J. Math. Cryptol. 7 (2013), 253-277
DOI 10.1515/jmc-2013-5005 © de Gruyter 2013

Indirect message injection for MAC generation

Mufeed Al Mashrafi, Harry Bartlett, Ed Dawson, Leonie Simpson
and Kenneth Koon-Ho Wong

Communicated by Spyros Magliveras

Dedicated to Professor Tran Van Trung on the occasion of his 65th birthday

Abstract. This paper presents a model for the generation of a MAC tag using a stream
cipher. The input message is used indirectly to control segments of the keystream that
form the MAC tag. Several recent proposals can be considered as instances of this general
model, as they all perform message accumulation in this way. However, they use slightly
different processes in the message preparation and finalisation phases. We examine the
security of this model for different options and against different types of attack, and con-
clude that the indirect injection model can be used to generate MAC tags securely for
certain combinations of options. Careful consideration is required at the design stage to
avoid combinations of options that result in susceptibility to forgery attacks. Additionally,
some implementations may be vulnerable to side-channel attacks if used in Authenticated
Encryption (AE) algorithms. We give design recommendations to provide resistance to
these attacks for proposals following this model.

Keywords. MAC, stream ciphers, message injection, collision attacks, forgery attacks,
side-channel attacks.

2010 Mathematics Subject Classification. 94A62.

1 Introduction

A Message Authentication Code (MAC) is used to provide assurance of the in-
tegrity of messages, and requires use of an algorithm along with knowledge of
a secret key. MACs are commonly formed using either keyed hash functions or
block ciphers in certain modes of operation, such as CBC mode. More recently,
algorithms to construct a MAC using a stream cipher have been proposed. Some
proposals which make use of symmetric ciphers claim to provide both confiden-
tiality and integrity assurance simultaneously. Such proposals are referred to as
Authenticated Encryption (AE) [5, 6]. The threat model for authenticated encryp-
tion may vary, depending on whether the MAC is constructed from plaintext or
ciphertext. In [5, 6], it is proved that performing encryption first and then form-

254 M. Al Mashrafi et al.

ing a MAC for the resulting ciphertext provides the greatest security for authen-
ticated encryption, provided that the underlying integrity component is strongly
unforgeable. In this paper, we investigate the integrity components of several ex-
isting authenticated encryption proposals to determine the conditions under which
the components are strongly unforgeable. The paper includes research previously
presented in [2], along with the results of additional investigations into statistical
properties and side channel attacks.

There is extensive research in the existing literature on generating MAC tags us-
ing block cipher algorithms, but much less on generating MAC tags using stream
ciphers. This may be due to the existence of block cipher standards such as DES
and AES with well-known modes of operation. However, stream ciphers have
a smaller footprint in hardware (and often software) applications and are gener-
ally faster, so a stream-cipher based MAC is worth considering. These may be
especially useful for resource constrained applications, where block-cipher based
MACSs may be unsuitable.

Lai et al. [17] proposed a cryptographic checksum algorithm based on stream ci-
phers. Goli¢ also describes a mode of operation to generate a MAC using a stream
cipher [13]. Of the thirty-four stream cipher proposals submitted to the eSSTREAM
project [8], seven claimed to provide AE. More recently, the NIST competition to
develop a new cryptographic hash algorithm (to be known as SHA-3) received
sixty-four submissions; seven of these used stream cipher algorithms to generate a
hash value. Although flaws exist in these proposals, resulting in none of them be-
ing considered as finalists in the respective competitions, the proposals themselves
demonstrate interest in MAC generation using stream ciphers.

Nakano et al. [21] proposed a general model for generating a hash value using
a stream cipher by injecting the input message directly into the internal states of
the cipher. Their security analysis suggests that the message injection function
is critical in achieving collision resistance for MACs which fit their model. In
[20], the hash function properties associated with two different methods for direct
message injection into the internal states of the ciphers are considered. In [3] this
approach is adapted for MAC generation using direct injection into the internal
state of a nonlinear filter generator.

In this paper we analyse proposals for MAC generation which use stream ci-
phers in an entirely different way from the direct injection method of the Nakano
model [21]. Rather than direct injection, some existing stream cipher based MAC
proposals use the input message to control the compression of a bitstream from a
keystream generator to form a MAC tag. We refer to this method as indirect mes-
sage injection. We present a general model for generating a MAC tag using stream
ciphers in this way, and use a matrix representation of the MAC tag generation
process in our analysis. We consider certain design options for MAC generation

Indirect message injection for MAC generation 255

under this model, and analyse the security implications associated with particular
option choices with respect to the resistance provided to forgery attacks and side
channel attacks. We apply this analysis to three proposals: Sfinks [7], 128-EIA3
[10,11] and Grain-128a [1].

This paper is organised as follows. Section 2 outlines the phases in generating a
MAC tag, and Sections 2.1 and 2.2 describe a method for performing authenticated
encryption and a general model for generating a MAC using a stream cipher and
indirect message injection. Three specific algorithms that use a stream cipher to
generate a MAC tag in this way (Grain-128a, Sfinks and 128-EIA3) are examined
in Section 3. Our security analysis for the general model is presented in Section 4,
and for these specific MAC algorithms in Section 5. Concluding remarks are con-
tained in Section 6.

2 MAC generation using indirect message injection

A MAC algorithm takes as input an arbitrary length message M of length [bits;
a k-bit secret key K; and optionally a v-bit initialisation vector IV. The algorithm
output is a MAC tag of fixed length d. Common values for d are 32, 64 or 128
bits. The generation of a MAC tag usually involves three phases, which we refer
to as preparation, accumulation and finalisation. The preparation phase involves
both initialising the internal states of the integrity components of the device, and
preparing the input message. Message preparation may require the addition of
padding bits to the beginning or end of the message. The accumulation phase is
where the input message is processed and values are accumulated in the internal
states of the integrity components of the device. The finalisation phase completes
the processing of the MAC tag. This is usually performed by combining the stored
value at the end of the accumulation phase with a masking value.

A MAC tag may be computed for either plaintext or ciphertext, so we use the
more general term message to cover both of these input types. The most common
structures for MAC algorithms use the message directly, accumulate bits or words,
and then apply a finalisation phase to generate the MAC tag [22]. Some AE stream
cipher proposals use a very different authentication strategy, which makes use of a
keystream sequence. Rather than using the message (either plaintext or ciphertext)
directly in the accumulation phase, these proposals use the message as a means to
control the accumulation of a keystream sequence. After the message has been
processed, the accumulated value then forms the basis of the MAC tag for the
input message. In this section we describe explicitly a model for generating a
MAC tag using stream ciphers in this manner.

256 M. Al Mashrafi et al.

l \Y) lK

[Keystream Generator] llvl lK. llvc ch

Plaintext

[Keystream Generator][Keystream Generator]

Plaintext

Confidentiality

MAC tag Ciphertext MAC tag | Ciphertext

...

(@) (b)

Figure 1. Structures for providing authenticated encryption using stream ciphers.

