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1 Introduction

1.1 Background

Building cryptographic schemes secure even if the secrets are partially leaked is a
trend in cryptography, motivating partially from side channel attacks. In this paper
we are interested in public key encryption (PKE) schemes with leakage-resilience.
Let us first summarize the literature.

In 2009, Akavia, Goldwasser, and Vaikuntanathan [1] gave the model and the
first leakage-resilient chosen plaintext attack (IND-lrCPA) secure scheme under
the LWE assumption. Afterwards, Naor and Segev [8] presented both IND-lrCPA-
secure and leakage-resilient chosen ciphertext attack (IND-lrCCA) secure schemes
based on the decisional Diffie–Hellman (DDH) assumption. More precisely, they
used universal1 hash proof systems (HPS) [2] to build IND-lrCPA-secure schemes.
For IND-lrCCA-secure schemes, they used the Naor–Yung paradigm yielding
systems with good leakage tolerance, but which are quite inefficient and thus of
theoretical interest only. To achieve efficiency, they considered the Cramer–Shoup
scheme [2] under the DDH assumption.

Dodis et al. [4] continued by schemes with very good leakage tolerance, but
with a big trade-off in efficiency (see Table 1).
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Schemes #Exps
[enc; dec]

Ciphertext size (in bits) Leakage
rate

Assumption

[8] Œ4:5I 3� jsj C jmj C 3jqj 1=6 DDH
[4] — � .36C 9=ı/jqj 1 � ı DLIN

(pairing)
Ours — jsj C jmj C .2C 1

3
/jN1j 1=12 DCR

Ours Œ4:5I 1:5� jsj C jmj C .3C 1
3
/jqj 1=18 DLIN

(no pairing)

Table 1. IND-lrCCA-secure PKE schemes. s seed; m message; q; jqj base group
order and its bit length; N1 base modulus; 0 < ı < 1 and `2 < jqj; jN1j. We treat
one multi-exponentiation as 1:5 single exponentiation, and only consider schemes
in G D hgi for computational cost. The scheme in [4] requires heavy computation,
including pairing, so we do not put the cost for comparison.

It might be quite curious that Naor and Segev did not mention anything on
universal2 HPS in [8]. Furthermore, they did not examine other well-known vari-
ants of Cramer–Shoup like the Kurosawa–Desmedt scheme [3, 7]. In fact, there
are certain difficulties for settling these, as we show below.

1.2 Our contributions

Results. We show how to build IND-lrCCA-secure PKE schemes from universal2
HPS accepting an auxiliary input. Specifically, two schemes are presented, basing
on the decisional composite residuosity (DCR) assumption and DLIN assumption
respectively. Our DCR-based scheme is the first one with IND-lrCCA security in
the literature. Likewise, our DLIN-based scheme is the first one without pairing
operations. Hence it is much more efficient than the previous scheme [4] albeit the
leakage rate is smaller.

A comparison is given in Table 1, where the leakage rate is defined as the supre-
mum of

total leakage size
secret key size

when considering large base groups.

Technical hurdles. For illustrative discussions, let us consider the Kurosawa–
Desmedt scheme which is IND-CCA secure under the DDH assumption [7]. It
serves as a warm up for our generic construction although the leakage rate is
smaller than that of [8]. (The leakage rate is 1=12 compared to 1=6 in [8].)
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The secret key is sk D .x1; x2; y1; y2/ and the public key contains c D gx1

1 g
x2

2

and d D g
y1

1 g
y2

2 , and a target collision resistant function TCR. A ciphertext on
message m is of the form .u1; u2; e; t/ where u1 D gr1, u2 D gr2, e D SEk1

.m/,
t D MACk2

.e/, where .k1; k2/ is derived from v D crd r �TCR.u1;u2/.
Roughly speaking, the crux in proving CCA security in [3,7] is to show that any

v is randomly distributed given c; d and a fixed v�. This implies that .k1; k2/ is
random, so that symmetric encryption e D SEk1

.m/ together with authentication
MACk2

.e/ will guarantee CCA security.
However, in the leakage setting, it is not ensured that v is random. This is

because v D u
x1C˛y1

1 u
x2C˛y2

2 (for ˛ D TCR.u1; u2/) is written as a function
of sk, and hence the adversary can ask for some information on it. A natural
attempt to deal with this situation would be to extract random bits from v. Namely
let .k1; k2/ D Ext.vI s/ for a randomness extractor Ext, with a random seed s
additionally put in the ciphertext (to enable decryption). If v has high entropy,
.k1; k2/ should be random as required.

