we should have KI-ATK) IND-ATK. But
this contradicts Theorem 3.4 and we can conclude that KI-ATK » IND*-ATK.

3.2 Non-malleability proofs

In this section we examine the relations between different notions of non-mallea-
bility. To achieve this goal, for every two notions of non-malleability we prove a
theorem that shows an implication or a separation.

Theorem 3.11. NM-ATK » KNM-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists some NM-ATK secure encryption PE D .K;E;D/,
since otherwise the theorem is true in a meaningless manner. We now modify PE

to a new encryption scheme PE 0 D .K 0;E 0;D 0/ which is also NM-ATK secure
but not secure in the sense of KNM-ATK.

The new encryption scheme PE 0 D .K 0;E 0;D 0/ is constructed as follows:

Algorithm K 0.k/ Algorithm E 0pkkb.x/ Algorithm D 0sk.y/

.pk; sk/ K.k/ return .Epk.x// return .Dsk.y//

b  ¹0; 1º

return .pkkb; sk/

In other words, a public key in the new scheme is a pair pkkb consisting of the orig-
inal public key pk and a random bit b. During encryption, the second component
is ignored.

Lemma 3.12. PE 0 is not secure in the KNM-ATK sense.
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Proof. It is intuitively clear that the scheme PE 0 is not KNM-ATK secure since
for a given y D Epkkb.x/, the adversary can output y as the encryption of the same
message x under a different yet related public key pkkb.

Formally, let a KNM-CPA adversary A D .A1;A2/ be defined as follows: on
input pkkb the algorithm A1 outputs the plaintext space M and the state SA D

pkkb; on input .y; SA/ the algorithm A2 outputs .y; pkkb;Rk/ where, for any
public keys pk� and pk, and any two bits b� and b, Rk.pk�kb�; pkkb/ is defined
to be true if and only if pk� D pk. A2 always outputs a different but related public
key, therefore the probability that the experiment ExptKNM-CPA-b

PE 0;A
.k/ outputs 1 is

equal to the probability that y D Epkkb.xb/. Since Epkkb.x/ D Epkkb.x/ for any x,
pk, and b, this probability is 1 for ExptKNM-CPA-1

PE 0;A
.k/ and 0 for ExptKNM-CPA-0

PE 0;A
.k/.

Hence we have AdvKNM-CPA
PE 0;A

.k/ D 1 and therefore PE 0 is not KNM-CPA secure
and in general not KNM-ATK secure.

On the other hand, we prove that PE 0 retains the NM-ATK security of PE:

Lemma 3.13. PE 0 is secure in the sense of NM-ATK.

Proof. We prove that if PE 0 is insecure in the sense of NM-ATK, then PE is inse-
cure in the sense of NM-ATK. Let B D .B1;B2/ be a polynomial-time adversary
attacking PE 0 in the sense of NM-ATK. We construct an adversary A D .A1;A2/

that attacks the scheme PE in the NM-ATK sense. The adversary A works as fol-
lows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

b  ¹0; 1º .y�; Rx/ B
O2

2 .y; SB/

pk0 WD pkkb return .y�; Rx/

.M; SB/ B
O1

1 .pk0/
SA WD SB

return .M; SA/

Note that A succeeds whenever B does, hence

AdvNM-ATK
PE;A .k/ D

ˇ̌̌
Pr
�
ExptNM-ATK-1

PE;A .k/ D 1
�
� Pr

�
ExptNM-ATK-0

PE;A .k/ D 1
�ˇ̌̌

D

ˇ̌̌
Pr
�
ExptNM-ATK-1

PE 0;B
.k/ D 1

�
� Pr

�
ExptNM-ATK-0

PE 0;B
.k/ D 1

�ˇ̌̌
D AdvNM-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.13.



204 R. Sepahi, J. Pieprzyk, S. F. Shahandashti and B. Schoenmakers

Lemmas 3.12 and 3.13 together complete the proof of Theorem 3.11.

Theorem 3.14. KNM-CCA2) NM-CCA2.

Proof. We prove the contrapositive; assume that PE is an insecure encryption
scheme in the sense of NM-CCA2. Therefore there is an adversary B D .B1;B2/

attacking PE such that AdvNM-CCA2
PE;B .�/ is non-negligible. We construct a KNM-

CCA2 adversary A D .A1;A2/ attacking PE such that AdvKNM-CCA2
PE;A .�/ is non-

negligible as well.

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.MB ; SB/ B
O1

1 .pk/ . Oy;Rx/ B
O2

2 .y; SB/

x0  MB I x1  MB Ox  Dsk. Oy/

MA WD ¹x0; x1º find the original plaintext x from Ox and Rx

SA WD .pk; SB/ y�  Epk.x/

return .MA; SA/ return .y�; pk; Rk/

where Rk.�; �/ is the complement relation, i.e., Rk.a; b/ D true if and only if
a D b.

Now we calculate the advantage of A:

AdvKNM-CCA2
PE;A .k/ D

ˇ̌̌
Pr
�
ExptKNM-CCA2-1

PE;A .k/D 1
�
� Pr

�
ExptKNM-CCA2-0

PE;A .k/D 1
�ˇ̌̌

D

ˇ̌̌
Pr
�
ExptNM-CCA2-1

PE;B .k/D 1
�
� Pr

�
ExptNM-CCA2-0

PE;B .k/D 1
�ˇ̌̌

D AdvNM-CCA2
PE;B .k/:

This completes the proof of Theorem 3.14.

Theorem 3.15. KNM-ATK » NM-ATK for ATK 2 ¹CPA, CCA1º.

Proof. Assume that there exists some KNM-ATK secure encryption scheme PE D

.K;E;D/, since otherwise the theorem is insignificantly true. We now modify
PE to a new encryption scheme PE 0 D .K 0;E 0;D 0/ which is also KNM-ATK
secure but not secure in the NM-ATK sense. This will prove the theorem.

