
J. Math. Cryptol. 8 (2014), 31–70
DOI 10.1515/ jmc-2012-0010 © de Gruyter 2014

Persistent asymmetric password-based
key exchange

Shaoquan Jiang

Communicated by Kaoru Kurosawa

Abstract. Asymmetric password based key exchange is a key exchange protocol where
a client and a server share a low entropic password while the server additionally owns a
high entropic secret with respect to a public key. There are simple solutions for this, e.g.,
[18] and its improvement in [7]. In the present paper, we consider a new threat to this type
of protocol: if a server’s high entropic secret gets compromised (e.g., due to cryptanalysis
or a poor management), the adversary might quickly break lots of passwords and cause
uncountable damage. In this case, one should not expect the protocol to be secure against
an off-line dictionary attack since, otherwise, the protocol is in fact a secure password-only
key exchange by making the server high entropic secret public. Of course a password-only
key exchange does not suffer from this threat as the server does not have a high entropic
secret at all. However, known password-only key exchange protocols are not very efficient
(note: we only consider protocols without random oracles). This motivates us to study an
efficient and secure asymmetric password key exchange that avoids the new threat. In this
paper, we first provide a formal model for the new threat, where essentially we require
that the active adversary can break ` passwords in ˛`jD j steps (for ˛ < 1=2) only with
a probability negligibly close to exp.�ˇ`/ for some ˇ > 0, where D is a password
dictionary. Then, we construct a framework of asymmetric password based key exchange.
We prove that our protocol is secure in the regular model where server high entropic key
is never compromised and that it prevents the new threat. To do this, we introduce a new
technique by abstracting a probabilistic experiment from the main proof and providing a
neat analysis of it.
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1 Introduction

Key exchange (KE) is one of the most important issues in secure communication.
It helps two communicants to securely establish a common session key, with which
the subsequent communication can be protected. In the literature, there are two
types of key exchange. In type one, two parties own high entropic secrets. This
type has been extensively studied in the literature; see a very partial list [2, 8, 11,
26]. Type two is password authenticated key exchange, in which it is assumed
that the two parties share a human-memorable (low entropy) password. The major
threat for this type of key exchange is an off-line dictionary attack. In this case,
an adversary can catch a function value of the password (say, F.pw/). Since the
password space is small, he can find the matching password through an exhaustive
search. See [1] for an example. In the literature, two classes of password key
exchange protocols are studied. In the first class, two parties only own a common
password. This class is studied extensively in the literature. In the second class,
the client and server share a password while the server additionally owns a high
entropic private key of a public key. In this class, there are simple solutions [7,18].
In the present paper, we consider a new threat to this class of protocols: when the
server high entropic secret is compromised, the attacker might quickly break lots
of passwords and cause uncountable damage. When the above threat occurs, it
is desired that the pace an attacker breaks passwords is very slow. Under this,
the server management will have enough time to realize and defend the attack.
Unfortunately, previous protocols (e.g., [7, 18]) are not secure against this. Of
course, since we intend to prevent the adversary from breaking a lot of passwords,
the problem is meaningful only if the system has a lot of clients where Google,
Yahoo and MSN are good examples.

1.1 Motivation

In the above new threat, the problem is meaningful only if the server high entropic
secret is compromised while the server password table is safe. This could happen
in the following scenarios.

1. Temporary access to server. In our daily life, it is not surprising that we
temporarily leave our computer system on and unlocked (e.g., for a coffee break).
If a server management does this, an attacker (also a user) could take the chance
to copy the temporary internal state of the server (which does not need the access
code) but he can not copy the password file as it further requires the access code.
In this setting, we show that the attacker could manage to break the server key. To
be concrete, we assume the server has public/private key pair .A D ga; a/ where
g is a generator of a prime group G with jGj D q. Suppose the server has a
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key exchange protocol that includes the following identification from server (S ) to
client (C ) as a subroutine:

(1) S ! C : X D gx;

(2) C ! S : b  Zq;

(3) S ! C : y D ab C x;

(4) C : accept if and only if gy D AbX .