The attempt, while intuitively appealing, does not work! The reason is that the
seed s is completely controlled by the adversary in decryption, and thus is not
random. In turn, .k1; k2/ D Ext.vI s/ is not random as desired.

Looking into [8], the same issue occurs, and is resolved as follows. The value v
itself is directly used for authentication, namely check v D u

x1C˛y1

1 u
x2C˛y2

2 for
every decryption request. However, the symmetric encryption key k1 comes from
another random source (an extra public key h D gz1

1 g
z2

2 ), which is unavailable in
our setting. (In fact, that source causes additional computation and ciphertext size
in [8], compared to ours.)

We overcome the above difficulty as follows. Let us split v into three equal
parts, namely v D k0kk1kk2, and note that k0; k1; k2 have enough entropy when
v does. Here we at least need the leakage amount � < jvj=3. The leakage rates in
our schemes are worsened by this step. The authentication (i.e. MAC) is now of the
form t D k1e˚ k2. When k1; k2 have high entropy, this authentication will reject
all ill-formed ciphertexts, since passing the authentication amounts to computing
k2 D t ˚ k1e. In addition, let the challenge e� D Ext.k�0 I s

�/˚ mb for random
seed s�. It seems that the same issue on the seed is repeated here, but it is not,
since ill-formed ciphertexts are anyway rejected by the authentication, and s� in
forming the challenge ciphertext is not controlled by the adversary.

Generally, the same technique works for PKE derived from universal2 HPS
accepting an auxiliary parameter (which is the extractor’s seed), as shown in Sec-
tion 4.2.

Organization of this paper. We present the leakage-resilient scheme based on
the Kurosawa–Desmedt scheme in Section 3. We show how to generalize the idea
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to universal2 hash proof systems in Section 4.2, which additionally yields schemes
based on DLIN and decisional composite residuosity (DCR) assumptions.

2 Preliminaries

Notations. For a set A, let jAj denote its cardinality. Taking a randomly from A

is expressed by a $ A. Let jaj denote the number of bits representing a. Hence
jaj � 1 � log2 a < jaj.

DDH assumption. Let G D hgi be a group of prime public order q generated
by g. The DDH assumption on G asserts that for all poly-time distinguishers D ,
g1; g2 

$ G, and r ¤ s $ Zq , the distance

�ddh D
ˇ̌
PrŒD.g1; g2; g

r
1; g

r
2/ D 1� � PrŒD.g1; g2; g

r
1; g

s
2/ D 1�

ˇ̌
is negligible on parameter log2 q.

Entropy and extractor. The statistical distance of random variables X; Y over
a finite domain � is SD.X; Y / D 1

2

P
a2�jPrŒX D a� � PrŒY D a�j. The min-

entropy of X is H1.X/ D � log2.maxx PrŒX D x�/. The average min-entropy of
X conditioned on Y is

QH1.X jY / D � log2
�
Ey Y Œ2

�H1.X jYDy/�
�
;

as defined in [5], which also proved the following result.

Lemma 2.1 ([5, Lemma 2.2]). If Y has 2� possible values and Z is any random
variable, then

QH1.X jY;Z/ � QH1.X; Y jZ/ � � � QH1.X jZ/ � � � H1.X;Z/ � �:

When applying the lemma in our context, Y stands for the leakage on secret
key X , while Z is another information on X such as given by the public key. The
lemma then says that, given a leakage amount of � bits, the secret key’s entropy
is decreased by �. Hereafter, when referring to entropy, we mean average min-
entropy unless otherwise stated.

A function Ext W ¹0; 1ºn � Seed ! ¹0; 1º` is called a .k; �Ext/-randomness
extractor if for all pairs of random variables .X; I / such that X is an n-bit string
satisfying QH1.X jI / � k,

SD
�
.Ext.X; s/; s; I /; .rand; s; I /

�
� �Ext;

where s  $ Seed and rand $
¹0; 1º`. In other words, Ext.X; s/ is nearly random

given s and I (when �Ext is small enough). Randomness extractors can be realized
via pairwise independent hash functions.
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PKE with IND-lrCCA security. A PKE consists of key generation KG, encryp-
tion Enc, and decryption Dec algorithms. KG outputs public key pk and secret
key sk. The algorithm Encpk.m/ returns a ciphertext c which can be decrypted by
Decsk.c/.