The new encryption scheme PE 0 D .K 0;E 0;D 0/ is defined as follows:
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Algorithm K 0.k/ Algorithm E 0pk.x/ Algorithm D 0sk.y1ky2/

.pk; sk/ K.k/ y1  Epk.x/ x1  Dsk.y1/

return .pk; sk/ y2  Epk.x/ x2  Dsk.y2/

return .y1ky2/ if x1 D x2 then
return .x1/

else return .?/

In other words, a ciphertext in the new scheme is a pair y1ky2 consisting of the
encryption of the message, and the encryption of the message complement. We
prove in the following that PE 0 is KNM-ATK secure but not NM-ATK secure.

Lemma 3.16. PE 0 is not secure in the NM-ATK sense.

Proof. Given a ciphertext y1ky2 of a message x under public key pk, it is easy to
create a ciphertext of x under the same public key pk: just output y2ky1. Thus the
scheme is not non-malleable.

On the other hand, we prove that PE 0 retains the KNM-ATK security of PE:

Lemma 3.17. PE 0 is secure in the sense of KNM-ATK.

Proof. Let B D .B1;B2/ be some polynomial-time adversary attacking PE 0 in
the sense of KNM-ATK. We want to show that AdvKNM-ATK

PE 0;B
is negligible. To this

end, consider the following probability, defined for i; j 2 ¹0; 1º:

pk.i; j / WD Pr
h
.pk0; sk0/ K 0.k/I .MB ; SB/ B

O01
1 .pk0/I

.x0; x1/ R MB I y1  Epk.xi /I y2  Epk.xj /I

y0  y1ky2I .y
0�; pk0�; R0k/ B

O02
2 .y0; SB/ W

y0� D E 0pk0�.x0/ ^ pk0� ¤ pk0 ^R0k.pk0�; pk0/
i
:

We know that AdvKNM-ATK
PE 0;B

D jpk.1; 1/ � pk.0; 0/j. The following lemmas
state that, under our assumption, i.e., KNM-ATK security of PE , the differences
pk.1; 1/ � pk.1; 0/ and pk.1; 0/ � pk.0; 0/ must be both negligible. This will
complete the proof since
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AdvKNM-ATK
PE 0;B

D
ˇ̌
pk.1; 1/ � pk.0; 0/

ˇ̌
D
ˇ̌
Œpk.1; 1/ � pk.1; 0/�C Œpk.1; 0/ � pk.0; 0/�

ˇ̌
being the sum of two negligible functions, will be negligible.

Lemma 3.18. pk.1; 1/ � pk.1; 0/ is negligible.

Proof. We construct an adversary A D .A1;A2/ that attacks the scheme PE in
the KNM-ATK sense, as follows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.MB ; SB/ B
O01
1 .pk; pk/ y1  Epk.m1/I y2  y

.x0; x1/ MB .y0�; pk0�; R0
k
/

m0  x0I m1  x1I MA  ¹m0; m1º  B
O02
2 .y1ky2; SB/

SA  SBk.m0; m1/I return .MA; SA/ return .y�; pk�; Rk/

We observe that

Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

m0; m1  MAI y D Epk.m1/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.1; 1/;

Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

x0; x1  MAI y D Epk.m0/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.1; 0/:

Thus AdvKNM-ATK
PE;B D pk.1; 1/ � pk.1; 0/. The assumed security of PE in the

KNM-ATK sense now implies that the latter difference is negligible.

Lemma 3.19. pk.1; 0/ � pk.0; 0/ is negligible.

Proof. We construct an adversary A D .A1;A2/ that attacks the scheme PE in
the KNM-ATK sense, as follows:
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Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.MB ; SB/ B
O01
1 .pk; pk/ y2  yI y1  Epk.x0/I

.x0; x1/ MB .y0�; pk0�; R0
k
/ B

O02
2 .y1ky2; SB/

MA  ¹x0; x1º return .y�; pk�; Rk/

SA  SBkMA

return .MA; SA/

We observe that

Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

x0; x1  MAI y D Epk.x1/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.1; 0/;

Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

x0; x1  MAI y D Epk.x0/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.0; 0/:

Thus AdvKNM-ATK
PE;B D pk.1; 0/ � pk.0; 0/. The assumed security of PE in the

KNM-ATK sense now implies that the latter difference is negligible.

Therefore if PE 0 is an insecure public-key scheme in the sense of KNM-ATK,
then PE will be insecure in the sense of KNM-ATK as well. This completes the
proof of Lemma 3.17.

Lemmas 3.16 and 3.17 together complete the proof of Theorem 3.15.

The following theorem was stated as Theorem 1 in [18] and the authors gave an
informal proof sketch for it. We prove the theorem formally below.

Theorem 3.20. NM-ATK » NM*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists NM-ATK secure encryption PE D .K;E;D/, since
otherwise the theorem is true in a meaningless manner. To prove the theorem,
we modify PE to a new encryption PE 0 D .K 0;E 0;D 0/ (exactly similar to the
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scheme PE 0 used in the proof of Theorem 3.11 with pk0 D pkkb) which is also
NM-ATK secure but not secure in the sense of NM*-ATK.

Lemma 3.21. PE 0 is not secure in the NM*-ATK sense.

Proof. It is obvious that the scheme PE 0 is not secure in the sense of KNM since
given any ciphertext y D Epkk0.x/ of PE 0, the adversary can generate a new
ciphertext y� D Epkk1.x/ of the same plaintext under another related public key
pkk1.

Now, we prove that PE 0 retains the NM-ATK security of PE .

Lemma 3.22. PE 0 is secure in the sense of NM-ATK.

Proof. Let B D .B1;B2/ be a polynomial-time adversary attacking PE 0 in the
sense of NM-ATK. We construct an adversary A D .A1;A2/ that attacks the
scheme PE in the NM-ATK sense. The adversary A is defined as follows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

b  ¹0; 1º .y�; Rx/ B
O2

2 .y; SB/

pk0 WD pkkb return .y�; Rx/

.M; SB/ B
O1

1 .pk0/
SA WD SB

return .M; SA/

Note that A is successful whenever B is; hence, similar to the proof of Lemma
3.13, we obtain

AdvNM-ATK
PE;A .k/ D AdvNM-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.22.

