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Abstract. Non-linear feedback shift register (NLFSR) ciphers are cryptographic tools of
choice of the industry especially for mobile communication. Their attractive feature is a
high efficiency when implemented in hardware or software. However, the main problem
of NLFSR ciphers is that their security is still not well investigated. The paper makes a
progress in the study of the security of NLFSR ciphers. In particular, we show a distin-
guishing attack on linearly filtered NLFSR (or LF-NLFSR) ciphers. We extend the attack
to a linear combination of LF-NLFSRs. We investigate the security of a modified version
of the Grain stream cipher and show its vulnerability to both key recovery and distinguish-
ing attacks.
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1 Introduction

The one-time pad (OTP) is the only cipher that is unbreakable even for an adver-
sary who has unlimited computational power. Stream ciphers try to mimic OTP
but instead of a truly random sequence, they produce a pseudorandom sequence
from a relatively short random sequence (also called the seed). This, however, has
a profound impact on their security. Stream ciphers do not inherit the OTP un-
conditional security. Their security is conditional and depends on the difficulty of
recovery of the seed from an observed keystream.

The main advantage of stream ciphers is that they can be implemented very ef-
ficiently both in software and hardware making them very popular in the telecom-
munication industry. They are extensively used in mobile communications provid-
ing the basic security tool to ensure confidentiality and integrity of communication.
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Historically, the first stream ciphers were built using shift registers with a linear
feedback. Linear feedback shift registers (LFSRs) modify their internal state by
using a linear recursion. Stream ciphers based on LFSRs are insecure as the re-
covery of the internal state from an observed keystream is equivalent to solving a
relevant system of linear equations.

To increase security, stream ciphers are built using LFSRs combined with non-
linear components. The designs are tested and analysed thoroughly. Consequently,
a collection of design criteria has been identified. The collection can be used by
the designers to create new stream ciphers, whose security can be tested using a
collection of cryptographic attacks. The most effective tests for stream ciphers
include the correlation attacks [6, 12, 22, 25] and the algebraic attacks [1, 7, 8, 16].

A natural evolution in the design of stream ciphers is the introduction of non-
linear feedback shift registers (NLFSRs). NLFSRs can be seen as a generalisation
of LFSRs, where the modification of the internal state is done using a non-linear
relation [15]. While the mathematics behind LFSRs is well understood, the theory
of NLFSRs is in its infancy. There are many basic problems related to NLFSRs
that are still open. For instance, we do not know how to determine efficiently the
period, identify different sub-cycles, or find out the linear complexity of NLFSRs.

One could argue that the lack of understanding of mathematics behind NLFSRs
has led to proliferation of NLFSR-based stream ciphers as they are perceived to
be more secure than other designs. The finalists of the e-Stream project include
the Trivium [5] and Grain [17] ciphers that are exploiting one or several NLFSRs
combined with LFSRs. The security of an NLFSR filtered by a linear boolean
function is investigated using algebraic and correlation attacks in [2,11]. In partic-
ular, Berbain, Gilbert and Joux [2] show that a linearly filtered non-linear feedback
shift register (LF-NLFSR) can be translated to the well-known filter generator that
uses an LFSR and a non-linear filter function; see Figure 1.

1.1 Our contribution

The paper investigates the design principles and security of steam ciphers built
from LF-NLFSRs. First, we introduce a taxonomy of sequences generated by LF-
NLFSR stream ciphers. Next, we examine the security of the LF-NLFSR stream
ciphers against distinguishing attacks. Then, we identify criteria that need to be
satisfied for a secure LF-NLFSR cipher. Finally, based on the proposed criteria,
we show how to improve the time and data complexity of algebraic attacks on the
LF-NLFSR ciphers presented in [2].

The paper is organised as follows. Section 2 describes the LF-NLFSR cipher
and introduces the main idea behind our distinguishing attack. Section 3 investi-
gates security properties of stream ciphers whose LF-NLFSRs are chosen at ran-
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Figure 1. Translation of LF-NLFSR into LFSR with non-linear filter.

dom. The security properties of LF-NLFSRs associated with NLFSRs are studied
in Section 4. In Section 5, we study the security of a stream cipher, which is based
on a linear combination of LF-NLFSRs. We show that this type of cipher may be
vulnerable to distinguishing attacks. In Section 6, we suggest the design criteria
for stream ciphers based on LF-NLFSRs. Finally, Section 7 concludes the work.