To define leakage-resilient CCA security for PKE, consider the following game
with adversary A. First, .pk; sk/  KG and pk is given to A. In the so-called
find stage, A can access to a decryption oracle Decsk.�/ to decrypt any string of
its choice. Furthermore, A can query arbitrary functions f to a leakage oracle
Leaksk.�/ which returns f .sk/. We require that the total length of all returned
f .sk/ must be less than a fixed � in bits.

Then A submits a pair of m0; m1 such that jm0j D jm1j to a challenge oracle.
The oracle returns a challenge ciphertext C � D Encpk.mb/, where b 2 ¹0; 1º is
randomly chosen.

After that, in the guess stage, A can access to the decryption oracle Decsk.�/

but cannot to the leakage oracle Leaksk.�/. (This restriction is necessary since
otherwise A uses f .�/ D Dec.�/.C

�/ to get partial information on mb , so the
game is trivial.) A is not allowed to query the challenge ciphertext C � to the
decryption oracle either. Finally, A returns b0 as a guess of the hidden b.

The PKE scheme is IND-lrCCA-secure ifˇ̌̌
PrŒb0 D b� �

1

2

ˇ̌̌
is negligible for all poly-time A.

3 Leakage-resilient Kurosawa–Desmedt scheme

In this section, we show a leakage-resilient variant of Kurosawa–Desmedt encryp-
tion scheme [3, 7] with the leakage rate 1=12 under the DDH assumption. This is
a warm up of our generic construction later in Section 4 although the leakage rate
is smaller than 1=6 in [8].

Let G be a group of order q. We assume that there exists an injection KDF W
G ! ¹0; 1ºjqj. For example, let G D .Z�q/

2 be the q-order subgroup of Z�p (where
p D 2q C 1 is also a prime). Then the following KDF satisfies our condition:1

KDF.x/ D

´
x if 0 < x < p=2;
p � x if p=2 < x < p:

Let Ext W ¹0; 1ºjqj=3 � Seed! ¹0; 1º` be a .jqj=3��; �Ext/-randomness extractor,
and PRG W ¹0; 1º` ! ¹0; 1º� be a pseudo-random generator. Also needed are

1 This is because �1 2 Z�p is a quadratic non-residue, so x ¤ p � x0 for x; x0 2 .Z�p/
2.



302 K. Kurosawa, R. Nojima and L. T. Phong

target collision resistant (TCR) functions TCR W G2 �Seed! Zq , and a collision
resistant hash function H W ¹0; 1º� ! ¹0; 1ºjqj=3.

Key generation: Let a secret key be sk D .x1; x2; y1; y2/  
$ Z4q . Compute

c D g
x1

1 g
x2

2 and d D g
y1

1 g
y2

2 , where g1; g2  
$ G. The public key is

pk D .g1; g2; c; d/.

Encryption of m 2 ¹0; 1º�:

r $ Zq; u1  gr1; u2  gr2; s 
$ Seed; ˛  TCR.u1; u2; s/ 2 Zq

v  crd r˛; k0kk1kk2  KDF.v/;where jk0j D jk1j D jk2j D jqj=3

e  PRG.Ext.k0I s//˚m; t  k1H.e/C k2 .over GF.2jqj=3//

Output .u1; u2; e; t; s/

Decryption of .u1; u2; e; t; s/:

˛  TCR.u1; u2; s/; v  u
x1C˛y1

1 u
x2C˛y2

2 ; k0kk1kk2  KDF.v/:

If t D k1H.e/C k2, then output m D PRG.Ext.k0I s//˚ e. Else output ?.

The leakage rate. Remember that the total leakage on sk which an adversary
can learn from the leakage oracle is less than � bits. Setting 2��jqj=3 (see below)
to be negligible, i.e., � � jqj

3
D �� for �-bit security leads to � D jqj

3
� �, which

means the leakage rate �
jskj D

�
4jqj

approaches 1
12

when the group size q becomes
large.

Theorem 3.1. The above scheme is IND-lrCCA-secure with leakage rate 1=12
under the DDH assumption.