Now the adversary can run the following attack. He initiates a key exchange
with server in his own name (as a user). After he receives X , he does not reply b
immediately. Instead, he copies the server internal state, which must include x as
it will be later used to compute y. After this, he sends b to S and receives y. From
.y; b; x/, the attacker can easily compute a.

2. Cryptanalysis. An adversary could conduct cryptanalysis directly on the
server high entropic key. One might think such a success is unlikely as such a
computation resource can be used to directly break the server. However, this is
not true always. Although the security of the server high entropic key is usually
guaranteed by its underlying security assumption, this holds only under the con-
dition that the server public/pair key is chosen properly. For example, a secure
RSA system requires that the prime factors p and q should be of nearly equal size
and that p � 1, q � 1 should contain large prime factors and that the encryption
key e should not be small. Conceivably, more restrictions will be imposed with
the development of cryptanalysis. However, we can not expect industry engineers
always to be aware of such updates. One miss of this or an old system that violates
a new restriction could give a cryptanalyst a good chance to break it. In addition,
more computation resource does not imply an easy break-in to the server. For the
case of a key exchange protocol, one can set a threshold on the number of the
consecutive failures, beyond which the user will be denied.

3. Fault analysis. Boneh, Demillo and Lipton [6] studied the fault analysis and
showed that this might allow an attacker to efficiently break the secret key of a
cryptographic system. They mentioned three types of faults and two of them are
applicable to our setting.

(a) Latent fault. Latent faults are hardware or software bugs that are difficult to
catch (e.g., Intel’s floating point division bug). Crypto library using such a
bugged unit is likely to produce incorrect values.

(b) Transient fault. Transient faults are random hardware glitches that cause the
processor to miscalculate. They might be caused due to power glitches, high
temperature, static electricity and more. Under such faults, a bit in the register
could be flipped.
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Usually, faulty errors are rare to happen. However, here “rare” only refers to
the small frequency of occurrences. Over the long course of the server’s life time,
the probability that the faulty error occurs once could be very high. Also once
it happens, the consequence could be very serious. Further, if an attacker has
the chance to stay close to the server, he could make transient faults occur by
increasing temperature or inducing static electricity.

To see the threat of fault analysis, we introduce the attack in [6] (improved by
Arjen Lenstra) on RSA that is implemented using the Chinese Remainder Theorem
(i.e., RSA-CRT). This attack breaks RSA using only one faulty error on a single
bit. Consider an RSA signature system .N D pq; e; d/, where e is the verification
key and d is the signing key. To sign message m, compute x D h.m/ with a hash
function h, then compute S1 D xd mod p and S2 D xd mod q and finally use
CRT to merge S1; S2 to obtain S D xd mod N . Assume that computation of S1
is faulty such that S1 D .xd C 2i / mod p for some i < jpj (i.e., one bit faulty
error occurs). Notice that Se D Se1 ¤ x mod p while Se D Se2 mod q D x. It
follows that gcd.x � Se; N / D q. This factors N that is based on .m; e; S/ only.

1.2 Related work

The server key leakage problem does not occur in the password-only key exchange
protocol since in this setting the server does not own a high entropic secret key at
all. Hence, an asymmetric password key exchange against this threat is meaningful
only if we have a construction that is more efficient than the known password-only
protocols. Password-only key exchange was first studied by Bellovin and Merritt
[4] and further studied in [5, 21, 28]. The first provably secure solution is due to
Bellare et al. [3] but security holds in the random oracle model which is not our
main focus. The first key exchange without random oracles is due to Goldreich
and Lindell [14]. But it is very inefficient. The first reasonably efficient solution
without random oracles is the KOY protocol [23] which has 16 exponentiations
for a client and 15 exponentiations for a server. This protocol was abstracted into
a framework by Gennaro and Lindell [13] and improved by Gennaro [12] (the con-
tribution of the latter is to remove the signature), where each party costs 12 expo-
nentiations when realizing their scheme by building a hashing proof system over
N -residuosity-based CCA2 encryption [13] (note: although there are faster en-
cryptions [20,27], it is not clear how to build a hash proof system over this type of
encryption). Jiang and Gong [22] (recently abstracted into a framework by [16])
constructed an efficient protocol. When using encryption in [20], both schemes
cost 6 exponentiations for a client and 6 exponentiations for a server. Katz and
Vaikuntanathan [25] constructed a one-round password-only key exchange which
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is the most appealing feature. But it is not efficient because in their currently
best realization each party needs 12 exponentiations and one simulation-sound ZK
proof.