2.1 General structure

The keystream generator of a stream cipher takes as inputs a secret key K and a
public IV, and generates a pseudorandom binary sequence. Usually, these binary
sequences are used as keystream for a binary additive stream cipher to provide
confidentiality for plaintext messages. However, they can also be used for integrity
applications. Where authenticated encryption is required, the bitstream used for
the integrity application can be produced by the same generator as the bitstream
used for the confidentiality application, but a different keystream generator could
also be used.

Figure 1 (a) illustrates the case where a single keystream generator using a key
K and an IV produces two different binary sequences, z and y, used for confiden-
tiality and integrity applications, respectively. Considering the order in which the
encryption and authentication operations are performed, and using the terminol-
ogy of [6] this may be described as Encrypt and MAC, if the input to the integrity
component is the plaintext; or Encrypt then MAC, if the input to the integrity com-
ponent is the ciphertext. For the case where one keystream generator produces both
sequences z and y, we assume that the two bitstreams used are distinct. Examples
of algorithms that operate in this manner are Grain-128a [1] and Sfinks [7].

Alternatively, two bitstreams z and y could be generated by separate keystream
generators, as shown in Figure 1(b). Distinct keys and IVs are used for each
generator: K¢ and IV ¢ for the confidentiality component, and K7 and IV for the
integrity component, respectively. If the MAC is formed from the plaintext, then
this is the traditional method of encryption and a separate MAC. If the ciphertext
is used as the input to the MAC then, using the terminology of [6], this may be
described as Encrypt then MAC. Algorithms operating in this manner are SNOW
3G [9], used in 128-EIA2; and ZUC [10], used in 128-EIA3.

Indirect message injection for MAC generation 257

,'1‘401[[| [shiftregisterr | [| lr[dru\F—"y;

m;

i
i
Accumulation}
|
i

2 o 22

(N "\ Final mask
Finalisationi (F)
i MAC tag

Figure 2. MAC generation using indirect message injection.

In either case, our interest is in the process by which the MAC is generated.
That is, our analysis focuses on the integrity component of the designs, which is
the part of Figure 1 (in both structures (a) and (b)) inside the dashed line.

2.2 Structure of integrity algorithm

For MAC generation using indirect message injection, the major components used
are two registers, each consisting of d binary stages, where d is the length of
the MAC tag. The relationship between these two registers, the binary keystream
sequence and the input message M is shown in Figure 2.

The first register, denoted R, is a shift register. Let R; denote the contents of
register R at time ¢, with R; = [r¢(0),...,r:(d — 1)]. The initial contents of R
are Rop = [ro(0),...,ro(d — 1)]. At each time ¢, for t > 0, the contents of R are
updated using bit y;—; from the binary sequence y as follows:

Ry (i) = {r,_l(l +1) fOI’l' =0,...,d =2, .1
Yi—1 fori =d — 1.
Thus the contents of register R can be considered as a d-bit “sliding window” on
the sequence Rg||y, where || denotes concatenation.

The second register is an accumulation register, denoted A. Let A; denote the
contents of register A at time ¢, with A; = [4;(0),..., A;(d — 1)]. The initial
contents of A are Ay = [ap(0),...,ao(d — 1)]. At time ¢, the contents of register
A are updated using the existing contents of A and the contents of register R,
conditional on the value of the input message bit M;. If the message bit M; at time
t is 1, then register A is updated by bitwise XORing with the contents of register
R;; otherwise the contents of A remain unchanged, as given in equation (2.2).

Ay @ Ry i M, =1,
At:{ 1 @ Kooy it M (22)

A1 otherwise.

258 M. Al Mashrafi et al.

The input message M controls which of the d-bit segments of the sequence
Rp||y are accumulated into register A. In this paper we use a matrix representa-
tion of the accumulation process for our analysis. Consider A; as an array of d
bits, representing the d values in register A when the ith message bit has been
processed. The contents of A; can be expressed as A; = Ag @ T; M;, where Ay is
the array containing the initial values of register A, M; consists of the first i bits
of the message M and T; is a d x i matrix such that the jth column of 7; contains
R;,for j = 0,1,...,i — 1. The matrix representation for A; as A9 & 1; M;, is
given below.

[a0(0) |
ao(1)
aop(2) (2.3)
| ao(d —1) |
ro(0) ro(l) «-- ro(d—=1) yo -+ Yyi—a—1 mo
ro(l) — ro(2) --- Yo Y1 o Vi-d mi
rod—1) yo -+ Ya—a Yd-1 ** Yi-2 mi_q

Note that each row of 7; consists of i consecutive bits from the sequence Ry ||y,
and is closely related to the rows above and below it (each row is a bit-shifted ver-
sion of the rows above and below it). The accumulation process begins after the
two registers have been initialised and the input message prepared for processing.
Many authentication algorithms refer to this message processing phase as a com-
pression function. In this paper we refer to it as the accumulation phase of MAC
generation. We consider the message processing phase as a whole, but also as the
composition of many iterations of a sub-process. This is necessary in identifying
potential forgery attacks.

Once all of the message bits have been processed, the MAC finalisation phase
begins. This involves combining the final contents of register A with a masking
value. Let F = [f(0), f(1),..., f(d — 1)] denote this d-bit final mask. Thus, for
a message M of length / the MAC is formed as follows:

MACM;) =A@ F =Ao®TiM; & F.

Indirect message injection for MAC generation 259

2.3 Optional processes

For the general model using indirect message injection in the accumulation phase,
as shown in Figure 2, we consider several options for the preparation and finalisa-
tion phases, respectively. The security implications of these options are discussed
in Section 4 of this paper.

In the preparation phase the options relate to the initialisation of the two regis-
ters R and A, and to preparation of the message. Either register could be initialised
with fixed values, such as all-zeroes; or with key dependent values, such as a seg-
ment from the keystream sequence y. The input message could be padded, by
appending a specified sequence of bits at either the beginning, the end, or at both
places. Alternatively no padding could be applied. If M; is padded with n bits, we
use M), to denote the padded message, where p = [4 n.

In the finalisation phase the final contents of accumulation register A are com-
bined with a mask, F', as shown in Figure 2. The mask may be obtained from the
sequence y used in the accumulation function, or from another sequence. For AE
applications, this may be the sequence z used for the confidentiality component.
In some cases, a null mask (all zero values) is used.

3 Recent proposals using this model

Several AE stream cipher proposals use the model presented in this paper, but with
slight differences in the choice of options. As each proposal uses the same process
for the accumulation phase (described in Section 2.2), we describe only the options
taken for the preparation and finalisation phases of the ciphers. In this section we
examine the MAC generation processes for Grain128-a, Sfinks and both version
1.4 and version 1.5 of 128-EIA3.