2 Description of LF-NLFSR

Pseudo-random sequences generated by LFSR have been exhaustively studied and
there is a good understanding of their statistical and cryptographic properties. To
make the sequences immune against algebraic attacks, the (linear) sequence gen-
erated by LFSR is filtered by a non-linear boolean function. The stream ciphers
based on LFSRs with non-linear filters have been analysed by many researchers.
For instance, the works [3, 20, 23] present three recent designs of LFSR ciphers
with non-linear filters and their security is analysed in [14, 24, 26].

The duality between LFSR stream ciphers with non-linear filters and LF-NLFSR
stream ciphers is investigated in [2,11]. Given an LFSR stream cipher with a non-
linear filter, to determine the equivalent LF-NLFSR cipher, one needs to find a
non-linear update function for the NLFSR and the linear filter function so the ci-
phers generate the same keystreams. Formally, assume that an LF-NLFSR cipher
consists of an n-bit NLFSR and a linear function L. Its operation can be described
as follows:

st Œi � D st�1Œi C 1� for 0 � i < n � 1;

st Œn � 1� D f
�
st�1Œ0�; st�1Œ1�; : : : ; st�1Œn � 1�

�
;

where st Œi � is the i -th bit of the internal state of the NLFSR at clock t and f is a
non-linear feedback (state update) function. The output keystream is generated as
follows:

zt D L
�
st�1Œ0�; st�1Œ1�; : : : ; st�1Œn � 1�

�
:

In [2], this structure is investigated in terms of the algebraic and correlation attacks.
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2.1 Attacks on LF-NLFSR

LF-NLFSR ciphers can be vulnerable to the distinguishing and state recovery at-
tacks. The attacks can be more efficient if the linear filter function is chosen ran-
domly. In this section, we propose a distinguishing attack against LF-NLFSR
ciphers. In the attack, we exploit linear relations between output bits and the
NLFSR internal state. We approximate the non-linear feedback function by the
nearest affine function and thus we establish probabilistic linear relations. After
solving the relations, we are able to recover the internal state of the LF-NLFSR
cipher. The attack works even when the NLFSR uses a highly non-linear feedback
function. The difference between our attack and the attack by Berbain–Gilbert–
Joux [2] is that our attack needs to approximate a small number of bits of the
non-linear feedback function only. In other words, our distinguisher works with a
higher probability.

2.2 Distinguishing attack on LF-NLFSR

In this section, we show how to apply distinguishing attacks on LF-NLFSR ciphers
(see Figure 2). To make the presentation clearer, we start from a simple example.

Figure 2. 7-bit LF-NLFSR cipher.

Example 1. Given a 7-bit NLFSR that generates keystream by using the linear
boolean function L.s1; s3; s4; s7/ D s1 ˚ s3 ˚ s4 ˚ s7, where si (i D 1; : : : ; 7)
is the i -th bit of the NLFSR state. The feedback function f is the balanced non-
linear boolean function of the following form:

f .s1; s2; s3; s5; s6; s7/ D s1 ˚ s2 ˚ s6 ˚ .s3 � s5 � s7/:

NLFSR generates non-linear sequences of the period T7 D 27 � 1 (see Figure 2)
[10]. The output bits are generated as follows:

Oi D siC1 ˚ siC3 ˚ siC4 ˚ siC7: (2.1)
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Now, the adversary can replace bits in the internal state by a linear combination
of the initial state and output bits. In our example, we can rewrite siC7 (i � 0)
and get the following relations:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

s7 D s1 ˚ s3 ˚ s4 ˚O1;

s8 D s5 ˚ s4 ˚ s2 ˚O2;

s9 D s6 ˚ s5 ˚ s3 ˚O3;

s10 D s1 ˚ s3 ˚ s6 ˚O1 ˚O4;

s11 D s2 ˚ s1 ˚ s3 ˚O1 ˚O2 ˚O5;

s12 D s3 ˚O3 ˚ s4 ˚ s2 ˚O2 ˚O6;

s13 D s3 ˚O4 ˚ s5 ˚O3 ˚ s4 ˚O7;

s14 D O5 ˚ s6 ˚O4 ˚ s5 ˚ s4 ˚O8;