Proof. Let Ki denote the random variable induced by ki for i D 0; 1; 2. We say
that a ciphertext .u1; u2; e; t; s/ is invalid if u1 D g

r1

1 , u2 D g
r2

2 and r1 ¤ r2. We
will proceed in games, each of which is a modification of the previous one. Below,
PrŒXi � D PrŒb0 D b in Gamei �.

Game0: This game is the IND-lrCCA attack game with an adversary A.
The challenge ciphertext is denoted byC � D .u�1; u

�
2; e
�; t�; s�/. We denote by

r�; ˛�; v�; k�0 ; k
�
1 ; k
�
2 the corresponding intermediate quantities. We also assume

that r�; u�1; u
�
2; ˛
�; v�; k�0 ; k

�
1 ; k
�
2 are computed at the beginning of the game be-

cause they do not depend on m0; m1 which are provided by A later.

Game1: The challenge oracle computes v� as

v� D .u�1/
x1C˛

�y1.u�2/
x2C˛

�y2 ;
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where u�1 D g
r�

1 ; u
�
2 D g

r�

2 for r� $ Zq; s� 
$ Seed and ˛� D TCR.u�1; u

�
2; s
�/.

Then we have PrŒX0� D PrŒX1� because the value of v� remains the same in the
two games.

Game2: The challenge oracle chooses r�1 6D r
�
2 2 Zq randomly, and computes

.u�1; u
�
2/ D .g

r�1
1 ; g

r�2
2 /:

We can show that jPrŒX1��PrŒX2�j is negligible under the DDH assumption in the
same way as in [3,7]. In particular, the DDH distinguisher can simulate the leakage
oracle which returns f .sk/ because sk is chosen by the DDH distinguisher.

Game3: The decryption oracle is given not only sk but also ! such that g2 D
g!1 . We can do this because we do not use the DDH distinguisher from now
on. Then in the find stage, the decryption oracle returns ? for .u1; u2; e; t; s/ if
u2 ¤ u

!
1 . That is, the simulator rejects all invalid ciphertexts in the find stage.

We show jPrŒX2��PrŒX3�j is negligible. Namely, we prove that in Game2, any
invalid ciphertext is rejected by the decryption oracle with overwhelming prob-
ability. Note that, from the adversary’s point of view, sk D .x1; x2; y1; y2/ is
uniformly random subject to c D g

x1

1 g
x2

2 and d D g
y1

1 g
y2

2 , ignoring the leakage
functions f for now.

Let C 0 D .u1; u2; e; t; s/ be the first invalid ciphertext queried by A, where
u1 D g

r1

1 , u2 D g
r2

2 and r1 ¤ r2. Let v D ux1C˛y1

1 u
x2C˛y2

2 . Then

264 logg1
c

logg1
d

logg1
v

375 D
264 1 0 ! 0

0 1 0 !

r1 r1˛ r2! r2!˛

375
„ ƒ‚ …

U

266664
x1

y1

x2

y2

377775 ;

and the matrix U is of rank 3. This means that v is random from A’s point of view.
Now A learns at most � bits leakage f .sk/. Given f .sk/ and .c; d/, the entropy

of v is at least log q � � from Lemma 2.1. The entropy of .K0; K1; K2/ is also
log q�� because k0kk1kk2 D KDF.v/ and KDF is an injection. Therefore for any
k0; k1; k2, we have

PrŒK0 D k0; K1 D k1; K2 D k2� �
2�

q
:

Hence

PrŒK1 D k1; K2 D k2� D
X
k0

PrŒK0 D k0; K1 D k1; K2 D k2� � 2jqj=3 �
2�

q
:
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Let B D ¹.k1; k2/ j t D k1H.e/C k2º. Then jBj � 2jqj=3. Finally we have

Pr
k1;k2

Œt D k1e
0
˚ k2� D

X
.k1;k2/2B

PrŒK1 D k1; K2 D k2�

�

X
.k1;k2/2B

2jqj=3 �
2�

q

� 22jqj=3 �
2�

q

�
2�C1

2jqj=3
(since log2 q � jqj � 1).

This means that C 0 is rejected with overwhelming probability. An almost identical
argument holds for all the subsequent invalid decryption queries.

Game4: In the guess stage, if A queries an invalid ciphertext with .u1; u2; s/ ¤
.u�1; u

�
2; s
�/ but ˛ D ˛�, then the decryption oracle returns ?.

We can show that jPrŒX3� � PrŒX4�j is negligible in the same way as in [3, 7]
because TCR is a target collision resistant function.