Lemmas 3.21 and 3.22 together complete the proof of Theorem 3.20.

Theorem 3.23. NM*-ATK) NM-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. We prove the contrapositive; assume that PE is an insecure encryption in
the sense of NM-CCA2. Therefore there is an adversary B D .B1;B2/ attacking
PE such that AdvNM-CCA2

PE;B .�/ is non-negligible. To this end, we describe an NM*-
CCA2 adversary A D .A1;A2/ attacking PE such that AdvNM*-CCA2

PE;A .�/ is non-
negligible.
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Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.M; SB/ B
O1

1 .pk/ .y�; Rx/ B
O2

2 .y; SB/

SA WD SB return .y�; pk; R/
return .M; SA/

where the quinary relationR is simply defined based on the relationRx as follows:
R.x�; x; y�; pk�; pk/ D true if and only if Rx.x

�; x/ D true.
Now note that A succeeds whenever B does, hence

AdvNM*-CCA2
PE;A .k/ D

ˇ̌̌
Pr
�
ExptNM*-CCA2-1

PE;A .k/ D 1
�
� Pr

�
ExptNM*-CCA2-0

PE;A .k/ D 1
�ˇ̌̌

D

ˇ̌̌
Pr
�
ExptNM-CCA2-1

PE;B .k/ D 1
�
� Pr

�
ExptNM-CCA2-0

PE;B .k/ D 1
�ˇ̌̌

D AdvNM-CCA2
PE;B .k/:

This completes the proof of Theorem 3.23.

Theorem 3.24. KNM-ATK » NM*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume that there exists some KNM-ATK secure encryption scheme PE D

.K;E;D/, since otherwise the theorem is true in a meaningless manner. We now
modify PE to a new encryption scheme PE 0 D .K 0;E 0;D 0/ which is also KNM-
ATK secure but not secure in the NM*-ATK sense. This will prove the theorem.

The new encryption scheme PE 0 D .K 0;E 0;D 0/ is defined as follows:

Algorithm K 0.k/ Algorithm E 0pk1kpk2
.x/ Algorithm

D 0sk1ksk2
.y1ky2/

.pk1; sk1/ K.k/ y1  Epk1
.x/ x1  Dsk1

.y1/

.pk2; sk2/ K.k/ y2  Epk2
.x/ x2  Dsk2

.y2/

pk0  .pk1; pk2/ return .y1ky2/ if x1 D x2 then
sk0  .sk1; sk2/ return .x1/

return .pk0; sk0/ else return .?/

In other words, a ciphertext in the new scheme is a pair y1ky2 consisting of the
encryption of the message using the first part of the public key, and the encryption
of the message complement using the second part of the public key. We prove in
the following that PE 0 is KNM-ATK secure but not NM*-ATK secure.

Lemma 3.25. PE 0 is not secure in the NM*-ATK sense.
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Proof. Given a ciphertext y1ky2 of a message x under public key pk1kpk2, it is
easy to create a ciphertext of x under public key pk2kpk1: just output y2ky1. Thus
the scheme is not completely non-malleable.

On the other hand, we prove that PE 0 retains the KNM-ATK security of PE:

Lemma 3.26. PE 0 is secure in the sense of KNM-ATK.

Proof. Let B D .B1;B2/ be some polynomial-time adversary attacking PE 0 in
the sense of KNM-ATK. We want to show that AdvKNM-ATK

PE 0;B
is negligible. To this

end, consider the following probability, defined for i; j 2 ¹0; 1º:

pk.i; j / WD Pr
h
.pk0; sk0/ K 0.k/I .MB ; SB/ B

O01
1 .pk0/I

.x0; x1/ R MB I y1  Epk1
.xi /I y2  Epk2

.xj /I

y0  y1ky2I .y
0�; pk0�; R0k/ B

O02
2 .y0; SB/ W

y0� D E 0pk0�.x0/ ^ pk0� ¤ pk0 ^R0k.pk0�; pk0/
i
:

We know that AdvKNM-ATK
PE 0;B

D pk.1; 1/ � pk.0; 0/. The following lemmas state
that, under our assumption, i.e., KNM-ATK security of PE , the differences
pk.1; 1/ � pk.1; 0/ and pk.1; 0/ � pk.0; 0/ must be both negligible. This will
complete the proof since

AdvKNM-ATK
PE 0;B

D pk.1; 1/ � pk.0; 0/

D Œpk.1; 1/ � pk.1; 0/�C Œpk.1; 0/ � pk.0; 0/�

being the sum of two negligible functions, will be negligible.

Lemma 3.27. pk.1; 1/ � pk.1; 0/ is negligible.

Proof. We construct an adversary A D .A1;A2/ that attacks the scheme PE in
the KNM-ATK sense, as follows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.pk0; sk0/ K.k/ y1  Epk.m1/I y2  y

.MB ; SB/ B
O01
1 .pk; pk/ .y0�; pk0�; R0

k
/

.x0; x1/ MB  B
O02
2 .y1ky2; SB/

m0  x0I m1  x1I MA  ¹m0; m1º return .y�; pk�; Rk/

SA  SBk.m0; m1/I return .MA; SA/
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We observe that

Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

m0; m1  MAI y D Epk.m1/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.1; 1/;

Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

x0; x1  MAI y D Epk.m0/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.1; 0/:

Thus AdvKNM-ATK
PE;B D pk.1; 1/ � pk.1; 0/. The assumed security of PE in the

KNM-ATK sense now implies that the latter difference is negligible.

Lemma 3.28. pk.1; 0/ � pk.0; 0/ is negligible.