3.1 Grain-128a

Grain-128a [1] is a bit-based cipher from the Grain stream cipher family [16] with
an added authentication mechanism. Grain-128a uses a 128-bit secret key and a
96-bit public IV, and generates two different sequences y and z, used for integrity
and confidentiality applications, respectively. The MAC tag has length d = 32
bits. It is not clear from the cipher specification whether the message used for
MAC generation is plaintext or ciphertext. However, the designers claim that the
authentication mechanism is similar to ZUC (that is, 128-EIA3), so we will con-
sider this message to be ciphertext. According to the classification of [35, 6], this
algorithm therefore uses an encrypt-then-MAC procedure. The two discretionary
phases of MAC generation for the Grain-128a design are as follows:

260 M. Al Mashrafi et al.

Preparation phase. Both registers R and A are initialised directly from the
Grain-128a bitstreams. Let [y_¢4, Y—63, ..., ¥—33, V=32, ..., y—1] denote the first
64 bits of the keystream y. Then Ag and Ry are as follows:

V—64 y-32

V—63 y-31
A() = . and Ro = X

y-33 y—1

The input message is padded with a single bit of value 1 at the end of the message,
so My = Mj||1 = [mo,my,...,my_y,1].

Finalisation phase. After all / + 1 bits of the padded message have been pro-
cessed, the contents of register A at time / 4 1 represents the final MAC tag. That
is, the final mask F' is a null mask (consists of all zero values). So for Grain-128a,
the matrix representation of the MAC tag is given by

Y—64 Y-32 Y-31 - YI-32 mo
Y—63 Y-31 Y-30 - YVI-31 mi
MAC(Mp) = :) : : :
Y—-34 Y—2 Y-1 - Vi mp—
| y-33] [y-1 yo 0 oy || 1]

3.2 Sfinks

The Sfinks [7] stream cipher proposal submitted to eSSTREAM [8] includes an au-
thentication mechanism. The keystream generator uses an 80-bit secret key and an
80-bit IV to form an initial state for a 256-stage binary linear feedback shift regis-
ter (LFSR), which is the major component of the keystream generator. Nonlinear
filters are applied to the state of the LFSR to produce two different sequences y
and z, used for integrity and confidentiality applications, respectively. Two ad-
ditional 64-bit registers are used in the authentication mechanism in the manner
shown in Figure 2. The Sfinks MAC tag has length d = 64 bits and is generated
from the plaintext; it is then appended to the ciphertext to form the transmitted
message. According to the classification of [5, 6], this algorithm therefore uses a
MAC-then-encrypt procedure. The two discretionary phases of MAC generation
for the Sfinks design are as follows:

Indirect message injection for MAC generation 261

Preparation phase. Before processing the message, both registers R and A are
set to zero and an initialisation algorithm is used to incorporate the first 128 bits of
keystream [y_128, ¥—127, ..., y—1] into the initial values of these registers. This
algorithm consists of updating the registers R and A 128 times, according to equa-
tions (2.1) and (2.2), but with m; = 1 for —127 < i < 0. Note that this process
is equivalent to setting both Ry and Ag to all zero and padding the input mes-
sage at the beginning by concatenating with a sequence of 128 ones. That is,
M, =1[1,1,... 1]|[[mo,m1,....mj_4].

Finalisation phase. After all of the bits of M), have been processed, the contents
of register A are combined (by XORing) with a final mask that comprises 64 con-
secutive bits from the confidentiality sequence z, beginning immediately after the
segment used to encrypt the input message. For Sfinks, the matrix representation
of the MAC tag is given by

_ N 2
0 0 - 0 y_128 '+ Yi-es .
+1
0 0 -+ y_128 Y—127 *** Vi—6a | .
+2
MAC(Mp) = | : : : : : . S
0
0 0 -+ Y671 Y66 -* Vi-3 .
+62
|0 y-128 =+ Y66 Y-65 VI |
=n | ZI+63]

3.3 128-EIA3 version 1.4

Version 1.4 of the 128-EIA3 [10] integrity algorithm uses the ZUC stream cipher
[11] as a keystream generator. ZUC is a word-based stream cipher operating on
32-bit words. It uses a 128-bit secret key and a 128-bit IV. The 128-EIA3 MAC
tag has length d = 32 bits and is generated from the ciphertext before the two are
concatenated to form the final transmitted message. According to the classifica-
tion of [5, 6], this algorithm thus uses an encrypt-then-MAC procedure. The two
discretionary phases of MAC generation for the 128-EIA3 version 1.4 design are
as follows:

Preparation phase. The 128-EIA3 algorithm does not use physical registers for
R and A, but instead represents these registers using variables k and T, respec-
tively. In this paper we retain our notation, and use R and A for the two 32-bit
intermediate storage variables. In the preparation phase, register A is initialised

262 M. Al Mashrafi et al.

with all zero values, and register R is initialised with bits from the keystream se-
quence y. Let [y_32, y—31,..., y—1] denote the first 32 bits of y. Then

y-32
y-31
Ry =)

Y—1

The input message M; is padded by adding one bit of value 1 at the end of the
message, so M, = M;||1 = [mo.m1,...,my_q1,1].

Finalisation phase. After all / + 1 bits of the padded message have been pro-
cessed, the contents of register A at time / + 1 are combined with the final mask.
The final mask consists of 32 consecutive bits from the sequence y, beginning at
Vi+32. The final 128-EIA3 version 1.4 MAC tag is given by

y-32 Y-31 =+ V-1 Yo - Vi-32 mo Vi+32
Y-31 Y-30 - Yo Y1 - JVi-31 mi Yi+33
MAC(Mp) = : : : : : : @ :
Y—2 Y-1 -0 Y29 Y30 - YVI-2 mj—q Vi+62
| V-1 Yot y30 ¥y o oy || 1] | Vi+63 |

3.4 128-EIA3 version 1.5

Version 1.5 of 128-EIA3 was proposed in response to a successful forgery attack
[12] on version 1.4. We discuss this attack in more detail in Section 4. Version
1.5 is identical to version 1.4 except for the values used for the final mask. Al-
though the final mask is still obtained from the sequence y, instead of taking the
32 consecutive bits starting with y; 35, the final mask in version 1.5 starts at the
beginning of the next 32-bit word of keystream. Thus the 128-EIA3 version 1.5
MAC tag is given by

MAC(M)p) =
Y-32 y-31 = Y-1 Yo " Vi-32 mo Y([1/32]+1)%32
Y-31 Yy-30 -+ Yo Y1 - VI-31 mi Y(([1/32]1+1)x32)+1
. @ .
Yy—2 Y—-1 - Y29 Y30 - YVi-2 mj— Y((T1/321+1)%32)+30
| y-1 Yo 0 ¥z 3o oy || U | [Di/s21410)%32)+31 |

Indirect message injection for MAC generation 263

4 Security analysis of MAC algorithms

In this section we consider the security of MAC tags generated using the input
message indirectly, as in the general model described above. We consider the
security provided by the model with respect to both forgery attacks and side chan-
nel attacks. We provide recommendations and design guidelines for providing
resistance to these types of attacks. In our analysis we assume that the binary se-
quences generated by the keystream generators are pseudo-random and cannot be
distinguished from a truly random source.

4.1 Forgery attacks on MAC algorithms

To be considered secure, a MAC algorithm using a k-bit key, K, and producing
a d-bit MAC tag should provide resistance against forgery attacks. That is, an
attacker who does not know the secret key K but knows other information, such as
sets of input messages and the corresponding MACs formed using the secret key
(and possibly other public information such as the initialisation vectors), should
not be able to produce a valid MAC for any other message with any probability
better than guessing [15, 19]. A naive attacker may attempt to guess either the
d-bit MAC value, or the secret key, K, which could be used to compute the MAC
for any message, requiring at most 24 and 2K guesses, respectively. Other attacks
can be compared with the effort required for these naive approaches.