s15 D s3 ˚ s4 ˚O6 ˚ s1 ˚O1 ˚O5 ˚ s6 ˚ s5 ˚O9;

s16 D s3 ˚ s5 ˚O7 ˚ s2 ˚O2 ˚O6 ˚ s1 ˚O1 ˚ s6 ˚O10;

s17 D s6 ˚O8 ˚O3 ˚O7 ˚ s2 ˚O2 ˚ s1 ˚O1 ˚O11;

s18 D s4 ˚ s1 ˚O1 ˚O9 ˚O4 ˚O8 ˚O3 ˚ s2 ˚O2 ˚O12;

s19 D s2 ˚ s3 ˚ s5 ˚O2 ˚O3 ˚O4 ˚O5 ˚O9 ˚O10 ˚O13;

s20 D s3 ˚ s4 ˚ s6 ˚O3 ˚O4 ˚O5 ˚O6 ˚O10 ˚O11 ˚O14;

s21 D s1 ˚ s3 ˚ s5 ˚O1 ˚O4 ˚O5 ˚O6 ˚O7 ˚O11 ˚O12 ˚O15:

(2.2)
In addition to equations (2.2), each generated internal state bit can be expressed
by a linear approximation of the NLFSR feedback function. The approximation
holds with the probability

Pr
�
f .s1; s2; s3; s5; s6; s7/ D s1 ˚ s2 ˚ s6

�
D 1 � 2�3 D

1

2
C
3

8
: (2.3)

By applying the linear approximations for the bits in the NLFSR internal state, the
adversary can derive probabilistic linear relations, which are biased. For instance,
the adversary can find a biased relation by xoringO2,O3 andO15 as shown below:8̂̂<̂
:̂
O2 D s5 ˚ s4 ˚ s1 ˚ s6;

O3 D s6 ˚ s5 ˚ s3 ˚ s2 ˚ s1 ˚ s4 ˚O1;

O15 D s2 ˚ s3 ˚O2 ˚O3 ˚O4 ˚O7 ˚O8 ˚O10 ˚O11 ˚O12 ˚O13:

(2.4)
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Note that after xoring the relations, the unknown state bits are cancelled leaving the
observable keystream bits that satisfy the following probabilistic linear relation:

O1 ˚O4 ˚O7 ˚O8 ˚O10 ˚O11 ˚O12 ˚O13 ˚O15 D 0: (2.5)

We know that each relation of equations (2.4) holds with the probability 1 � 2�3.
Therefore, after applying the Matsui pilling up lemma, we obtain

Pr
�
O1 ˚O4 ˚O7 ˚O8 ˚O10 ˚O11 ˚O12 ˚O13 ˚O15 D 0

�
D
1

2
C 22 �

�3
8

�3
D
1

2
C 2�2:245: (2.6)

Example 1 uses three linear approximations and establishes a distinguisher that
tests the bias of the keystream bits. One would ask about an upper bound on the
number of linear approximations for a given non-linear function. Theorem 2.1
gives an answer.

Theorem 2.1. Given an LF-NLFSR cipher built from an n-bit NLFSR with a feed-
back function f and a linear filter function L. If the best linear approximation of
f is ` such that

Pr.f D `/ D
1

2
C �f ;

then, having nC 1 consecutive bits of the keystream outputs, there is at least one
biased linear function.

Proof. The proof can be derived from [13].

The smallest number of output bits required to find a biased linear function ( p̀)
depends on the linear filter function L and the feedback function f . In general, if
all n C 1 output bits are involved in p̀ (e.g., n C 1 linear approximations), then
the probability to find at least one p̀ biased function is

Pr. p̀/ D
1

2
C 2n � �

.nC1/

f
:

Note that Theorem 2.1 shows that the security of the cipher cannot be better than
�
�2�.nC1/

f
. For each relation, we need to use at least one linear approximation with

the probability PL D 1=2C�. Assume that withm linear equations, the adversary
could find a biased relation for the output keystream bits with the probability P D
1=2C .2m�1 � �m/, then the attack is successful if

P < 2k=2;
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where k is the secret key space of the cipher. In other words, the bias �0 D 2m�1 �
�m and hence the attack is faster than the exhaustive search O.2k/ if .�0/�2 <
2k=2.