Game5: In the guess stage, if A queries an invalid ciphertext with .u1; u2; s/ ¤
.u�1; u

�
2; s
�/ and ˛ ¤ ˛�, then the decryption oracle returns ?.

We show that jPrŒX4� � PrŒX5�j is negligible by proving such ciphertext is also
rejected with overwhelming probability in Game4. The situation is similar to
Game3. The difference is that A may know v� as well as c and d .

Suppose that A queries such an invalid ciphertext C D .u1; u2; e; t; s/ with
u1 D g

r1

1 and u2 D g
r2

2 . Let v D ux1C˛y1

1 u
x2C˛y2

2 . Then266664
logg1

c

logg1
d

logg1
v�

logg1
v

377775 D
266664
1 0 ! 0

0 1 0 !

r�1 r�1 ˛
� r�2! r�2!˛

�

r1 r1˛ r2! r2!˛

377775
„ ƒ‚ …

M

266664
x1

y1

x2

y2

377775 ;

in which det.M/ D !2.r�2 � r
�
1 /.r2 � r1/.˛� ˛

�/ ¤ 0. Hence by using the same
argument as given in Game3, we can see that C is rejected with overwhelming
probability.

Game6: In the guess stage, if A queries an invalid ciphertext C ¤ C � such
that .u1; u2; s/ D .u�1; u

�
2; s
�/, then the decryption oracle returns ?.
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We show that jPrŒX5� � PrŒX6�j is negligible, by proving that in Game5, any
such ciphertext is also rejected with overwhelming probability. Let C 0 D
.u1; u2; e; t; s/ be the first such ciphertext queried by A. Since .u1; u2; s/ D
.u�1; u

�
2; s
�/, we have v D v�. Hence .k1; k2/ D .k�1 ; k

�
2 /. If C 0 is accepted, then

t� D k�1H.e
�/C k�2 and t D k�1H.e/C k

�
2 :

If e D e�, then t D t� which means that C 0 D C �. Therefore it must be that
e ¤ e�. In this case, H.e/ ¤ H.e�/ since H is collision resistant. Then there
exists a unique solution .k�1 ; k

�
2 / which satisfies the above linear equations. Let

.a1; a2/ denote this solution.
On the other hand, in Game5, A does not learn any more information on

.x1; x2; y1; y2/ from the invalid ciphertexts such that .u1; u2; s/ ¤ .u�1; u
�
2; s
�/

because they are all rejected. Hence it is enough to consider

264 logg1
c

logg1
d

logg1
v�

375 D
264 1 0 ! 0

0 1 0 !

r�1 r�1 ˛
� r�2! r�2!˛

�

375
„ ƒ‚ …

V

266664
x1

y1

x2

y2

377775 :

Since the matrix V has rank 3, v� is random from A’s point of view if we ignore
the leakage functions f and C �. Note that k�0kk

�
1kk
�
2 D KDF.v�/ and e� is

independent of .k�1 ; k
�
2 /. Hence given f .sk/, and t� 2 ¹0; 1ºjqj=3 and .c; d/, the

entropy of .k�1 ; k
�
2 / is at least

2

3
jqj � 1 � � � jt�j �

jqj

3
� � � 1:

Therefore,

PrŒC 0 is accepted� D PrŒK�1 D a1; K
�
2 D a2� �

2�C1

2jqj=3
:

This means that C 0 is rejected with overwhelming probability. All the subsequent
such ciphertexts are rejected similarly.

Game7: Replace PRG.Ext.K�0 ; s
�// with a random string in the challenge ci-

phertext C �. We show that jPrŒX6� � PrŒX7�j is negligible.
In Game6, all invalid ciphertexts are rejected by the decryption oracle. In

addition, by submitting valid ciphertexts, A only learns a linear combination of
logg1

c D x1 C !x2 and logg1
d D y1 C !y2 which A already knew from the
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public key. Hence as shown in Game6, v� is random from A’s point of view if we
ignore the leakage functions f and C �. Further k�0kk

�
1kk
�
2 D KDF.v�/ and k�0 is

independent of t�. Hence given f .sk/; t� and .c; d/, the entropy of K�0 is at least

jqj

3
� � � 1:

Hence Ext.K�0 ; s
�/ is statistically indistinguishable from a random string. Thus,

PRG.Ext.K�0 ; s
�// is computationally indistinguishable from a random string.