Proof. We construct an adversary A D .A1;A2/ that attacks the scheme PE in
the KNM-ATK sense, as follows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.pk0; sk0/ K.k/ y2  yI y1  Epk.x0/I

.MB ; SB/ B
O01
1 .pk; pk/ .y0�; pk0�; R0

k
/ B

O02
2 .y1ky2; SB/

.x0; x1/ MB return .y�; pk�; Rk/

MA  ¹x0; x1º

SA  SBkMA

return .MA; SA/

We observe that

Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

x0; x1  MAI y D Epk.x1/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.1; 0/;
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Pr
h
.pk; sk/ K.k/I .MA; SA/ A

O1

1 .pk/I

x0; x1  MAI y D Epk.x0/I

.y�; pk�; Rk/ A
O2

2 .y; SA/ W

y� D Epk�.xb/ ^ pk� ¤ pk ^Rk.pk�; pk/
i
D pk.0; 0/:

Thus AdvKNM-ATK
PE;B D pk.1; 0/ � pk.0; 0/. The assumed security of PE in the

KNM-ATK sense now implies that the latter difference is negligible.

Therefore if PE 0 is an insecure public-key scheme in the sense of KNM-ATK,
then PE will be insecure in the sense of KNM-ATK as well. This completes the
proof of the Lemma 3.26.

Lemmas 3.25 and 3.26 together complete the proof of Theorem 3.24.

Theorem 3.29. NM*-ATK) KNM-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. We prove the contrapositive; assume that PE is an insecure encryption in
the sense of KNM-ATK. Therefore there is an adversary B D .B1;B2/ attacking
PE such that AdvKNM-ATK

PE;B .�/ is non-negligible. To this end, we describe an NM*-
ATK adversary A D .A1;A2/ attacking PE such that AdvNM*-ATK

PE;A .�/ is non-
negligible.

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.M; SB/ B
O1

1 .pk/ .y�; Rk/ B
O2

2 .y; SB/

SA WD .pk; SB/ return .y�; pk; R/
return .M; SA/

where the relation R is defined based on Rk as follows: R.x�; x; y�; pk�; pk/ D
true if and only if Rk.pk�; pk/ D true.

Now note that A succeeds whenever B does, hence

AdvNM*-ATK
PE;A .k/ D AdvKNM-ATK

PE;B .k/:

This completes the proof of Theorem 3.29.
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3.3 IND-NM inter-relation proofs

In this section we prove relation (i.e., implication or separation) between notions
of indistinguishability and notions of non-malleability.

Theorem 3.30. NM-ATK) IND-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. For a complete proof refer to [2].

Theorem 3.31. IND-CCA2) NM-CCA2.

Proof. Refer to [2] for a complete proof.

Theorem 3.32. KNM-ATK » KI-ATK.

Proof. Assume that there exists some KNM-ATK secure encryption scheme PE D

.K;E;D/, since otherwise the theorem is meaninglessly true. We now modify
PE to a new encryption scheme PE 0 D .K 0;E 0;D 0/ (identically as the scheme
PE 0 used in the proof of Theorem 3.1 with y0 D ykpk) which is also KNM-ATK
secure but not secure in the KI-ATK sense. This will prove the theorem.

Lemma 3.33. PE 0 is not secure in the KI-ATK sense.

Proof. It is intuitively clear that the scheme PE 0 is not secure in the sense of KI
since given any ciphertext y0 D ykpk of PE 0, the adversary can find out which
key has been used to encrypt the corresponding plaintext.

Formally, consider the following KI-CPA adversary A D .A1;A2/: on the
input .pk0; pk1/, the algorithm A1 chooses a random plaintext x, sets SA WD

.pk0; pk1/, and outputs .x; SA/; the ciphertext will be in the form ykpkb for some
b 2 ¹0; 1º; then on the input .ykpkb; SA/, the algorithm A2 outputs b. For such
an adversary we always have ExptKI-CPA-b

PE 0;A
.k/ D b and hence AdvKI-CPA

PE 0;A
.k/ D 1.

This shows that PE 0 is insecure in the sense of KI-CPA and hence insecure in the
sense of KI-ATK generally.

On the other hand, we prove that PE 0 retains the KNM-ATK security of PE:

Lemma 3.34. PE 0 is secure in the sense of KNM-ATK.

Proof. Let B D .B1;B2/ be a polynomial-time adversary attacking PE 0 in the
sense of KNM-ATK. We construct an adversary A D .A1;A2/ that attacks the
scheme PE in the KNM-ATK sense, as follows:
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Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .yA; SB/

.M; SB/ B
O01
1 .pk/ yB WD yAkpk

return .M; SB/ .y�
B
; pk�; Rk/ B

O02
2 .yB ; SB/

Parse y�
B

as y�
A
kpk��

return .y�
A
; pk�; Rk/

where O01 and O02 are defined based on the decryption oracle D 0sk.�/ which itself
is defined based on the provided decryption oracle Dsk.�/ as follows: for any in-
put ykpk it queries Dsk.�/ on the first component of the ciphertext and returns
D 0sk.ykpk/ WD Dsk.y/.

Note that for any y�
B

, pk�, and xb , based on our definition of E 0, we have
y�

B
D E 0pk�.xb/ if and only if y�

A
D Epk�.xb/ and pk�� D pk�. We can

assume that pk�� D pk� always holds because otherwise the advantage of B

would automatically be zero. Hence, for such an adversary ExptKNM-ATK-b
PE 0;B

.k/ D

ExptKNM-ATK-b
PE;A .k/ for any b 2 ¹0; 1º. This means that

AdvKNM-ATK
PE;A .k/ D AdvKNM-ATK

PE 0;B
.k/:

Hence if PE 0 is insecure in the sense of KNM-ATK, then PE will be insecure in
the sense of KNM-ATK, too. This completes the proof of the lemma.

Lemmas 3.33 and 3.34 together complete the proof of Theorem 3.32.

Theorem 3.35. KI-ATK » KNM-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists some KI-ATK secure encryption scheme PE D

.K;E;D/, since otherwise the theorem is meaningless though true. We now mod-
ify PE to a new encryption scheme PE 0 D .K 0;E 0;D 0/ (analogous to the scheme
PE 0 used in the proof of Theorem 3.11 with pk0 D pkkb) which is also KI-ATK
secure but not secure in the KNM-ATK sense. This will prove the theorem.