The asymmetric password based technique was initiated by Gong [15]. Halevi
and Krawczyk [17] (also full version [18]) proposed a very efficient asymmetric
password based key exchange, which essentially let the client use a CCA2 secure
encryption to encrypt the password information. Using encryption [20], this pro-
tocol only needs about two exponentiations for the client and one exponentiation
for the server. It was later extended by Boyarsky [7] for security in the multi-user
setting. However, neither of the two protocols can prevent the new threat as the
password is encrypted under a server public key and can be easily decrypted if its
private key is leaked.

1.3 Contribution

We first provide a formal model for the above server key leakage problem. We
essentially require that an adversary can break ` passwords in ˛`jD j steps (for
˛ < 1=2) only with probability negligibly close to exp.�ˇ`/ for some ˇ > 0,
where D is the password dictionary and has a size independent of security param-
eter. Under this assertion, the adversary can not quickly break lots of passwords.
An asymmetric password key exchange protocol with this property is said to be
persistent. Then, we construct a framework of asymmetric password based key
exchange. Our construction is based on a tag-based projective hash family that
is modified from the projective hash family (PHF) of Cramer–Shoup. We show
that our framework is secure in the multi-user setting of [7] (under a different for-
malization, where our contribution is a new quantification on the authentication
failure). Our proof does not rely on the random oracles. We also prove that our
framework is persistent, where our main technical novelty is a probabilistic exper-
iment and we provide a neat analysis for this experiment. Our persistency holds
in the random oracle model. It is open to construct a protocol whose security and
persistency both hold without random oracles. We instantiate our framework with
a concrete tag-PHF. Our realization only costs 5 exponentiations for the client and
two exponentiations for the server, which is significantly more efficient than all
known password-only schemes. The efficiency of password-only protocols is sur-
veyed in the previous subsection. A comparison between these protocols and ours
is summarized in Table 1, where the costs are computed under each protocol’s cur-
rently best realization (e.g., public key encryption in [16, 22] uses [20] that only
has two exponentiations for encryption cost). In this table, the password exponen-
tiation g� in [16, 22, 23] and our work is assumed to store in the server (but not
the client as he can not memorize this long secret). We can tell that our protocol
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Schemes ClientCost
(exp)

ServerCost
(exp)

Framework MutualAuth

[22] 6 6 No Yes
[16] 6 6 Yes Yes
[25] � 12 � 12 Yes No
[12] 12 12 Yes No
[23] 16 15 No No
ours 5 2 Yes Yes

Table 1. Comparison between our protocol and password-only protocols.

is significantly more efficient than known password-only protocols although the
price is to let the server hold a high entropic secret.

Notions. x  S samples x from S randomly; AjB means concatenating A with
B . We use negl W N ! R to denote a negligible function: for any polynomial
p.x/, limn!1 negl.n/p.n/ D 0. For two functions f; g from N to R, write
f .n/ � g.n/ if f .n/�g.n/ is negligible. The probability distance of two random
variables A;B over set � is defined as

distŒA; B� D
1

2

X
v2�

jPrŒA D v� � PrŒB D v�j:

We say that random variables A;B are statistically close if distŒA; B� is negligible.
For a 2 N, define Œa� D ¹1; : : : ; aº. PPT means probabilistic polynomial time.

2 Security model

2.1 Model when server high entropic key is not compromised

In this section, we introduce a security model for asymmetric password key ex-
change, which is slightly modified from the password-only setting of Bellare et al.
[3]. There are n clients C1; : : : ; Cn and one server S , where S has a public key ‚
(known to all Ci ) and a private key � . It also shares a password �i with Ci . The
server high entropic key � is assumed uncorrupted.