Now in Game7, e� D R˚mb , whereR is a random string. Therefore A learns
no information on mb from e�. Hence

PrŒX7� D PrŒb0 D b in Game7� D
1

2
:

This means that jPrŒb0 D b� � 1=2j is negligible in the original attack game.

4 Generalization to universal hash proof system

In this section, we generalize our leakage-resilient scheme of Section 3 to universal
hash proof systems (HPS).

4.1 HPS with auxiliary input

The notion of hash proof systems was introduced by Cramer and Shoup to con-
struct an IND-CCA secure hybrid encryption scheme [2]. In key encapsulation
mechanism (KEM), let SK;PK , and K be sets of secret keys, public keys, and
encapsulated symmetric keys. E is the set of all ciphertexts of KEM, and V � E is
the set of all “valid" ones. In addition, S is a set of seeds. In Kurosawa–Desmedt
scheme, SK D G4, PK D G2, E D G2, K D G, V D ¹.gr1; g

r
2/ W r 2 Zqº,

and S D Seed.
The subset membership assumption says that V is indistinguishable from E .

If V D ¹.gr1; g
r
2/ W r 2 Zqº and E D G2 as above, this is exactly the DDH

assumption.
A functionƒsk W E�S !K is projective if there exists a projection� W SK !

PK such that pk D �.sk/ defines ƒsk W V � S ! K . Namely, for every E 2 V ,
the valueK D ƒsk.E; s/ is uniquely determined by pk D �.sk/ and .E; s/, where
s 2 S .

A projective functionƒsk is called computationally universal2 if for allE;E� 62
V with .E; s/ ¤ .E�; s�/,�

pk; ƒsk.E
�; s�/;ƒsk.E; s/

�
and

�
pk; ƒsk.E

�; s�/;K
�
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are computationally indistinguishable, where sk and K are random. It is worth
noting that ƒsk has an additional input s, compared to previous works. While the
original HPS in [2] requiresE ¤ E�, our property here allowsE D E� if s ¤ s�.

In our scheme of Section 3,

ƒsk
�
E D .u1; u2/; s

�
D u

x1C˛y1

1 u
x2C˛y2

2 ;

where ˛ D TCR.E; s/. To prove that ƒsk.E; s/ is random conditioned on pk and
ƒsk.E

�; s�/, since266664
logg1

c

logg1
d

logg1
ƒsk.E

�; s�/

logg1
ƒsk.E; s/

377775 D
266664
1 0 ! 0

0 1 0 !

r�1 r�1 ˛
� r�2! r�2!˛

�

r1 r1˛ r2! r2!˛

377775
„ ƒ‚ …

M

266664
x1

y1

x2

y2

377775 ;

it suffices to show that det.M/ ¤ 0. Again, this holds true because det.M/ D

!2.r�2 � r
�
1 /.r2 � r1/.˛ � ˛

�/, and r�2 ¤ r�1 , r2 ¤ r1 (since E;E� 62 V ), and
˛ D TCR.E; s/ ¤ ˛� D TCR.E�; s�/ since .E; s/ ¤ .E�; s�/.

Hash proof system. A hash proof system HPS consists of three algorithms
.Param;Pub;Priv/. Param generates

.group;SK;PK;K;E;V ; ƒ.�/.�/; � W SK ! PK;S/:

Pub.pk; E; s; r/ returnsƒsk.E; s/ for E 2 V , where s 2 S and r is a witness of
the fact that E 2 V . Priv.sk; E; s/ returns ƒsk.E; s/ (without knowing a witness).

4.2 Leakage resilient CCA-secure PKE from HPS

Let q D jKj (prime, except in Section 4.4). We assume that there exists an
injection KDF W K ! ¹0; 1ºjqj. Let Ext W ¹0; 1ºjqj=3 � Seed ! ¹0; 1º` be
a .jqj=3 � �; �Ext/-randomness extractor, and PRG W ¹0; 1º` ! ¹0; 1º� be a
pseudo-random generator. Also needed is a collision resistant hash function H W
¹0; 1º� ! ¹0; 1ºjqj=3.