Lemma 3.36. PE 0 is not secure in the KNM-ATK sense.

Proof. See the proof of Lemma 3.12.

On the other hand, we prove that PE 0 retains the KI-ATK security of PE:

Lemma 3.37. PE 0 is secure in the sense of KI-ATK.
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Proof. Let B D .B1;B2/ be some polynomial-time adversary attacking PE 0 in
the sense of KI-ATK. We construct an adversary A D .A1;A2/ that attacks the
scheme PE in the KI-ATK sense, as follows:

Algorithm A
O1

1 .pk0; pk1/ Algorithm A
O2

2 .y; SB/

b0; b1  ¹0; 1º b�  B
O2

2 .y; SB/

.x; SB/ B
O1

1 .pk0kb0; pk1kb1/ return .b�/
return .x; SB/

Now note that, based on our definition of E 0, we have y D E 0pkb�kbb�
.x/ if and

only if y D Epkb�
.x/. This means that

ExptKI-ATK-b
PE 0;B

.k/ D b if and only if ExptKI-ATK-b
PE;A .k/ D b:

Hence we deduce
AdvKI-ATK

PE;A .k/ D AdvKI-ATK
PE 0;B

.k/:

This completes the proof of Lemma 3.37.

Lemmas 3.36 and 3.37 together complete the proof of Theorem 3.35.

Theorem 3.38. IND*-ATK » NM*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists IND*-ATK secure encryption PE D .K;E;D/, since
otherwise the theorem is true, but meaningless. To prove the theorem, we modify
PE to a new encryption PE 0 D .K 0;E 0;D 0/ (precisely similar to the scheme PE 0

used in the proof of Theorem 3.11 with pk0 D pkkb) which is still IND*-ATK
secure but not secure in the sense of NM*-ATK.

Lemma 3.39. PE 0 is not secure in the NM*-ATK sense.

Proof. It is obvious that the scheme PE 0 is not secure in the sense of NM*-ATK
since given any ciphertext y D Epkkb.x/ of PE 0, the adversary can output the
ciphertext y D Epkkb.x/ of the same plaintext under a new related public key pkkb.

Formally, consider the following NM*-CPA adversary A D .A1;A2/: on input
pkkb the algorithm A1 outputs .M; pkkb/ where M is the plaintext space; on
input .y; pkkb/ the algorithm A2 outputs .y; pkkb;R/ where for any x�, xb , y�,
pk�kb�, and pkkb: R.x�; xb; y

�; pk�kb�; pkkb/ is defined to be true if and only
if x� D xb and pk� D pk. Now note that for A2’s output we always have pkkb ¤
pkkb. Also if y D E 0pkkb.x1/ then for x� D x1 both y D E 0

pkkb
.x1/ and R are

true, but if y D E 0pkkb.x0/ then both y D E 0
pkkb

.x�/ and R can only be true at the
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same time if x0 D x1 because the former requires x� D x1 and the latter requires
x� D x0. The event x0 D x1 only happens with probability 1=jM j. Hence we
have AdvNM*-ATK

PE 0;A
.k/ D 1 � 1=jM j which is a considerable advantage. Therefore

PE 0 is not NM*-CPA secure and hence not NM*-ATK secure in general.

Now, we prove that PE 0 retains the IND*-ATK security of PE .

Lemma 3.40. PE 0 is secure in the sense of IND*-ATK.

Proof. Let B D .B1;B2/ be a polynomial-time adversary attacking PE 0 in the
sense of IND*-ATK. We construct an adversary A D .A1;A2/ that attacks the
scheme PE in the IND*-ATK sense. The adversary A is defined as follows:

Algorithm A
O1

1 .pk0; pk1/ Algorithm A
O2

2 .y; SB/

b0; b1  ¹0; 1º .b�; c�/ B
O2

2 .y; SB/

.x0; x1; SB/ B
O1

1 .pk0kb; pk1kb/ return .b�; c�/
return .x0; x1; SB/

Now note that, based on our definition of E 0, for any b� and c�, we have
y D E 0pkb�kbb�

.xc�/ if and only if y D Epkb�
.xc�/. This means that

ExptIND*-ATK-.b;c/

PE 0;B
.k/ ' .b; c/ if and only if ExptIND*-ATK-.b;c/

PE;A
.k/ ' .b; c/:

Hence we have

AdvIND*-ATK
PE;A .k/ D

ˇ̌̌
4 � Pr

�
ExptIND*-ATK-.b;c/

PE;A
.k/ ' .b; c/

�
� 3

ˇ̌̌
D

ˇ̌̌
4 � Pr

�
ExptIND*-ATK-.b;c/

PE 0;B
.k/ ' .b; c/

�
� 3

ˇ̌̌
D AdvIND*-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.40.

Lemmas 3.39 and 3.40 together complete the proof of Theorem 3.38.

Theorem 3.41. NM*-ATK » IND*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume we have NM*-ATK ) IND*-ATK. According to Theorem 3.8
we have IND*-ATK ) KI-ATK. Then we should have NM*-ATK ) KI-ATK.
But this is in contradiction with Theorem 3.53. Therefore NM*-ATK » IND*-
ATK.
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Theorem 3.42. NM*-ATK) IND-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. We prove the equivalent relation IND-ATK insecurity implies NM*-ATK
insecurity. Assume that PE is an insecure encryption scheme in the sense of
IND-ATK. Hence there exists an adversary B D .B1;B2/ attacking PE such
that AdvIND-ATK

PE;B .�/ is non-negligible. We construct an NM*-ATK adversary A D

.A1;A2/ attacking PE as follows, such that AdvNM*-ATK
PE;A .�/ is also non-negligible.