There is a trend in the design of cryptographic components and systems, in
which they are chosen at random. The main justification for this is the belief that
random choice can prevent the cryptographic system against new yet unknown
attacks. In the next section, we analyse LF-NLFSR stream ciphers when both
the linear filter function L and the non-linear feedback function f are chosen at
random.

3 Random LF-NLFSR ciphers

A random LF-NLFSR cipher is a cipher whose linear filter function L and feed-
back function f are generated at random. More precisely, the non-linear feedback
function f is chosen at random from all balanced non-linear functions. The lin-
ear filter function L is chosen randomly and uniformly from the set of all linear
functions (excluding the constants).

3.1 Cryptanalysis of random LF-NLFSR ciphers

To analyse the security of random LF-NLFSR ciphers, we need two theorems. The
first theorem evaluates the probability of choosing a set of p linearly independent
q-tuples over F2 if the elements are drawn at random. We take advantage of the
results from [19].

Theorem 3.1 ([19]). Let Mq;qCp be a q � .q C p/ random matrix, over the finite
field F2 where �q � p � 0. If �.M/ is the rank of matrix M , then we have

Pr
�
�.Mq;qCp/ D q C p

�
D

qCp�1Y
jD0

�
1 �

1

2q�j

�
; �q � p � 0:

Proof. The proof can be found in [19].

In general, the probability that a random q � .q C p/ binary matrix Mq;qCp is
of full rank q for p � 0 and a large q is

Pr
�
�.Mq;qCp/ D q

�
D

1Y
iDpC1

�
1 �

1

2i

�
; p D 0; 1; : : : :

An interesting observation proved in [4] is that for a matrix defined as in Theorem
3.1, on average, one would need two extra columns only to achieve the full rank.
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This result does not depend on q. For seven or eight extra columns, the probability
of achieving the full rank is very close to 1.

Theorem 3.2. Given a random binary matrix Mq;qCp whose entries are chosen
independently and uniformly, where �q � p � 0. Then the probability that the
rank of matrix M is less than q C p is

Pr
�
�.Mq;qCp/ < q C p

�
D 1 � Pr

�
�.Mq;qCp/ D q C p

�
D 1 �

qCp�1Y
jD0

�
1 �

1

2q�j

�
; �q � p � 0:

Proof. The rank of matrix M is at most min.q; p C q/ D p C q. Therefore, the
probability that the rank of matrix M is less than q C p is

1 � Pr
�
�.Mq;qCp/ D q C p

�
:

According to Theorem 3.1, the probability is 1 �
QqCp�1
jD0 .1 � 1=2q�j /; where

�q � p � 0:

Using Theorems 3.1 and 3.2, one can find the lower bound on the bias of linear
approximations for random LF-NLFSR ciphers.

Theorem 3.3. Given m linear approximations, then to find at least one linear bi-
ased relation with high probability, the number Nm of observed keystream bits
should satisfy

�.n;m/�1 D

 
Nm

m

!
;

where �.n;m/ is the probability of finding at least one linear dependency for the
corresponding matrix of an n-bit random LF-NFLSR cipher.

Proof. Using Theorem 3.2, the probability of finding at least one linear depen-
dency for the corresponding matrix of an n-bit random LF-NLFSR cipher can be
computed as

�.n;m/ D 1 �

n�m�1Y
jD0

�
1 �

1

2n�j

�
;

where m is the number of rows. So, the number of m � n matrices, which should
be checked to find at least one linear dependency with probability near to one is
1

�.n;m/
. The adversary needs to check all combinations ofm linear equations from
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the required keystream bits (Nm), e.g.,

�.n;m/�1 D

 
Nm

m

!
:

For a 64-bit random LF-NLFSR cipher, Theorem 3.3 states that the probabil-
ity of finding a linear biased relation by applying linear approximation for two
and four output bits is 2�64 and 2�61:19, respectively. The required number of
keystream bits in order to apply the attack is 232:48 and 221:25, respectively.

We may expect that the matrices might have the properties of random matrices
even if the feedback/filter functions are not chosen at random. In that cases, the at-
tack works even for schemes with non-random feedback/filter functions. Note that
we consider balanced non-linear functions and our assumptions do not limit us to
a certain class of Boolean functions. If the adversary finds a linear biased relation
using m linear approximations, then he just needs to approximate the feedback
function m times and the probability of finding a distinguisher is

Pr.distinguisher exists/ D
1

2
C 2m�1 � �mf :

Therefore, the data complexity of the distinguishing attack is O.��2�m
f

/.
To apply a distinguishing attack on a random LF-NLFSR cipher, two main

phases are needed: pre-processing and on-line. In the pre-processing phase, the
adversary tries to find a distinguisher (or distinguishers). Theorem 3.3 determines
the probability of finding it and the required data complexity of the pre-processing
phase. The on-line phase consists of the distinguishing attack.