� D is a password dictionary. For simplicity, let D D ¹1; : : : ; N º with a
uniform distribution.

� …
`U

U is the `U th protocol instance in party U , where U is either a client i or
a server S .
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� Flowi or msgi is the i th message in the protocol execution.

� sid`U

U is the session identifier of …`U

U , where U is either a client i or server
S . Intuitively, two jointly executing instances have identical sid.

� sk`U

U is the session key defined by instance …`U

U .

� pid`U

U is the party, with which …`U

U presumably interacts.

� stat`U

U is the internal state of …`U

U (not including the long term secret).

� Client.…`U

U /. We know that for any …`U

U , either U or pid`U

U (but not both) is
a client. Hence, it is well-defined if we use Client.…`U

U / to denote this client.

Partnering. …`U

U and …`V

V are partnered if

(1) pid`U

U D V and pid`V

V D U ;

(2) sid`U

U D sid`V

V .

Adversarial model. The capability of adversary A is defined as follows. He fully
controls the network. He can inject, modify, block messages. He can also request
any session key. Formally, his behaviors are modeled as access to the following
oracles.

Execute.i; `i ; S; `S /. When this oracle is called, a protocol execution between
…
`i

i and …`S

S takes place. Finally, a complete transcript is returned. This oracle
call models an eavesdropping attack.

Send.d; U; `U ;M/. Upon this query, M is sent to …`U

U as msgd . This query
models active attacks.

Reveal.U; `U /. Upon this query, session key sk`U

U (if any) is returned. This models
a session key loss attack.

Corrupt.i/. Upon this query, the password �i of Ci as well as his session states
¹stat`i

i º`i
are given to the adversary. After this, he is no longer active. This models

a break-in or insider attack.

Test.U; `U /. This query is a security test for session key sk`U

U . The adversary is
allowed to query it only once. The queried session must have been successfully
completed. Throughout the game, U and pid`U

U should not be corrupted; …`U

U

and its partnered instance (if any) should not be issued a Reveal query. When
Test oracle is called, it flips a fair coin b. If b D 1, then sk`U

U is provided to the
adversary; otherwise, a random number from the session key space is provided.
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The adversary then tries to output a guess bit b0. If b0 D b, he will be informed
Success; otherwise, Fail.

We now define the protocol security, which considers three properties: correct-
ness, authentication and secrecy.

Correctness. If two partners accept, they derive the same session key.

Authentication. If some …`U

U , with U and pid`U

U both uncorrupted, has been suc-
cessfully completed while it does not have a unique partnered instance, then we
say authentication is broken and denote this event by Non-Auth. Further, we use
Non-Authi to denote event Non-Auth such that Client.…`U

U / D Pi . Note that since
the password dictionary D is small, one can always break the authentication by
guessing a password �i of Pi and impersonating Pi to S (through Send queries).
So if Qi denotes the number of Send queries in which client is Pi , then trivially,
Non-Authi can be achieved with probability Qi

jDj
. Authentication property is to re-

quire that this is the best possible success. Formally, the protocol is authenticated
if

Pr.Non-Authi / �
Qi

jD j
C negl.�/; i D 1; : : : ; n: (2.1)

Secrecy. Denote the adversary success in a Test query by Succ. Let Non-Auth D
_niD1Non-Authi . We only consider succ under :Non-Auth as Non-Authi is already
measured by authentication. Then, a protocol is secrecy if

PrŒSucc.A/j:Non-Auth� < 1=2C negl.�/:

The security definition is summarized as follows.

Definition 1. Let Qi be the number of Send.U; `U ; �/ queries such that Pi D
Client.…`U

U /. Then, an asymmetric password-based key exchange protocol is se-
cure if it satisfies

� Correctness.

� Authentication.

PrŒNon-Authi � �
Qi

jD j
C negl.�/; i D 1; : : : ; n:

� Secrecy.
PrŒSucc.A/ j :Non-Auth� < 1=2C negl.�/:
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Remark. (1) Note that in our model the server S is never corrupted; otherwise,
nothing can be protected as S knows all passwords of clients.