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.x0; x1; s/ B
O1

1 .pk/ b�  B
O2

2 .y; SB/

M WD ¹x0; x1º y�  Epk.xb�/

SA WD .M; pk; SB/ return .y�; pk; R/
return .M; SA/

where, for any x�, xb , y�, pk�, and pk: R.x�; xb; y
�; pk�; pk/ is defined to be

true if and only if x� D xb and pk� D pk.
Now note that for A2’s output the following hold: for xb� we have

y� D Epk.xb�/; pk ¤ pk; and pk D pk:

Therefore ExptNM*-ATK-1
PE;A .k/ D 1 if and only if xb� D xb or equivalently xb� D

xb . Hence we have

Pr
�
ExptNM*-ATK-1

PE;A .k/ D 1
�
D Pr

�
ExptIND-ATK-b

PE;B .k/ D b
�
:

Similarly ExptNM*-ATK-0
PE;A .k/ D 1 if and only if xb� D x

b
. This event happens

exactly half of the time since x
b

is chosen randomly from ¹x0; x1º. Hence we
have

Pr
�
ExptNM*-ATK-0

PE;A .k/ D 1
�
D
1

2
:

Combining the above two results we get the following:

AdvNM*-ATK
PE;A .k/ D AdvIND-ATK

PE;B .k/:

Therefore if PE 0 is insecure in the sense of IND-ATK, then PE will be insecure in
the sense of NM*-ATK. This completes the proof of Theorem 3.42. Note that this
can be deduced from the two already-proved Theorems 3.23 and 3.30 as well.

Theorem 3.43. IND-ATK » NM*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.
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Proof. According to Theorem 3.30 we have NM-ATK) IND-ATK. Now if we
assume that IND-ATK ) NM*-ATK then we should have NM-ATK ) NM*-
ATK; but this is in contradiction with Theorem 3.20. Therefore IND*-ATK »
NM*-ATK.

Theorem 3.44. NM-ATK » IND*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume we have NM-ATK) IND*-ATK. According to Theorem 3.8 we
have IND*-ATK)KI-ATK. Then we should have NM-ATK)KI-ATK. But this
is in contradiction with Theorem 3.57. Therefore NM-ATK » IND*-ATK.

Theorem 3.45. IND*-CCA2) NM-CCA2.

Proof. According to Theorem 3.7 we have IND*-ATK) IND-ATK. Also accord-
ing to Theorem 3.31 we have IND-CCA2) NM-CCA2. Hence IND*-CCA2)
NM-CCA2.

Theorem 3.46. IND*-ATK » NM-ATK for ATK 2 ¹CPA, CCA1º.

Proof. Assume there exists NM-ATK secure encryption PE D .K;E;D/, since
otherwise the theorem is true in a meaningless manner. To prove the theorem,
we modify PE to a new encryption PE 0 D .K 0;E 0;D 0/ which is also NM-ATK
secure but not secure in the sense of IND*-ATK.

The new encryption scheme PE 0 D .K 0;E 0;D 0/ is defined as follows:

Algorithm K 0.k/ Algorithm E 0pk.x/ Algorithm D 0sk.ykb/

.pk; sk/ K.k/ b  ¹0; 1º return .Dsk.y//

return .pk; sk/ return .Epk.x/kb/

In other words, a ciphertext in the new scheme is a pair ykb consisting of Epk.x/

and a random bit b. During encryption, the second component is ignored.

Lemma 3.47. PE 0 is not secure in the NM-ATK sense.

Proof. It is obvious that the scheme PE 0 is not secure in the sense of NM since
given any ciphertext y0 D Epk.x/kb of PE 0, the adversary can generate a new
ciphertext y� D Epk.x/kb of the same plaintext under the same public key.

Now, we prove that PE 0 retains the IND*-ATK security of PE .

Lemma 3.48. PE 0 is secure in the sense of IND*-ATK.
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Proof. Let B D .B1;B2/ be a polynomial-time adversary attacking PE 0 in the
sense of IND*-ATK. We construct an adversary A D .A1;A2/ that attacks the
scheme PE in the IND*-ATK sense. The adversary A is defined as follows:

Algorithm A
O1

1 .pk0; pk1/ Algorithm A
O2

2 .y; SB/

.x0; x1; SB/ B
O1

1 .pk0; pk1/ d  ¹0; 1º

return .x0; x1; SB/ .b�; c�/ B
O2

2 .ykd; SB/

return .b�; c�/

Now note that, based on our definition of E 0, for any d , b� and c�, we have
ykd D E 0pkb�

.xc�/ if and only if y D Epkb�
.xc�/. This means that

ExptIND*-ATK-.b;c/

PE 0;B
.k/ ' .b; c/ if and only if ExptIND*-ATK-.b;c/

PE;A
.k/ ' .b; c/:

Hence, similar to the proof of Lemma 3.40, we have

AdvIND*-ATK
PE;A .k/ D AdvIND*-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.48.

Lemmas 3.47 and 3.48 together complete the proof of Theorem 3.46.

Theorem 3.49. KNM-ATK » IND*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume we have KNM-ATK ) IND*-ATK. According to Theorem 3.8
we have IND*-ATK) KI-ATK. Then we should have KNM-ATK) KI-ATK.
But this is in contradiction with Theorem 3.32. Therefore KNM-ATK » IND*-
ATK.

Theorem 3.50. IND*-ATK » KNM-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists IND*-ATK secure encryption PE D .K;E;D/, since
otherwise the theorem is true, but meaningless. To prove the theorem, we modify
PE to a new encryption PE 0 D .K 0;E 0;D 0/ (just as the scheme PE 0 used in the
proof of Theorem 3.11 with pk0 D pkkb) which is also IND*-ATK secure but not
secure in the sense of KNM-ATK.

Lemma 3.51. PE 0 is not secure in the KNM-ATK sense.

Proof. See the proof of Lemma 3.12.

Now, we prove that PE 0 retains the IND*-ATK security of PE .
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Lemma 3.52. PE 0 is secure in the sense of IND*-ATK.