Consider the possibility of a forgery attack being conducted as follows. Suppose
for a message M a MAC tag MACk 1v(M) is generated using key K and IV.
The sender intends to transmit M and the MAC tag MACg 1v(M) to a particular
receiver. Assume a man-in-the-middle attacker intercepts the message-MAC tag
pair. The attacker tries to modify M and possibly also MACk 1v(M). The attacker
then sends the pair (M’, MACk 1v(M’)) to the intended message recipient. If it is
possible to alter M to M’ and produce a valid MACk 1v(M’) for M’ without any
knowledge of the keystream sequences used to generate MACg 1v(M), then the
forgery attack will be successful. We investigate the possibility of such forgeries
for modifications to the message involving flipping, deleting and inserting bits
into M.

Our analysis of the resistance to forgery attacks considers the security of the
accumulation process, and explores the security implications of particular choices
from the various options for the preparation and finalisation phases. Recall from
equation (2.3) that MACkg v(M)) = Ao @ Ti1M; & F = (Ty)M;) & (Ao @ F).
That is, the final MAC tag is simply the linear combination of the separate effects
of the accumulation process 7y M; and the masking vector Ag & F. In many
cases, modifying the bits between the ends of a non-zero message changes the

264 M. Al Mashrafi et al.

segments of the (unknown) pseudorandom sequence accumulated in register 4, so
does not lead directly to forgery attacks. We consider possible forgeries related to
modification of the bits at either of the ends of message M. We first explore the
security of the accumulation process, represented in the matrix form as 7y M}, and
then explore the security implications of certain choices for the masking vector
Ao @ F.

4.1.1 Security considerations for the accumulation process

Consider a message M of length /, with no padding. Let X = [x¢,X1,...,Xg7—1]
denote the output of the accumulation process. We represent this in matrix form
as follows:

o
X1
XM =1 . 4.1)
LXd—1
ro(0) ro(1) «+- ro(d—=1) yo -+ yi—g—1 mo
| re() o2 - o it Vied mi
L ro(d—=1) yo -+ Ya—2 Ya-1 = Vi-2 mj_1

Where a message M is modified to obtain a new message M’, we will use the
notation X' = [xg, x{,...,x};_] torefer to X(M’).

Bit flipping forgeries. Consider firstly the simple case where R is initialised
with zero values. Thatis, Rp = [0, 0, ..., 0]. Then all elements in the first column
of matrix 7; are zero, and hence my, the first bit of M;, has no effect on the
value of X(Mj). Let m; denote the complement of m;. Consider two messages
M; = [mo,my,...,mj_1] and M] = [mg,my,...,m;_;]. Clearly X(M;) =
TiM; =TiM l/ = XM l/). This collision leads directly to a forgery; the attacker
can provide a valid X’ for M’ with probability of 1.

Similarly, since all elements in the second column of matrix 7; are zero, except
possibly yg, clearly my, the second bit of Mj, only affects bit x;_1 of X(M;).

Modifying M; so that M] = [mo,my,...,m;_] requires the attacker to guess
only x/;_, to construct a valid X(M’). The probability that X(M;) = X (M) is
therefore 0.5. Similarly, for a message M l, " = [mo,m1, ..., mj_q], the probability

that X(M;) = X(M]') is 0.5. In general, if we flip bit 7m; and any of the bits up to

Indirect message injection for MAC generation 265

m; in the original message, for 0 < i < d — I, then the probability of a collision
with X(M;) is 27¢. Such a forgery attack therefore succeeds with probability 27,

Consider now the case where Ry is known and of the form [1, 0,0, ..., 0]. Then
all elements in the first column of matrix 7; are zero, except ro(0). Now my, the
first bit of M;, affects only the value of bit xo of X(M;). Thus it is possible to
modify M; by flipping m¢ and to provide a valid X' for M; = [nig, m1, ..., m;_4]
by flipping x¢. Thatis, X(M') = [Xo, x1, ..., x;—1]. Thus an attacker can provide
a valid X’ for M’ with probability of 1.

Similarly, for Ry = [1,1,0,...,0], all elements in the first column of 7} are
zero, except 79(0) and ro(1), and all elements in the second column of 7; are
zero, except r9(1) and possibly yo. Thus message bit mg affects only the values
of bits xg and x; of X(M;), while message bit m affects only the values of bits
xo and possibly x;_1. Modifying M; by flipping both m¢o and m requires the
attacker to flip only x; to form x}, and to guess x);_, to provide a valid X".
Therefore the probability that an attacker can construct a valid vector X’ for M l/ =
[I’ﬁo,l’ﬁ], NN ,ml_l] is 0.5.

In general, for any known Ry, if we flip bit m; and any of the bits up to m; in
the original message Mj, for 0 < i < d — 1, then we can construct a valid X’ for
this modified message M l/ by flipping the required bits in X and guessing the final
i bits to form X’. Therefore, the probability that an attacker can construct a valid
vector X’ for M"is 27,

Resistance to this type of forgery can be provided in two ways. Firstly, rather
than using known values, R can be initialised using key dependent values such
as a segment from the keystream sequence y. Secondly, the message M; may
be padded by concatenating with a segment of all ones, so that M, =
[1,1,...,1]||M;. The padding should consist of at least d ones, so that all message
bits affect all bits in X, and hence all bits in the final MAC tag, in an unpredictable
manner. Note that a key dependent initialisation of R may be the more efficient
approach, as padding increases both the length of the message and the size of the
matrix 7', requiring at least (d + [) operations to generate the final MAC tag.

Bit deletion forgeries. Consider modifying message M; = [mg,my,...,m;_1]
by deleting the first bit, mg, to obtain Ml’_1 = [my,ma,...,m;_1]. Then the
matrix 7j_; for M l/—1 is just the matrix 7; for M l/ without the last column of 7j.
Note in equation (4.1) that row i + 1 in matrix 7 is equivalent to row i shifted one
position to the left, for 0 < i < d — 2, and with a new value as the final element
in the row. Applying this to X = TjM; and X' = T;_;M;_, it follows that
xi = ro(i)mo + xj,,for0 <i <d —2.

Now consider again the simple case where R is initialised with zero values.

As all elements in the first column of matrix 7 are zero, x; = xlf 11 for 0 <

266 M. Al Mashrafi et al.

i <d—2. Thatis, for M]_| = [my,ma,...,mj_1], itis clear that X'(M;) =
[B,x0,X1,...,Xg_2], for some unknown . We call this the sliding property of
the product 7; M;. An attacker can slide X(M;) and guess B, and hence provide a
valid X’ for M’ with probability of 0.5.