(2) Let Q be the number of Send queries. Then, Q D
Pn
iD1Qi : Hence, our

authentication property implies that PrŒNon-Auth� < Q
jDj
C negl.�/. This further

indicates that PrŒSucc.A/� < 1=2C Q
2jDj
Cnegl.�/, which is the security definition

[3] for the password-only key exchange setting.
(3) We do not use PrŒNon-Auth� < Q

jDj
C negl.�/ as our authentication defi-

nition due to the attack by Boyarsky [7] against [18]. His idea is to eavesdrop a
communication transcript tr between Cj and S . Then he corrupts Ci and obtains
�i . Next, he uses tr to conduct the execution between Ci and S from which �j
will be compromised. In term of our model, he queries Execute.j; j̀ ; S; `S / ora-
cle once and can break �j when Qj D 0 (although Qi could be large). Under our
definition, this will not occur.

2.2 Model when server high entropic key is compromised

Motivation. We now formalize the security where the server key � gets com-
promised. This is possible due to cryptanalysis or a poor management. In the
introduction, we have outlined the possibilities based on hardware fault or tempo-
rary server data for the protocol execution. Under such an attack, we can not hope
that the protocol is secure against an off-line dictionary attack as otherwise the
protocol is in fact a secure password-only protocol (by making the server secret
public). We thus are only interested in a weaker guarantee: the adversary should
not be able to break lots of passwords quickly. Under this, the server manager can
have enough time to realize and defend the attack. Previous protocols [7,17,18] do
not prevent this threat as they essentially encrypt a password under public key ‚.

It is desired that if an attacker intends to break ` passwords, he has to do so
using an dictionary attack individually on each password and with average costs
`jD j=2 dictionary guesses. That is, if any adversary runs T < ˛`jD j steps,
then he should not be able to break ` passwords, where one step is essentially
the cost of one dictionary guess and will be defined when the protocol description
is available. Qualitatively, it is desired that his success probability is bounded by
exp.�ˇ`/C negl.�/ for some ˇ > 0. Also note that since ` does not necessarily
depend on the security parameter �, we can not simply require the above adver-
sarial success probability be negl.�/. We notice that it is hard to tell whether an
adversary has broken a password �i or not. Hence, we can not directly use this
definition. However, if this occurs, it should be easy for him to successfully im-
personate client i , in which case Non-Authi occurs. Hence, we instead define the
adversary success as the occurrence of Non-Authi for at least ` different i . Finally,
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we define the adversary capability. Since persistency only considers an attack that
occurs under a very rare event and lasts only in a short time, oracle queries other
than Send are immaterial.

Formal definition. Our formal definition of persistency is presented as follows,
where event Non-Authi is the same as in the definition of authentication property.

Definition 2. Let ` 2 N and ˛ < 1=2. Assume that„ is an asymmetric password-
based key exchange protocol. Then „ is persistent if for any PPT adversary A

that is given system parameter param and server high entropic private/public key
pair .�;‚/ and runs T < `˛jD j steps with access to Send oracles, the probability
that Non-Authi for ` different i occur is upper bounded by exp.�ˇ`/Cnegl.�/ for
some ˇ > 0, where a basic step is specified in a concrete protocol.

Remark. Persistency is to capture the guarantee that it is impossible for an adver-
sary to recover a lot of passwords in a short time. So the definition is only meant
for large `. Even though, we do not choose to define the persistency like this:
for any ` > �, the adversary succeeds only negligibly. This is so because under
such a definition, it is not clear for a fixed ` whether the choice of � (in order to
guarantee a certain persistency probability) heavily depends on ` or not. Under
our definition, this dependence does not exist as the contribution from ` is exactly
exp.�ˇ`/ for a constant ˇ > 0. Our definition also shows that the probability im-
pact from ` approaches zero exponentially. That is, slowly increasing ` will render
the adversary success probability approaching zero fast. This impact is missing if
we only require the adversary success probability to be negligible.