Proof. We prove that if PE 0 is insecure in the sense of IND*-ATK, then PE is
insecure in the sense of IND*-ATK. Let B D .B1;B2/ be a polynomial-time
adversary attacking PE 0 in the sense of IND*-ATK. We construct an adversary
A D .A1;A2/ that attacks the scheme PE in the IND*-ATK sense. The adversary
A is defined as follows:

Algorithm A
O1

1 .pk0; pk1/ Algorithm A
O2

2 .y; SB/

b0; b1  ¹0; 1º .b�; c�/ B
O2

2 .y; SB/

.x0; x1; SB/ B
O1

1 .pk0kb0; pk1kb1/ return .b�; c�/
return .x0; x1; SB/

Now note that, based on our definition of E 0, for any b� and c�, we have y D
E 0pkb�kbb�

.xc�/ if and only if y D Epkb�
.xc�/. This means that

ExptIND*-ATK-.b;c/

PE 0;B
.k/ ' .b; c/ if and only if ExptIND*-ATK-.b;c/

PE;A
.k/ ' .b; c/:

Hence, by a simple calculation similar to the proof of Lemma 3.40 we obtain

AdvIND*-ATK
PE;A .k/ D AdvIND*-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.40.

Lemmas 3.51 and 3.52 together complete the proof of Theorem 3.50.

Theorem 3.53. NM*-ATK » KI-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume that there exists some NM*-ATK secure encryption scheme PE D

.K;E;D/, since otherwise the theorem is meaningless though true. We now mod-
ify PE to a new encryption scheme PE 0 D .K 0;E 0;D 0/ (just like the scheme PE 0

used in the proof of Theorem 3.1 with y0 D ykpk) which is also NM*-ATK secure
but not secure in the KI-ATK sense. This will prove the theorem.

Lemma 3.54. PE 0 is not secure in the KI-ATK sense.

Proof. See the proof of Lemma 3.2.

On the other hand, we prove that PE 0 retains the NM*-ATK security of PE:

Lemma 3.55. PE 0 is secure in the sense of NM*-ATK.
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Proof. We prove that if PE is secure in the sense of NM*-ATK, then PE 0 is also
secure in the sense of NM*-ATK. We do so by proving that if PE 0 is insecure in
the sense of NM*-ATK, then PE is also insecure in the sense of NM*-ATK. Let
B D .B1;B2/ be some polynomial-time adversary attacking PE 0 in the sense of
NM*-ATK. We construct an adversary A D .A1;A2/ that attacks the scheme PE

in the NM*-ATK sense, as follows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .yA; SA/

.M; SB/ B
O01
1 .pk/ yB WD yAkpk

SA WD .M; pk; SB/ .y�
B
; pk�; R/ B

O02
2 .yB ; SB/

return .M; SA/ Parse y�
B

as y�
A
kpk��

if pk�� D pk then
R0 WD R

else define R0.: : :/ D 0
return .y�

A
; pk�; R0/

where O01 and O02 are defined based on the decryption oracle D 0sk.�/ which itself
is defined based on the provided decryption oracle Dsk.�/ as follows: for any in-
put ykpk it queries Dsk.�/ on the first component of the ciphertext and returns
D 0sk.ykpk/ WD Dsk.y/. Also, R0.x�; xb; y

�kpk�; pk�; pk/ is defined to be true if
and only if the relation R0.x�; xb; y

�; pk�; pk/ is true.
We assume that pk�� D pk� because otherwise the advantage of B would

automatically be zero. Now note that, based on our definitions, y�
B
D E 0pk.x

�/ if
and only if y�

A
D Epk.x

�/, y�
B
¤ yB ^ pk� ¤ pk is true if and only if y�

A
¤

yA ^ pk� ¤ pk is true, and R0.x�; xb; y
�kpk�; pk�; pk/ is true if and only if

R0.x�; xb; y
�; pk�; pk/ is true. Therefore, ExptNM*-ATK-b

PE;A .k/ outputs 1 if and only

if ExptNM*-ATK-b
PE 0;B

.k/ outputs 1. Hence we have

AdvNM*-ATK
PE;A .k/ D AdvNM*-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.55.

Lemmas 3.54 and 3.55 together complete the proof of Theorem 3.53.

Theorem 3.56. KI-ATK » NM*-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume that KI-ATK) NM*-ATK. According to Theorem 3.29 we can
write NM*-ATK ) KNM-ATK. Therefore we should have KI-ATK ) KNM-
ATK; but this is in contradiction with Theorem 3.35. Hence KI-ATK » NM*-
ATK.
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Theorem 3.57. NM-ATK » KI-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists some NM-ATK secure encryption scheme PE D

.K;E;D/, since otherwise the theorem is vacuously true. We now modify PE

to a new encryption scheme PE 0 D .K 0;E 0;D 0/ which is also NM-ATK secure
but not secure in the KI-ATK sense. This will prove the theorem.

The new encryption scheme PE 0 D .K 0;E 0;D 0/ is defined as follows:

Algorithm K 0.k/ Algorithm E 0pk.x/ Algorithm D 0skkpk.ykpk0/

.pk; sk/ K.k/ y  Epk.x/ if pk D pk0 then
return .pk; skkpk/ return .ykpk/ return .Dsk.y//

if pk ¤ pk0 then
return ?

In other words, a ciphertext in the new scheme is a pair ykpk consisting of the
encryption of the message under E and the public key used for the encryption
process. In decryption, the second component is ignored.

Lemma 3.58. PE 0 is not secure in the KI-ATK sense.

Proof. The proof is similar to that of Lemma 3.54.

On the other hand, we prove that PE 0 retains the NM-ATK security of PE:

Lemma 3.59. PE 0 is secure in the sense of NM-ATK.