Similarly, an attacker can form a message M,” . = [m;—_1,...,m;_;] by delet-
ing the first 7 bits of the message M;. Now the output of the accumulation phase
is

X(M[";)) =1[Bo.Br.....Bi—1.X0. X1, ..., Xg—i—1],

where the bits f¢, B1, ..., Bi—1 must be guessed by the attacker. The attacker can
provide a valid X for M;” . with probability 27", for 1 < i < d. Note that for
i = d, this is effectively a brute force attack on X, so this attack is only effective
for deletion of up to the first d bits of M;. This attack can also be adapted for the
case where Ry is non-zero but known; all that is required is to flip the appropriate
bits of X, as described for bit flipping forgeries, before shifting X and guessing
the bits ﬂo, ,81, cee ,3,'_1.

Suppose now that Ry is unknown, but that the first j bits of the message are
known to be zeroes. These bits do not cause any keystream to be accumulated into
register A, so we can again delete the first i < j bits of the input message, shift
X by i places and guess fBo, B1....,Bi—1 to obtain a valid X’ for the modified
message M,_. The attacker can again provide a valid X’ for M’ with probability
of 27 for1 <i <d.

Resistance to forgery attacks based on the deletion of bits from the start of the
message can be provided in two ways. Firstly, the message can be padded at the
start with at least d ones. Alternatively, R can be initialised using key dependent
values, and the message can be padded at the start with a single one.

Now suppose we consider deleting bits from the end of the message. Assuming
that [> d, if we delete the last bit of M;, then Ml’_1 = [mo,mq,...,m;_5].
Then x; = x| + yj—g4i—1mj—1,for0 <i < d — 1. If m; = 1 the second term
is unknown since it involves keystream bits, and the attacker must guess these
elements of the keystream. Thus it is not feasible to obtain a forgery in this way.
However, if m;_; = 0, then X(M;) = X(M l/ _1)» and the attacker can forge the
MAC tag for the new message M l/—1 with probability 1. Similarly, if the final j
bits of the input message are known to be zero, then deleting these bits will not
change the final contents of the accumulation register A, and hence X = X’ and a
forgery is again possible. Such forgeries can be prevented by padding the message
with a final one, since this is equivalent to having a message of length / 4 1 with
m; = 1.

Indirect message injection for MAC generation 267

Bit insertion forgeries. Consider modifying message M; = [mg,m1,...,mj_1]
by inserting i zero bits at the end of the message M;, to obtain
Ml,-}—i = [mo,my,...,m;_1,0,0,...,0]. Using our matrix representation, per-
forming the accumulation phase for M l/ 4 requires adding i columns to the matrix
T; used for M;. During the accumulation process, regardless of the values in these
columns, multiplying by the additional message bits of value zero does not change
the value of X. Hence X(Ml/+i) = X(M;), for any i > 0. Again, this collision
leads to an obvious forgery attack which succeeds with probability 1.

Now consider modifying message M; = [mg,m1,...,m;_1] by inserting an
additional 1 at the end of message M, to obtain Ml’+1 = [mo,my,...,my_1,1].
In our matrix representation, adding an additional bit to the end of M; requires the
addition of another column to 7;. The additional column of 7" will be multiplied
by the added message bit of value 1, and this may change the values of X’. The
probability of obtaining a valid MAC tag X' for this modified message M l/ 4118
the same as the probability of a brute force attack on the MAC. Therefore, forgery
attacks consisting of inserting bits of value zero at the end of the message can be
prevented by padding the message with a bit of value 1 at the end. An equivalent
solution, which we discuss in the following section, is to use a masking term that
depends on the message length.

Now consider modifying message M; in a different manner; inserting a zero bit
at the beginning of message M, to obtain Ml/+1 = [0,mg,m1,...,m;_q]. From
the structure of 77 and 77 it follows that, in a manner similar to that described in
the discussion of forgeries associated with bit deletion at the start of the message,

x; =ro(i)0+x;+1 = Xj+1,for0 < i < d —2. Hence for Ml’+1 the output of the
accumulation phase is X(Ml’_H) = [x1,X2,...,Xq—1,], for some unknown o.
An attacker can guess « and hence provide a valid X’ for M l/ 41 with probability

equal to 0.5.

Similarly, an attacker can form a message M l//+ ; by adding 7 zeroes to the be-
ginning of message M;. The attacker can form the new X" for M . as X" =
[Xi, Xi+1,...,Xg,Q0,Q1,...,0—1], where the bits «g,aq,...,0;—1 must be
guessed. Therefore an attacker can provide a valid X" for M;’ ; with probabil-
ity 27%, for 1 < i < d. This is the basis of the previously reported attack on
128-EIA3 version 1.4 [12].

If R is initialised with zeroes, so that Ry = [0,0, ..., 0], then this attack will
work for inserted bits of either value since, using our matrix representation, the
first i bits of M;" ; are all multiplied by zeroes in the first d —i + 1 rows of Tj ;.
Therefore, the inserted bits affect only the last i — 1 bits of X l//-'rl which are bits
that must be guessed anyway. Furthermore, this forgery attack can be adapted to
the case of known (but not necessarily all zero) Ry. In that case, the effects of any
inserted bits of value 1 can be determined and allowed for in applying the attack.

268 M. Al Mashrafi et al.

From the discussion above, it is clear that attacks involving the insertion of bits
at the start of a message can be prevented by ensuring that R is initialised with
unknown values (keystream) and that the start of the message is padded with at
least one bit of value one.

4.1.2 Security considerations for the masking vector A9 & F

The forgeries discussed thus far can all be prevented by making suitable choices
for Rg and padding the message M; appropriately. More specifically, R should be
initialised with keystream bits, so that the contents are unknown, and the message
M should be padded with a bit of value 1 at both ends. The masking vector Ao® F
provides an alternative means of preventing many of these forgeries. We explore
the security implications of various options for this term. We begin by noting that
if Ag @ F is to contribute to the security of the MAC tag, it is important that the
contents are unknown to an attacker. Therefore, at least one of A¢ and F must be
sourced from keystream.

If Ry is known and there is no message padding, then the accumulation term
X = T; M is vulnerable to attacks involving the insertion or deletion of zeroes at
the end of the message, and to attacks involving the insertion or deletion of bits
at the start of the message. If Ro is unknown then only the attacks involving the
insertion or deletion of zeroes apply. Forgeries involving insertions or deletions at
the start of the message rely on the sliding property of 77 M;, so that X’ is obtained
from X by shifting the values in X right or left, respectively, adjusting if necessary
and guessing the remaining places. These attacks can be prevented by using an
appropriate mask. For the mask to be effective in this respect, it is important that
changes in the length of the message do not result in corresponding changes in
the position of the mask bits or the sliding property of the accumulation phase
will apply to the MAC as a whole. The easiest way to satisfy this requirement is
to initialise A with bits from a fixed position, such as the start of the keystream
sequence y.

Conversely, forgeries involving the insertion or deletion of zeroes at the end of
the message rely on the fact that the additional bits have no effect on the accu-
mulated value X. Such forgeries can be prevented by using an unknown mask
that depends on the message length. One example of such a mask is constructed
using the values of F obtained as d consecutive keystream bits, starting at a fixed
distance from the last bit of the keystream sequence used in the accumulation
process. Note that padding the message with a final 1 is equivalent to including
F =1[yi—a+1,Yi—d+2,---,y1] as the final mask. That is, it is equivalent to start-
ing F at a position d — 1 bits before the last bit used in the unpadded case (y;_1).