3 Tag-based hash proof system

In this section, we introduce a tag-based hash proof system, revised from the origi-
nal hash proof system [10] (in fact the brief introduction in [13] suffices) by adding
a tag. Special forms of hash proof system are used by [12, 13, 16, 24, 25] to con-
struct password-only key exchange protocols.

3.1 Subset membership problem

A hard subset membership problem is a problem that one can efficiently sample a
hard instance. Formally, a subset membership problem I is a collection ¹Inºn2N ,
where In is a distribution for a random variable ƒn defined as follows:

� Generate a finite non-empty set Xn; Ln � ¹0; 1ºpoly.n/ such that Ln � Xn,
and distribution D.Ln/ over Ln and distribution D.XnnLn/ over Xn.
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� Generate a witness setWn � ¹0; 1ºpoly.n/ and an NP-relation Rn � Xn�Wn
such that x 2 Ln if and only if there exists w 2 Wn such that .x; w/ 2 Rn.
Here Ln can be sampled in polynomial time according to distributionD.Ln/
which outputs x 2 Ln and its witness w. We use

x
w
 � D.Ln/

to denote this procedure, and omit w if w is not our interest. Further, x  
D.XnnLn/ can be also sampled in polynomial time.

Finally let

ƒn D hXn; Ln; Wn; Rn;D.Ln/;D.XnnLn/i:

We say that I D ¹Inºn2N is a hard subset membership problem if for
hXn; Ln; Wn; Rn;D.Ln/;D.XnnLn/i  In, x and y are indistinguishable for
y  D.XnnLn/, x  D.Ln/.

3.2 Tag-based projective hash function

Let ƒ D hX;L;W;R;D.L/;D.XnL/i be sampled from a hard subset member-
ship problem In. Consider a tuple ‰ D hH ;K; X;L;G; S; ˛i, where G;S;K
are finite non-empty sets, H D ¹Hk.�; �/ j k 2 Kº is a set of functions from
¹0; 1º� � X to G and ˛ W K ! S is a deterministic function and ˛.k/ is called a
projection. K is called a key space, k 2 K is called the hash key; S is called the
projection space for ˛. We call ‰ a tag-based projective hash function (tag-PHF)
for ƒ if for any x 2 L and tag z 2 ¹0; 1º�, Hk.z; x/ is uniquely determined by
˛.k/; z; x. It is called an efficient tag-PHF if ˛.k/ and Hk.z; x/ are both polyno-
mially computable from .k; x; z/ and ifHk.z; x/ also is polynomially computable
from x;w; ˛.k/; z where .x; w/ 2 R. In this paper, by tag-PHF, we mean an
efficient tag-PHF. For simplicity, we also directly use Hk.�; �/ to represent the un-
derlying tag-PHF.

The following notion of computational universal2 is slightly revised from [19],
which in turn is extended from the notion of universal2 [10] by relaxing the statis-
tical indistinguishability to the computational indistinguishability.

Definition 3. Let ƒ D hX;L;W;R;D.L/;D.XnL/i  In, where ¹Inºn is
a hard subset membership problem. Assume that ‰ D hH ;K; X;L;G; S; ˛i

is a tag-based projective hash function for ƒ. We say that ‰ is computational
universal2 if for any PPT A with access to the oracles below, Pr.b0 D b/ � 1=2.
Initially, A is given .‰; ˛.k// for k  K .
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Eval1.x; z/. Upon query .x; z/, check if x 2 L (maybe in exponential time). If
yes, return Hk.z; x/; otherwise ?.

Eval2.x1; z1/. This oracle can be queried once and x1 2 XnL. Upon this, return
Hk.z1; x1/.

Test.x2; z2/. This is the test oracle and can be queried once. It requires that
.z2; x2/ ¤ .z1; x1/ and x2 2 XnL. Upon this, take b  ¹0; 1º, K1  G

and compute K0 D Hk.z2; x2/. Finally return Kb .

Finally, A outputs bit b0 and succeeds if b0 D b.