Proof. We prove that if PE is secure in the sense of NM-ATK, then PE 0 is secure
in the sense of NM-ATK too. We do so by proving that if PE 0 is insecure in
the sense of NM-ATK, then PE is insecure in the sense of NM-ATK too. Let
B D .B1;B2/ be some polynomial-time adversary attacking PE 0 in the sense of
NM-ATK. We construct an adversary A D .A1;A2/ that attacks the scheme PE

in the NM-ATK sense, as follows:
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Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .yA; SA/

.M; SB/ B
O01
1 .pk/ yB WD yAkpk

SA WD .pk; SB/ .y�
B
; Rx/ B

O02
2 .yB ; SB/

return .M; SA/ parse y�
B

as y�
A
kpk�

if pk� D pk then
R0 WD R

else define R0.: : :/ D 0
return .y�A; Rx/

where O01 and O02 are defined based on the decryption oracle D 0skkpk.�/ which itself
is defined based on the provided decryption oracle Dsk.�/ and the public key pk
as follows: for any input ykpk0, if pk0 ¤ pk then D 0skkpk.�/ outputs ?, but if
pk0 D pk it queries Dsk.�/ on the first component of the ciphertext and returns
D 0skkpk.ykpk/ WD Dsk.y/.

We assume that pk� D pk because otherwise D 0skkpk.y
�
B
/ D ? and hence the

advantage of B would automatically be zero. Now note that, based on our defi-
nitions and the fact that pk� D pk, D 0skkpk.y

�
B
/ ¤ ? if and only if Dsk.y

�
A
/ ¤ ?

and y�
B
¤ yB if and only if y�

A
¤ yA. Therefore, ExptNM-ATK-b

PE;A .k/ outputs 1 if
and only if ExptNM-ATK-b

PE 0;B
.k/ outputs 1. Hence, we have

AdvNM-ATK
PE;A .k/ D AdvNM-ATK

PE 0;B
.k/:

This completes the proof of Lemma 3.59.

Lemmas 3.58 and 3.59 together complete the proof of Theorem 3.57.

Theorem 3.60. KI-ATK » NM-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume that KI-ATK) NM-ATK. According to Theorem 3.30 we know
that NM-ATK ) IND-ATK. Therefore we should have KI-ATK ) IND-ATK;
but this is in contradiction with Theorem 3.4. Hence KI-ATK » NM-ATK.

Theorem 3.61. KNM-ATK) IND-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. We prove the equivalent statement that if a scheme is IND-ATK insecure
then it is KNM-ATK insecure. Assume that PE is an insecure encryption scheme
in the sense of IND-ATK. There is an adversary B D .B1;B2/ attacking PE

such that AdvIND-ATK
PE;B .�/ is non-negligible. We construct a KNM-ATK adversary

A D .A1;A2/ attacking PE such that AdvKNM-ATK
PE;A .�/ is non-negligible too.
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Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SA/

.x0; x1; SB/ B
O1

1 .pk/ b�  B
O2

2 .y; SB/

M WD ¹x0; x1º y�  Epk.xb�/

SA WD .M; pk; SB/ return .y�; pk; Rk/

return .M; SA/

where, for any pk� and pk: Rk.pk�; pk/ is defined to be true if and only if pk� D
pk.

Now note that for A2’s output the following hold: for xb� we have

y� D Epk.xb�/; pk ¤ pk; and pk D pk:

Therefore ExptKNM-ATK-1
PE;A .k/ D 1 if and only if xb� D xb . Hence we have

Pr
�
ExptKNM-ATK-1

PE;A .k/ D 1
�
D Pr

�
ExptIND-ATK-b

PE;B .k/ D b
�
:

Similarly ExptKNM-ATK-0
PE;A .k/ D 1 if and only if xb� D x

b
. This event happens

exactly half of the time since x
b

is chosen randomly from ¹x0; x1º. Hence we
have

Pr
�
ExptKNM-ATK-0

PE;A .k/ D 1
�
D
1

2
:

Combining the above two results we get the following:

AdvKNM-ATK
PE;A .k/ D

1

2
� AdvIND-ATK

PE;B .k/:

This completes the proof of Theorem 3.61.

Theorem 3.62. IND-ATK » KNM-ATK for ATK 2 ¹CPA, CCA1, CCA2º.

Proof. Assume there exists some IND-ATK secure encryption scheme PE D

.K;E;D/, since otherwise the theorem is vacuously true. We now modify PE

to a new encryption scheme PE 0 D .K 0;E 0;D 0/ (just like the scheme PE 0 used
in the proof of Theorem 3.11 with pk0 D pkkb) which is also IND-ATK secure but
not secure in the KNM-ATK sense. This will prove the theorem.

Lemma 3.63. PE 0 is not secure in the KNM-ATK sense.

Proof. See the proof of Lemma 3.51.

On the other hand, we prove that PE 0 retains the IND-ATK security of PE:



New security notions and relations for public-key encryption 225

Lemma 3.64. PE 0 is secure in the sense of IND-ATK.

Proof. We prove by contrapositive; let B D .B1;B2/ be some polynomial-time
adversary attacking PE 0 in the sense of IND-ATK. We construct an adversary
A D .A1;A2/ that attacks the scheme PE in the IND-ATK sense, as follows:

Algorithm A
O1

1 .pk/ Algorithm A
O2

2 .y; SB/

b  ¹0; 1º b�  B
O2

2 .y; SB/

.x0; x1; SB/ B
O1

1 .pkkb/ return .b�/
return .x0; x1; SB/

Now note that based on our definition of PE 0, y D E 0pkkb.xb�/ if and only if
y D Epk.xb�/. Hence

ExptIND-ATK-b
PE 0;B

.k/ D b if and only if ExptIND-ATK-b
PE;A .k/ D b:

Hence we have
AdvIND-ATK

PE;A .k/ D AdvIND-ATK
PE 0;B

.k/:

This completes the proof of Lemma 3.64.

Lemmas 3.63 and 3.64 together complete the proof of Theorem 3.62.

4 Conclusion and open problems

In this paper we proposed two new notions of security, namely complete indistin-
guishability and key non-malleability, and proved relative strength of every two
notions of indistinguishability and non-malleability. Many papers studied con-
structing concrete cryptosystem for the notions IND, NM, KI and NM*. Regarding
KNM, Theorem 3.29 shows that we can use a completely non-malleable scheme
instead (see, for example, [9, 12, 16, 18]) though it may not be as efficient as a
newly designed KNM-secure encryption. Hence, we put constructing practical
cryptosystems for IND* and KNM as open problems.
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