Indirect message injection for MAC generation 269

Together, the choices for Ap and F discussed above provide an effective al-
ternative to message padding as a means of preventing bit insertion and deletion
attacks. Note, however, that the masking term Ag @ F cannot prevent the attacks
based on flipping the message bits.

4.2 Side channel attacks

These are attacks that apply to the (software or hardware) implementations of
cryptographic systems. Variations in the timing, power consumption or electro-
magnetic radiation as the message is processed may leak information, such as the
secret key used or the plaintext input message to the integrity components. In or-
der to carry out such attacks, the attacker must have the means to access the device
and measure the particular characteristic.

In the accumulation phase of the MAC generation process, the input message
acts as a control to determine which states of register R are accumulated into A.
This control mechanism is represented by the scalar multiplication operation ®, as
shown in Figure 2. An intuitive and effective way to implement the accumulation
phase is to use branching processes that are conditional on the input message bit
at each time step. If M;, the input bit at time ¢, is equal to one; then R; will be
accumulated into register A using the XOR operation; whereas if the input is zero
then we do not need to update the value of A.

If this approach is used, there will clearly be differences in the computation time
and power consumption for distinct steps in the accumulation process, dependent
on the individual bits of the input message. This opens up an avenue for timing
attacks, whereby the attacker can learn whether a message bit is 1 or O at each
clock by monitoring the time taken to complete each step of the accumulation
process. The message can then be recovered bit by bit for as long as the cipher
is monitored. Simple power analysis is also a possible attack method, since state
accumulation at clocks where the input message bit is of value 1 would have a
specific power consumption profile.

Side channel attacks associated with MACs represent a threat to the confiden-
tiality of information in situations where authenticated encryption is used and the
MAC is computed using the plaintext as the input to the MAC. The ciphertext
will be transmitted, and is therefore accessible by an attacker, but the encryption
provides confidentiality for the plaintext. However, a side channel attack on the
integrity component may reveal this plaintext. Note that if a MAC is computed for
the ciphertext, then the side channel attacks do not reveal any additional informa-
tion, as we assume that an attacker will have access to the ciphertext. Therefore,
for authenticated encryption, resistance to side channel attacks can be increased
by first encrypting the message and then using the resulting ciphertext as input to

270 M. Al Mashrafi et al.

the integrity component. Similarly, if a MAC is formed for plaintext that will not
be encrypted (that is, we want authentication only, not authenticated encryption)
then the side channel attacks do not reveal any additional information.

Side channel attacks against implementations of the authentication mechanism
based on the different timing and power consumption during message accumula-
tion can be prevented. This requires a slight modification to the design for the gen-
eral model given in Figure 2 so that the register A4 is replaced with two registers:
A and A'. Given these two d-bit registers, the update function given in equa-
tion (2.2) is amended so that one register or the other is updated at each time step,
conditional on the value of M;. That is, if M(t) = 0, then A? = A%, & R;—;
and A' is unchanged. However, if M(t) = 1, then A} = A!_| & R,y and A% is
unchanged. Thus the same operation is performed at each step. This modification
requires an additional register to implement the design, and additional accumula-
tion operations (XOR) will be performed. On average, the number of additional
operations will be around half the message length. In order to implement this
modified model, the MAC finalisation phase must be specified. One simple way
to complete the MAC process is to use the contents of just one of the registers, say
A, and treat it as register A in the original model. The final contents of the other
register are discarded.

4.3 Statistical analysis

Statistical tests can be used to test whether the values obtained as MAC tags for
a particular function are uniformly distributed, that is, whether the probability of
obtaining any particular MAC tag value for any input message is equally likely
over the set of all possible key—IV pairs. Three different statistical tests have been
applied to test for this property in a sample of d-tuples, namely the poker test
[4], the universal test [18] and the repetition test [14]. It is shown in [14] that
for d > 20 the repetition test is the “best” test to use since this test requires
significantly fewer samples than the other two tests.

The repetition test counts the number of different d-bit patterns occurring in
a set of d-tuples. Based on the birthday paradox, there is an approximately fifty
percent chance of finding at least two d -tuples that match in a randomly generated
set of size 24/2.

To apply the repetition test to a particular stream cipher based MAC, where the
length of the MAC tag is d-bits, it is necessary to generate a sample of sufficient
size S such that a limited number of repetitions is expected with high probability,
under the hypothesis that the sample is selected at random from a set of uniformly
distributed d-tuples. Under this hypothesis, the number of repeated patterns in a
particular sample of S d-tuples follows a Poisson distribution. The mean, A, for

Indirect message injection for MAC generation 271

this distribution can be calculated using the following equation:
A=S8—N(1—e 5Ny,

where N = 29. If we choose § = 24/2+3 then the value of A is approximately
32, for d > 20. The set of S d-tuples is generated by fixing one of the inputs
to the MAC generation algorithm, and varying the other inputs. For example, the
MAC tags may be generated for a fixed message, using different secret keys and
IVs. Alternatively, the MAC tags may be generated for many different messages,
using a fixed secret key and I'V.

The process for running the repetition test is as follows:

(i) Generate a sample of S = 24/2+3 J_bit MAC values.
(i1) Sort S and count the number of repeated values.

(iii) Compare the number of repetitions from the test with the expected number
A =32

(iv) Compare the test statistic to the relevant statistical tables to find the proba-
bility of obtaining the observed data under the assumed null hypothesis (the
p-value of the test).

The null hypothesis is that the number of repetitions follows a Poisson distri-
bution with mean A = 32. The test is applied as a two-tailed test of significance,
as either too many or too few repetitions of particular d -tuples may indicate non-
randomness. A low p-value provides evidence to reject the null hypothesis. The
amount of data required to run this test for the common MAC sizes of 32, 64
and 128 bits is 212, 23> and 267 MAC tags, respectively. Clearly the sample size
required for longer MAC tags makes this test infeasible for 128-bit MACs.

5 Security analysis for existing ciphers

In this section we apply the security analysis from Section 4 to the algorithms
described in Section 3. Specifically, we discuss the feasibility of applying forgery
attacks, side channel attacks and statistical analysis to each of these algorithms.

5.1 Forgery attacks
5.1.1 128-EIA3 version 1.4

A forgery attack on 128-EIA3 version 1.4 presented by Fuhr et al. [12] describes
how a message, M, can be modified by inserting additional bits of value zero
at the beginning of M. The attacker makes use of the sliding property between

272 M. Al Mashrafi et al.

the keystream sequence used in the accumulation process and the final mask to
compute a valid MAC for the modified message. We explain their attack using the
matrix representation introduced in this paper.

For 128-EIA3, Ay is initialised with all zeroes, so the masking vector is only
F. Thatis, MAC(M,) = T,M, @ I'. However, F is formed from y, the same se-
quence used as input to R. It consists of 32 consecutive bits of y beginning a fixed
distance after the last bit of y used for the accumulation process. Any modification
to M that increases or decreases the message length causes a corresponding shift
in the segment of y used to form F.