4 Ciphers based on LF-NLFSRs and LFSRs

Some stream ciphers are built from both LF-NLFSRs and LFSRs. The Grain
stream cipher [17, 18] is an example of a such cipher. Figure 3 shows the overall
structure of Grain. The cipher is extensively analysed (see [2,9,21] for example).

4.1 Distinguishing attack on Grain [2]

The structure of Grain gives rise to the following equations:

xt D
M
i2˛

zi ˚
M
j2ˇ

xj ˚
M
k2


yk ˚ h
t .y0; : : : ; ym/;

where xi and yi are the i -th bits of the internal states of the NLFSR and LFSR,
respectively, and zi are the keystream bits. The sets ˛, ˇ and 
 contain bit indices
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Figure 3. Grain cipher.

of the keystream bits and the NLFSR and LFSR state bits, respectively. The index
sets are defined by the cipher structure. The bit ht .y0; : : : ; ym/ is the output of
filter function h at clock t . To apply a distinguishing attack on Grain, one should
first replace both the non-linear feedback function f and the function h by their
best linear approximations. Next one needs to find a collection of approximations
for which all the internal unobservable bits cancel themselves. In the best case, we
can hope to find two such linear approximations, named zx and zy , such that

Pr.zx ˚ zy D 0/ D
1

2
C 23 � .��2f � �

�2
h /;

where �f and �h indicate the biases of the linear approximations of the non-linear
feedback function f and non-linear filter h, respectively. In this case, the security
of the cipher against the distinguishing attack is .23 � .��2

f
� ��2
h
//�2.

5 Ciphers based on linear combinations of LF-NLFSRs

LF-NLFSR ciphers can be extended in a natural way by allowing several LF-
NLFSR structures working in parallel, where the keystream combines bits gen-
erated by the LF-NLFSRs in some linear way. If the cipher keystream is a linear
combination of several LF-NLFSRs, then we call it LC-NLFSR for the rest of the
paper. Assume that O t1; : : : ; O

t
m are outputs of m distinct LF-NLFSRs at clock t .

Then the keystream O t of the cipher is produced as follows:

O t D O t1 ˚O
t
2 ˚ � � � ˚O

t
m:
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Figure 4. LC-NLFSR.

The LC-NLFSR structure is illustrated in Figure 4. Although, the attacks by
Berbain–Gilbert–Joux [2] cannot be applied to LC-NLFSR, we are going to show
that LC-NLFSR is vulnerable to distinguishing attacks.

5.1 Distinguishing attack on LC-NLFSRs

At SAC 2008, Berbain, Gilbert and Joux presented their work [2] and mentioned
few open problems. One of them is the analysis of a linear combination of two
LF-NLFSRs. In this section, we investigate the security of a linear combination
of two LF-NLFSRs (LC-NLFSR). We present an analysis and criteria to design
LC-NLFSR schemes.

Example 2. Let N1 and N2 be two LF-NLFSRs (with non-linear feedback func-
tions g1 and g2 and linear filter functions L1 and L2, respectively), which are
linearly combined to generate keystream bits (Ot at time t � 0). Let P1 and
P2 be a linear combination of the internal states of N1 and N2, respectively (see
Figure 5). We know that

P t1 ˚ P
t
2 D Ot ;

where P ti is a linear filter of state shift register Ni at clock t and i 2 ¹1; 2º.
Based on the method discussed in Section 2.1, we assume that the adversary

is able to find two different biased linear relations � D
L
i2¹�1º

P i1 and � D
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Figure 5. LC-NLFSR of Example 2.