Key generation: Run Param to define

.group;SK;PK;K;E;V ; ƒ.�/.�/; � W SK ! PK;S/:

Let a public key be pk D �.sk/ for a random secret sk 2 SK . Below
jk0j D jk1j D jk2j D

log2jKj

3
.
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Encryption of m 2 ¹0; 1º�:

E.witness r/ $ V ; s $ Seed; v  Pub.pk; E; s; r/

k0kk1kk2  KDF.v/;where jk0j D jk1j D jk2j D jqj=3

e  PRG.Ext.k0I s//˚m; t  k1H.e/C k2 .over GF.2jqj=3//

Output .E; e; t; s/

Decryption of .E; e; t; s/:

v  Priv.sk; E; s/; k0kk1kk2  KDF.v/

If t D k1H.e/C k2, then output PRG.Ext.k0I s//˚ e. Else output ?.

Theorem 4.1. The above generic construction is IND-lrCCA-secure.

The proof idea is almost the same as that of Theorem 3.1. More details are
given below.

Proof. We proceed in games as follows.

Game0: This game is the IND-CCA attack game with leakage. Without loss
of generality, assume that E�; s�; r� are generated at the beginning of the game.
Let k�0kk

�
1kk
�
2 D Priv.sk; E�; s�/. When the adversary submits .m0; m1/, the

simulator computes

e� D PRG.Ext.k�0 I s
�//˚mb; t� D k�1 �H.e

�/˚ k�2 :

Also, decryption queries are handled as in Table 2.

Game1: Compute Pub.pk; E�; s�; r�/ as Priv.sk; E�; s�/. We have PrŒX0� D
PrŒX1�.

Game2: Take E�  $ C n V . We have jPrŒX1� � PrŒX2�j � �sm thanks to the
subset membership problem.

Game3: Any decryption query .e; E; t; s/ with .s; E/ ¤ .s�; E�/ and E 62
V is answered by ?. We have jPrŒX2� � PrŒX3�j � �hash thanks to the �hash-
computationally universal2 property. Namely, ƒsk.E; s/ D Pub.pk; E; s; r/ D
k0kk1kk2 is random-like conditioned on pk andƒsk.E

�; s�/. Conditioned further
on the leakage amount �, the entropy of k1kk2 is still high, so that the check
k2 D t ˚ k1e goes through with negligible probability (which is computed like in
the proof of Theorem 3.1.)
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In Game0;1;2 In Game3;4

1: if .E; s/ D .E�; s�/ then
2: if t ¤ k�1e ˚ k

�
2 then

3: return ?
4: else
5: return Ext.k�0 I s

�/˚ e

6: end if
7: else if E 62 V then
8: k0kk1kk2  ƒsk.E; s/

9: if t ¤ k1e˚k2 then return?
10: else return Ext.k0I s/˚ e
11: else
12: k0kk1kk2  ƒsk.E; s/

13: if t ¤ k1e˚k2 then return?
14: return Ext.k0I s/˚ e
15: end if

1: if .E; s/ D .E�; s�/ then
2: if t ¤ k�1e ˚ k

�
2 then

3: return ?
4: else
5: return Ext.k�0 I s

�/˚ e

6: end if
7: else if E 62 V then
8: return ?
9: else

10: k0kk1kk2  ƒsk.E; s/

11: if t ¤ k1e˚k2 then return?
12: return Ext.k0I s/˚ e
13: end if

Table 2. Decryption of query .e; E; t; s/.

Game4: Replace Ext.k�0 I s
�/ in the challenge ciphertext by a random string,

so that e� D Ext.k�0 I s
�/ ˚ mb completely hides the challenge bit b. We have

jPrŒX3� � PrŒX4�j � �hash and PrŒX4� D 1=2.
The reason is that, thanks to the �hash-computationally universal2 property,

ƒsk.E
�; s�/ D k�0kk

�
1kk
�
2

still has high entropy, given ƒsk.E; s/; pk and leakage amount �. To obtain any
further information on K�0 , the adversary must submit for decryption queries of
the form .s�; E�; e; t/ with .e; t/ ¤ .e�; t�/. However, since k�1kk

�
2 has high

entropy, those decryption queries will be rejected.