Consider inserting a zero at the start of M to form M’. From Section 4 it is clear
that X’, the output from the accumulation process for M’, is related to the value
X for the accumulation of the original message M by the sliding relationship,
so X' = [x1,x2,...,x4_1,a]. Since F also slides by one bit when a zero is
appended to the message, the entire MAC has this property, as noted in [12]. The
attacker need only guess one bit, «, to form a valid MAC for M’. The same
process applies for inserting i < d zeroes at the start of the message. The attacker
can obtain a valid MAC for such a message with probability 27

We now present another forgery attack on version 1.4 of 128-EIA3; this is a bit
deletion attack which can be applied where the message starts with one or more
zeroes. If we delete one of these zeroes, then the result X’ for the accumulation
phase of the modified message M is related to the value X for the accumulation of
the original message M by the sliding relationship, so X’ = [, x¢, X1, ..., Xq_2].
Since F also slides by the same amount the entire MAC has this property. The
attacker need only guess one bit, B, to form a valid MAC for M’. The same
process applies for deleting i < d zeroes from the start of the message. The
attacker can obtain a valid MAC for such a message with probability 27,

For other types of forgeries, resistance to bit flipping forgeries is provided by
initialising R with keystream, and forgeries involving bit insertion or deletion at
the end of the message are prevented because the message has been padded with a
single 1 at the end of the message.

5.1.2 128-EIA3 version 1.5

The modification to the starting position of the 32-bit segment of y used to form
F, introduced in version 1.5 of 128-EIA3, breaks the sliding property on F and
provides effective resistance to the types of forgery discussed above. As was the
case for 128-EIA3 version 1.4, resistance to bit flipping forgeries is provided by
initialising R with keystream, and forgeries involving bit insertion or deletion at
the end of the message are prevented by padding with a single 1 at the end of the
message.

Indirect message injection for MAC generation 273

5.1.3 Grain-128a

The cipher Grain-128a initialises both registers R and A with keystream. Bit flip-
ping forgery attacks are prevented by this initialisation of R, and forgeries involv-
ing insertion or deletion of bits at the beginning of the message are prevented by
this initialisation of A, as this breaks the sliding property for the masking value
Ao @ F. Forgeries involving insertion or deletion of bits at the end of the message
are prevented by padding with one bit of value 1 at the end of the message.

5.1.4 Sfinks

The cipher Sfinks uses message padding, by prepending 2d ones to M; to ensure
both registers R and A are initialised with keystream before the actual message
M; is input to the accumulation phase. Bit flipping forgery attacks and forgeries
involving insertion or deletion of bits at the beginning of the message are prevented
by this initialisation of R and A. Additionally, the final mask F is constructed
from a 64 bit segment of z (the sequence used to encrypt M; for confidentiality)
beginning at z;. Forgeries involving insertion or deletion of bits at the end of the
message are prevented by the use of this segment that is related to the length of the
message.

5.2 Side channel attacks

Reference implementations are publicly available for each of 128-EIA3 version
1.4 (for example, the C code implementation included in [10, Annex 2]), 128-EIA3
version 1.5 [11] and Sfinks [7]. In each case, these algorithms are implemented
with branching statements in the accumulation phase, and are therefore susceptible
to the side channel attacks discussed in Section 4. This is a security concern if
these implementations are used in actual applications.

We have been unable to locate any publicly available reference implementation
for Grain-128a. However, the considerations discussed above obviously apply in
developing any practical implementations of this cipher.

5.3 Statistical analysis

The repetition test described in Section 4.3 was applied to sets of MAC tags gen-
erated using each of three algorithms: the Grain-128a algorithm and versions 1.4
and 1.5 of the 128-EIA3 algorithm. Each of these produces a MAC tag of length
32 bits.

In each case, the test was applied to seven different sets of data, each consisting
of 212 MAC tags. Four of the data sets were formed using random messages and
fixed secret keys, two of the data sets were formed using fixed messages and ran-

274 M. Al Mashrafi et al.

128-EIA3 v1.4 128-EIA3 v1.5 Grain-128a

Message Key NR p-value NR p-value NR p-value
Random 1 Fixed 38 0.2888 34 0.7237 27 0.3768
Random 2 Fixed 27 0.3768 40 0.1573 31 0.8597
Random 3 Fixed 24 0.1573 25 0.2159 35 0.5959
Random 4 Fixed 35 0.5959 25 0.2159 24 0.1573
Fixed Random 1 25 0.2159 31 0.8597 26 0.2888
Fixed Random 2 26 0.2888 35 0.5959 38 0.2888

Random 4 Random 3 31 0.8597 31 0.8597 31 0.8597

Table 1. Results of repetition test for 128-EIA3 and Grain-128a algorithms.

domly generated secret keys, while the seventh data set used random messages and
random secret keys. The number of repetitions observed (NR) and the associated
p-values are given for each set of tags and each algorithm in Table 1.

As shown in Table 1, the minimum p-value for each of the algorithms tested
was over 15%. Thus, there is insufficient evidence to reject the null hypothesis in
any of the cases tested, and the results support the conclusion that the MAC tags
for each of these algorithms are uniformly distributed.

Similar tests can be carried out on sets of MAC tags from the Sfinks algorithm,
but the longer tag length (64 bits) will require larger storage (23> tags per test) and
a longer processing time.

6 Conclusion

In this paper we describe a general model for using a stream cipher to generate a
MAC tag, where the input message is indirectly injected into the integrity device
in the accumulation phase. The input message could be plaintext or ciphertext.
We outline the options available for the preparation and finalisation phases in this
model, and relate these options to the security provided against forgery attacks.
We consider forgeries where a message is modified either by flipping, inserting or
deleting message bits from either the start or the end of the message. In addition,
we consider the application of certain forms of side-channel attack. We examine
several authentication proposals that can be described by this model: Grain-128a,
Sfinks and 128-EIA3 (both versions 1.4 and 1.5).

The security analysis with respect to forgeries of the general model reveals that a
man-in-the-middle attacker could intercept a message M and MAC MACk 1v(M;)
and modify the message and possibly also the MAC in order to provide a valid
MAC for the modified message. The probability that the attacker constructs a valid

Indirect message injection for MAC generation 275

MAC for their modified message is better than guessing, for many combinations
of options. In order to prevent bit flipping forgeries, the register R should be
initialised with keystream. This also reduces the scope of forgeries involving the
insertion or deletion of bits at the start of the message. Prepadding the message
with at least d ones is a feasible but arguably less efficient alternative. To prevent
the remaining bit insertion and deletion forgeries, both of the following practices
should also be adopted:

(i) Pad the message with a 1 at the start and/or initialise register A with key-
stream from a fixed location in the sequence.

(i) Pad the message with a 1 at the end and/or construct the final mask F so that
the contents of F' depend on the length of the message.