L
i2¹�2º

P i2 for N1 and N2, respectively, where �1 and �2 represent the sets of
effective coefficients. Clearly, the adversary cannot use the biased relations � and
� to find a linear bias of the output bits, because the sets �1 and �2 are not neces-
sarily the same. To find a linear biased relation based on the output keystream bits,
we need to find linear biased relations derived from two LF-NLFSRs in the same
instance. Consider linear biased relations � and � in the following polynomial
forms:

�.x/ D c0 C c1x C c2x
2
C � � � C xl1;

�.x/ D d0 C d1x C d2x
2
C � � � C xl2;

where ci ; di 2 F2 are coefficients of the polynomials �.x/ and �.x/ of degrees
l1; l2, respectively, and l1 > N1, l2 > N2. To find a linear biased relation, which
is valid for the output keystream bits, we can multiply �.x/ and �.x/. In this
case, the number of coefficients involved in the product will be higher than the
number of coefficients involved in each polynomial �.x/ and�.x/. So, it would be
efficient if we could find the polynomials with the lowest number of coefficients.

A different approach is to find the lowest degree polynomial ƒ.x/ satisfying
the following conditions:

(1) �.x/jƒ.x/,

(2) �.x/jƒ.x/,

where f .x/jg.x/ means g.x/ divides f .x/. Note that in addition to LF-NLFSR
and LC-NLFSR, the distinguishing attack can be successfully applied to m
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LF-NLFSRs that are linearly combined with n filter functions. For m D 1, n D 1,
Berbain, Gilbert and Joux [2] investigated the security of the cipher against alge-
braic and correlation attacks. However their attacks are not applicable for cases
when m; n > 1.

6 Linear filter properties

An interesting question is about the choice of a linear filter in LF-NLFSR and
its impact on the cipher security. To answer the question, we need to introduce
some concepts and two theorems from the work of Gammel and Göttfert [11].
We follow the notations used in the work [11]. Let V be an infinite vector space
whose elements belong to Fq and let T be a linear operator defined on V by the
following relation: T� D .siC1/

1
iD0, where � D .si /

1
iD0 over V and si 2 Fq .

Further assume that g is a monic polynomial over Fq . We call g a characteristic
polynomial of � if the operator g.T / cancel out � , i.e., g.T /� D 0, where 0 stands
for the zero vector of V . For any periodic sequence � 2 V ,

J� D
®
g 2 FqŒx� W g.T /� D 0

¯
is a non-zero ideal, known as the T -annihilator of � , on FqŒx�. The minimal poly-
nomial of � is the monic polynomial m� 2 FqŒx� with J� D .m� / D m�FqŒx�.
Hence the characteristic polynomials of � in FqŒx� are the monic polynomials,
which are multiples of m� . Note that the degree of m� is defined as the linear
complexity L.�/ of � . In [11], Gammel and Göttfert gave a method to compute
the minimal polynomial of a periodic sequence from a known characteristic poly-
nomial and a suitable number of initial terms of the sequence.

Theorem 6.1 ([11]). Let A D .ai /1iD0 be a periodic binary sequence with minimal
polynomial pa 2 F2Œx� and let L˛ D ˛1 C ˛2x C � � � C ˛nx

n�1 be a non-zero
polynomial over F2. Then, the sequence

B D .bi /
1
iD0 D

�
˛1aiCn C ˛2aiCn�1 C � � � C ˛nai

�1
iD0

is periodic and its minimal polynomial is given by pb D
pa

gcd.pa;L˛/
.

Note that this theory allows us to derive new criteria for the design of LF-
NLFSR ciphers. Let A D .ai /

T
iD0 be a sequence generated by an NLFSR, with

the minimal polynomial pa 2 F2Œx�. To design a linear filter L˛ achieving the
maximum period of sequence A, pa and L˛ should be co-prime. This point shows
the importance of designing NLFSR with a single full period. Even if NLFSR
generates several long sequences, the linearly filtered output sequences may have
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a shorter period. Consequently, the best choice for a linear filter function is an
irreducible polynomial. Theorem 6.2 describes the criterion.

Theorem 6.2 ([11]). Let A be a periodic binary sequence generated by an n-bit
NLFSR with period 2n�1 (all nonzero n-bit states). The output sequences B have
the same period and linear complexity if the canonical factorization of the filter
polynomial contains only irreducible factors equal to x or x�1, or whose degrees
do not divide n.