4.3 Instantiation under the d-linear assumption

We use the HPS based on the decisional d -linear assumption (DLIN) given by
[6, Section 5.2] for d D 2. In this HPS, SK D Z6q , PK D G4, K D G,
S D Seed. Also E D G3 and V D ¹.g

r1

1 ; g
r2

2 ; h
r1Cr2/ W r1; r2 2 Zqº, where

g1; g2; h 2 G. The DLIN assumption says that E and V are indistinguishable.
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Key generation: Let a secret key be sk D .x1; x2; y1; y2; z; z0/ 
$ Z6q . Compute

c1 D g
x1

1 h
z , c2 D g

x2

2 h
z , d1 D g

y1

1 h
z0 , d2 D g

y2

2 h
z0 , where g1; g2; h 

$

G. The public key is pk D .g1; g2; h; c1; c2; d1; d2/.

Encryption of m 2 ¹0; 1º�:

r1; r2 
$ Zq; u1  g

r1

1 ; u2  g
r2

2 ; u3  hr1Cr2

s $ Seed; ˛  TCR.u1; u2; u3; s/ 2 Zq; v  .c˛1d1/
r1.c˛2d2/

r2

k0kk1kk2  KDF.v/;where jk0j D jk1j D jk2j D jqj=3

e  PRG.Ext.k0I s//˚m; t  k1H.e/C k2 .over GF.2jqj=3//

Output .u1; u2; u3; e; t; s/

Decryption of .u1; u2; u3; e; t; s/:

˛  TCR.u1; u2; u3; s/; v  u
x1C˛y1

1 u
x2C˛y2

2 uzC˛z
0

3

k0kk1kk2  KDF.v/:

If t D k1H.e/C k2, then output m D PRG.Ext.k0I s//˚ e. Else output ?.

Let � be the leakage amount on sk. We need 2��jqj=3 to be negligible. For �-bit
security, let 2��jqj=3 D 2��, so � D jqj

3
� �. This means the leakage rate

�

jskj
D
.1=3/jqj � �

6jqj

approaches 1=18 when the group order q becomes large.

Theorem 4.2. The above encryption scheme is IND-lrCCA-secure with leakage
rate 1=18 under the DLIN assumption.

4.4 Instantiation under the DCR assumption

We use the HPS based on the decisional composite residuosity assumption (DCR)
given by [2]. Let p1 D 2p2 C 1 and q1 D 2q2 C 1 be primes, where p2 and q2
are also primes. Let N1 D p1q1 and N2 D p2q2. Let G be the subgroup of Z�

N 2
1

with order N1N2. Note that G is written as G D GN1
�GN2

where Gn denotes a
cyclic group of order n. Let g be a generator of G, so that g1 D gN2 is a generator
of GN1

and g2 D gN1 is a generator of GN2
.

In this HPS, SK D ¹0; : : : ; bN 2
1 =2cº

2, PK D G2
N2

, K D ZN1
, and S D

Seed. Also E D G and V D ¹gr2 mod N 2
1 W r 2 ¹0; : : : ; N1=4ºº. The DCR

assumption says that E and V are indistinguishable.
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Let Ext W ¹0; 1ºjN1j=3 � Seed ! ¹0; 1º` be a .jN1j=3 � �; �Ext/-randomness
extractor, and PRG W ¹0; 1º` ! ¹0; 1º� be a pseudo-random generator. Also
needed are a collision resistant hash function H W ¹0; 1º� ! ¹0; 1ºjN1j=3, and a
target collision resistant TCR W ¹0; 1º� ! Z

bN 2
1 =2c

. Below KDF W ZN1
! ZN1

is
the identity function.

Key generation: Let a secret key be sk D .x; y/ $ SK . Compute c D gx2 mod
N 2
1 and d D gy2 mod N 2

1 . The public key is pk D .N1; g2; c; d/.

Encryption of m 2 ¹0; 1º�:

r $
¹0; : : : ; N1=4º; u gr2 mod N 2

1 ; s 
$ Seed; ˛  TCR.u; s/

v  .c˛d/r mod N1

k0kk1kk2  KDF.v/;where jk0j D jk1j D jk2j D jN1j=3

e  PRG.Ext.k0I s//˚m; t  k1H.e/C k2 .over GF.2jN1j=3//

Output .u; e; t; s/

Decryption of .u; e; t; s/:

˛  TCR.u; s/; v  ux˛Cy mod N1; k0kk1kk2  KDF.v/

If t D k1H.e/˚ k2, then output PRG.Ext.k0I s//˚ e. Else output ?.

Again, set � D .1=3/ log2N1 � �. Note that jskj � 4 log2N1 so the leakage
rate �=jskj approaches 1=12.

Theorem 4.3. The above encryption scheme is IND-lrCCA-secure with leakage
rate 1=12 under the DCR assumption.
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