Implementing the accumulation phase of the authentication mechanism using
a branching process conditional on the input message bit at each time step is an
intuitive and effective approach. However, this approach may also contribute to
the mechanism being vulnerable to certain forms of side channel attack, such as
a timing attack or simple power analysis. An implementation that consumes the
same amount of time and power for each accumulation step, regardless of the
value of the input message bit, will prevent this type of side channel attack. Such
an implementation may be achieved at the cost of an additional storage register
and a slight reduction in throughput.

As mentioned in Section 1, it was shown in [5, 6] that the AE method offering
the greatest security is provided by an algorithm which first performs encryption
and then uses the ciphertext to form a MAC, provided that the underlying integrity
component is strongly unforgeable. Of the AE algorithms described in Section 3,
the ones which use the encrypt-then-MAC procedure and are strongly unforgeable
(based on the results of Section 4.1) are 128-EIA3 version 1.5 and Grain-128a.
Both of these algorithms also passed the statistical test of Section 4.3, so there is
no evidence of non-uniformity in the distributions of these MAC tags. The only
concern from our analysis of these two algorithms is the need to be careful in the
actual implementation to avoid possible side channel attacks.

Acknowledgments. This research is partially supported by the Omani govern-
ment, through the provision of a doctoral scholarship for Mufeed Al Mashrafi.

Bibliography

[1] M. Agren, M. Hell, T. Johansson and W. Meier, Grain-128a: A new version of Grain-
128 with optional authentication, Int. J. Wireless Mobile Comput. 5 (2011), no. 1,
48-59.

276

M. Al Mashrafi et al.

(2]

(4]

(5]

(6]

(9]

(10]

[11]

[12]

[14]

[15]

[16]

M. AlMashrafi, H. Bartlett, L. Simpson, E. Dawson and K. Wong, Analysis of in-
direct message injection for MAC generation using stream ciphers, in: Proceedings
of the 17th Australasian Conference on Information Security and Privacy: ACISP
2012, Lecture Notes in Comput. Sci. 7372, Springer (2012), 138-151.

H. Bartlett, M. AlMashrafi, L. Simpson, E. Dawson and K. Wong, A general model
for MAC generation using direct injection, in: Information Security and Cryptology
(Inscrypt 2012), Lecture Notes in Comput. Sci. 7763, Springer (2013), 198-215.

H. Beker and F. Piper, Cipher Systems: The Protection of Communications, Wiley,
1982.

M. Bellare and C. Namprempre, Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm, in: Advances in Cryptology —
Asiacrypt 2000, Lecture Notes in Comput. Sci. 1976, Springer (2000), 531-545.

M. Bellare and C. Namprempre, Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm, J. Cryptol. 21 (2008), no. 4, 469—
491.

A. Braeken, J. Lano, N. Mentens, B. Preneel and I. Verbauwhede, SFINKS: A syn-
chronous stream cipher for restricted hardware environments, eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/026, www.ecrypt.eu.org/stream/sfinks.
html.

eSTREAM, The ECRYPT Stream Cipher Project, www.ecrypt.eu.org/stream.

ETSI/SAGE, Specification of the 3GPP confidentiality and integrity algorithms
UEA2 & UIA2, Document 2: SNOW 3G Specification, 2006.

ETSI/SAGE, Specification of the 3GPP confidentiality and integrity algorithms 128-
EEA3 & 128-EIA3, Document 1: 128-EEA3 and 128-EIA3 Specification, Version
1.5, 4th January, 2011.

ETSI/SAGE, Specification of the 3GPP confidentiality and integrity algorithms 128-
EEA3 & 128-EIA3, Document 2: ZUC Specification, Version 1.5, 4th January, 2011.

T. Fuhr, H. Gilbert, J. Reinhard and M. Videau, Analysis of the initial and modified
versions of the candidate 3GPP integrity algorithm 128-EIA3, in: Selected Areas in
Cryptography 2011, Lecture Notes in Comput. Sci. 7118, Springer (2012), 230-242.

J. Goli¢, Modes of operation of stream ciphers, in: Selected Areas in Cryptography:
SAC2000, Lecture Notes in Comput. Sci. 2012, Springer (2001), 233-247.

H. M. Gustafson, Statistical analysis of symmetric ciphers, PhD thesis, Queensland
University of Technology, 1996.

P. Hawkes, M. Paddon, G. Rose and M. Wiggers de Vries, Primitive specification
for NLSv2, eSTREAM, ECRYPT Stream Cipher Project, Report 2006/036, www .
ecrypt.eu.org/stream/nlsp3.html.

M. Hell, T. Johansson and W. Meier, Grain: A stream cipher for constrained envi-
ronments, Int. J. Wireless Mobile Comput. 2 (2007), no. 1, 86-93.

www.ecrypt.eu.org/stream/sfinks.html
www.ecrypt.eu.org/stream/sfinks.html
www.ecrypt.eu.org/stream
www.ecrypt.eu.org/stream/nlsp3.html
www.ecrypt.eu.org/stream/nlsp3.html

Indirect message injection for MAC generation 277

[17]

(21]

(22]

X. Lai, R. Rueppel and J. Woollven, A fast cryptographic checksum algorithm based
on stream ciphers, in: Advances in Cryptology — AUSCRYPT 92, Lecture Notes in
Comput. Sci. 718, Springer (1993), 339-348.

U. M. Maurer, A universal statistical test for random bit generators, J. Cryptol. §
(1992), 89-105.

A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1997.

Y. Nakano, C. Cid, K. Fukushima and S. Kiyomoto, Analysis of message injection in
stream cipher-based hash functions, in: Applied Cryptography and Network Security,
Lecture Notes in Comput. Sci. 6715, Springer (2011), 498-513.

Y. Nakano, J. Kurihara, S. Kiyomoto and T. Tanaka, On a construction of stream-
cipher-based hash functions, in: Security and Cryptography (SECRYPT 2010),
SciTePress (2010), 334-343.

G.J. Simmons, A survey of information authentication, Proc. IEEE 76 (1988), no. 5,
603-620.

Received January 23, 2013; accepted August 1, 2013.

Author information

Mufeed Al Mashrafi, Institute for Future Environments, Science and Engineering
Faculty, Queensland University of Technology, Brisbane, Australia.
E-mail: mufeed03@hotmail . com

Harry Bartlett, Institute for Future Environments, Science and Engineering Faculty,
Queensland University of Technology, Brisbane, Australia.
E-mail: h.bartlett@qut.edu.au

Ed Dawson, Institute for Future Environments, Science and Engineering Faculty,
Queensland University of Technology, Brisbane, Australia.
E-mail: e.dawson@qut.edu.au

Leonie Simpson, Institute for Future Environments, Science and Engineering Faculty,
Queensland University of Technology, Brisbane, Australia.
E-mail: 1r.simpson@qut.edu.au

Kenneth Koon-Ho Wong, Institute for Future Environments, Science and Engineering
Faculty, Queensland University of Technology, Brisbane, Australia.
E-mail: kk.wong@qut .edu.au

mailto:mufeed03@hotmail.com
mailto:h.bartlett@qut.edu.au
mailto:e.dawson@qut.edu.au
mailto:lr.simpson@qut.edu.au
mailto:kk.wong@qut.edu.au