6.1 Some observations on Grain LF-NLFSR

The Grain LF-NLFSR proposed in [18] is a modified version of the Grain cipher
[17]. The output bits are generated by applying a linear filter function on the
internal state of the NLFSR. The 80-bit NLFSR has the feedback function f given
as follows:

stC80 D f .st ; stC1; : : : ; stC79/

D stC62 ˚ stC60 ˚ stC52 ˚ stC45 ˚ stC37 ˚ stC33 ˚ stC28 ˚ stC21

˚ stC14 ˚ stC9 ˚ st ˚ stC63stC60 ˚ stC37stC33 ˚ stC15stC9

˚ stC60stC52stC45 ˚ stC33stC28stC21 ˚ stC63stC45stC28stC9

˚ stC60stC52stC37stC33 ˚ stC63stC60stC21stC15

˚ stC63stC60stC52stC45stC37 ˚ stC33stC28stC21stC15stC9

˚ stC52stC45stC37stC33stC28stC21

The keystream bits are generated by the following linear function:

Ot D stC1 ˚ stC2 ˚ stC4 ˚ stC10 ˚ stC31 ˚ stC43 ˚ stC56 ˚ stC63:

Note that if the linear filter function is not designed properly, then the attacks
by Berbain–Gilbert–Joux [2] can be applied more efficiently. As mentioned in
[2], the size of the blocks of equations of a constant degree is determined by the
difference between the position of the highest tap index in the update function and
the position updated by the feedback function. It means that .80�63/ D 17 bits of
the internal state can be represented as a linear combination of other internal state
bits. This decreases the number of independent variables from 80 bits to 63. The
algebraic technique, proposed in [2], keeps the degree of the corresponding system
fixed and applies an algebraic attack to recover the internal state of the NLFSR.
System 6.1 shows that every internal state bit si , i � 80, can be computed as a
linear combination of the output bits of 63 internal state bits (i.e., si , 17 � i � 79).
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8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

s80 D O17 ˚ s76 ˚ s60 ˚ s48 ˚ s27 ˚ s21 ˚ s19 ˚ s18;

s81 D O18 ˚ s77 ˚ s61 ˚ s49 ˚ s28 ˚ s22 ˚ s20 ˚ s19;

s82 D O19 ˚ s78 ˚ s62 ˚ s50 ˚ s29 ˚ s23 ˚ s21 ˚ s20;

s83 D O20 ˚ s79 ˚ s63 ˚ s51 ˚ s30 ˚ s24 ˚ s22 ˚ s21;

:::

(6.1)

The important point, which has not been investigated in [2], is the critical role
played by the linear filter function in the security of the cipher. Now we are going
to discuss the impact of the linear filter function on the security of the Grain LF-
NLFSR cipher.

Lemma 6.3. The number of the independent variables in system (6.1) is 63.

Proof. All new internal state bits (stC80, t � 0) generated by the update func-
tion can be written as .s17; : : : ; s79/ variables. In other words, the number of the
independent variables in system (6.1) is 80 � 17 D 63.

Remark 6.4. Linear system (6.1) is generated by a specific polynomial called the
generating polynomial. It is shown that the linear system inherits mathematical
properties from the generating polynomial. If the polynomial is not primitive,
then the linear equations are repeated with period less than 280�17 � 1. Note
that because of dependency of the newly generated variables on the variables
.s17; : : : ; s79/ and output bits (Ot , t � 0), the new variables may not be ex-
actly repeated but the linear combinations of the independent variables are the
same. Consequently, the linear complexity of the combination of the output bits
decreases.

Assume the period of repetition of the linear relations of .s17; : : : ; s79/ is T ,
then Ot and OtCT satisfy the following relation:

Ot ˚OtCT D

TM
�D0

˛�OtC� ;

where ˛� 2 F2 depends on the linear filter function. Our considerations are illus-
trated below.

Example 3. In Example 1, the period of the NLFSR state is T7 D 27 � 1, but one
can find the repetition of linear equations in the internal state with a period less
than T7. For instance, the following relations hold:
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8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

s7 D s1 ˚ s3 ˚ s4 ˚O1;

s8 D s5 ˚ s4 ˚ s2 ˚O2;

s9 D s6 ˚ s5 ˚ s3 ˚O3;

s10 D s1 ˚ s3 ˚ s6 ˚O1 ˚O4;

s11 D s2 ˚ s1 ˚ s3 ˚O1 ˚O2 ˚O5;

s12 D s3 ˚O3 ˚ s4 ˚ s2 ˚O2 ˚O6;

s13 D s3 ˚O4 ˚ s5 ˚O3 ˚ s4 ˚O7;

:::

s38 D s1 ˚ s3 ˚ s4 ˚O1 ˚O7 ˚O9;

˚O10 ˚O11 ˚O13 ˚O14 ˚O16 ˚O18

˚O21 ˚O22 ˚O23 ˚O24 ˚O28 ˚O29 ˚O32;

s39 D s5 ˚ s4 ˚ s2 ˚O2 ˚O8 ˚O10

˚O11 ˚O12 ˚O14 ˚O15 ˚O17 ˚O19

˚O22 ˚O23 ˚O24 ˚O25 ˚O29 ˚O30 ˚O33;

s40 D s6 ˚ s5 ˚ s3 ˚O3 ˚O9 ˚O11

˚O12 ˚O13 ˚O15 ˚O16 ˚O18 ˚O20

˚O23 ˚O24 ˚O25 ˚O26 ˚O30 ˚O31 ˚O34;

s41 D s1 ˚ s3 ˚ s6 ˚O1 ˚O4 ˚O10

˚O12 ˚O13 ˚O14 ˚O16 ˚O17 ˚O19

˚O21 ˚O24 ˚O25 ˚O26 ˚O27 ˚O31 ˚O32 ˚O35;

s42 D s2 ˚ s1 ˚ s3 ˚O1 ˚O2 ˚O5

˚O11 ˚O13 ˚O14 ˚O15 ˚O17 ˚O18 ˚O20

˚O22 ˚O25 ˚O26 ˚O27 ˚O28 ˚O32 ˚O33 ˚O36;

s43 D s3 ˚O3 ˚ s4 ˚ s2 ˚O2 ˚O6

˚O12 ˚O14 ˚O15 ˚O16 ˚O18 ˚O19 ˚O21

˚O23 ˚O26 ˚O27 ˚O28 ˚O29 ˚O33 ˚O34 ˚O37;

s44 D s3 ˚O4 ˚ s5 ˚O3 ˚ s4 ˚O7

˚O13 ˚O15 ˚O16 ˚O17 ˚O19 ˚O20 ˚O22

˚O24 ˚O27 ˚O28 ˚O29 ˚O30 ˚O34 ˚O35 ˚O38:

(6.2)
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Relation (6.2) shows that the internal state of the NLFSR after just 31 clocks can
be derived from the previous states by adding a certain linear combinations of the
output bits. In particular, equation (6.3) presents the relation between s38 and s7.

s38 D s7 ˚O7 ˚O9 ˚O10 ˚O11 ˚O13 ˚O14 ˚O16

˚O18 ˚O21 ˚O22 ˚O23 ˚O24 ˚O28 ˚O29 ˚O32: (6.3)

In the case of the Grain LF-NLFSR cipher, the polynomial describing the linear
filter function is not irreducible and it can be factored as follows:

x80 C x76 C x60 C x48 C x27 C x21 C x19 C x18

D .x C 1/.x3 C x C 1/.x18/
�
x7 C x5 C x4 C x3 C 1

�
C
�
x14 C x13 C x11 C x10 C x8 C x6 C x5 C x C 1

�
C
�
x37 C x35 C x34 C x32 C x30 C x25 C x24 C x23

C x21 C x17 C x16 C x10 C x6 C x5 C x3 C x2 C 1
�
:

Table 1 compares the results by Berbain, Gilbert and Joux [2] with our new
results for the Grain LF-NLFSR cipher.

Data complexity Time complexity The number of
independent variables

[2] 221 249 80
Our results 219:28 244:98 80 � 17 D 63

Table 1. Comparison of results.

7 Conclusions

This work investigated the security of stream ciphers based on LF-NLFSRs. First,
we categorised key generations based on LF-NLFSRs. We then examined the se-
curity of LF-NLFSRs, random LF-NLFSRs, and a combination of LF-NLFSRs
and filter generators against distinguishing attacks. We investigated a linear com-
bination of LF-NLFSRs and how their structural properties impact on its security.
We finally highlighted the criteria for the design of stream ciphers that employ lin-
early filtered non-linear sequences. Based on the proposed criteria, we presented
an improved algebraic attack on the Grain LF-NLFSR cipher. The attack has the
time complexity 244:98 and the data complexity 219:28.
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