3.3 A useful lemma

Consider a hard subset membership problem ¹I�º�. Assume that ‰ D hH ;K; X;

L;G; S; ˛i is a tag-based PHF for ƒ, where

ƒ D hX;L;W;R;D.L/;D.XnL/i  I� and G D ¹0; 1º2�:

Here ‰ has a description desc.‰/. Let MACK W ¹0; 1º� ! ¹0; 1º� be a message
authentication code with secret key K 2 ¹0; 1º�.

Consider an experiment EXP involving an adversary A who can adaptively
access to the following two oracles. Initially, let k  K and provide .˛.k/,
desc.‰// to A. Let ‚ D ¹ º and a challenge bit c  ¹0; 1º.

Chal.z/. Upon this, take x
w
 � D.L/, compute .a0; s0/ D Hk.z; x/, .a1; s1/  

¹0; 1º2�, return .x; ac ; sc/ and update ‚ D ‚ [ ¹.z; x; ac ; sc/º.

Comp.z; x; �;m/. Upon this, if .z; x; a0; s0/ 2 ‚ for some a0; s0, let a D a0, s D
s0; otherwise, let .a; s/ D Hk.z; x/. If � D MACa.m/, return .a; s/; otherwise?.

At the end of the experiment, A outputs a guess bit c0 for c. He succeeds if
c0 D c.

The above experiment is to distinguish many ¹Hk.z; x/ºx2L from random,
given access to many values ¹Hk.z; x/ºx2X (x not necessary from L) provided
that the query issuer can prove that he has some knowledge about Hk.z; x/. The
following lemma states that the adversary only has a negligible advantage in this
task. The proof idea is outlined as follows.

Consider a hybrid experiment EXP` where the reply to the first `�1 Chal queries
is .a1; s1/ while the reply to the remaining Chal queries is .a0; s0/. By a hybrid
argument, it suffices to show that for all `, adversary advantages in EXP` and
EXP`�1 are negligibly close. We revise EXP` to bEXP` such that in the `th Chal
query, x  D.XnL/ in the latter (instead of x  D.L/ in the former). This re-
vision does not change adversary advantage from the hardness of I�. So we only
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need to show that adversary advantages in bEXP` and bEXP`�1 are negligibly close.
This can be reduced to the computational universal2 property of the hash proof
system. To do this, we simulate bEXP` under the help of computational universal2
challenger. The i th Chal.z/ query for i ¤ ` can be handled easily as we know the
witness w for x. The `th such a query can be handled using a test query to com-
putation universal2 (CU2) challenger and so it is easy too. Comp.z; x; �;m/ for
x 2 L is easy under the evaluation help of his CU2 challenger. Comp.z; x; �;m/
for x 62 L can be rejected simply as Hk.z; x/ is indistinguishable from random
in view of the attacker (recall only one evaluation query for x 62 L to CU2 has
been used now and so � is valid only negligibly, unless MAC is forgeable). When
challenge bit b in CU2 challenger is 0, then the simulated game is bEXP`�1; bEXP`

otherwise. Hence, distinguishability between bEXP` and bEXP`�1 implies breaking
CU2. The detailed proof is put in Appendix A.

Lemma 1. ¹I�º� is a hard subset membership problem, ‰ is computational uni-
versal2 and MAC is existentially unforgeable. Then PrŒc0 D c� D 1=2C negl.�/.

4 Red ball experiment

We consider an experiment: there are n boxes, where box i contains ai identical
balls except that one ball is colored red (located at any position with equal prob-
ability) and the rest of them are colored white. Algorithm A adaptively draws t
balls from these boxes. Each time it chooses a box and then draws a ball ran-
domly from it without replacement. Let ` 2 ¹1; : : : ; nº. Let ‚A

t;n;`
.a1; : : : ; an/

denote the probability that A draws t balls from these n boxes such that ` balls
are red. Let ‚t;n;`.a1; : : : ; an/ D maxA‚

A
t;n;`

.a1; : : : ; an/. It is easy to see that
‚t;n;`.a1; : : : ; an/ is symmetric on .a1; : : : ; an/. We can fully characterize it as
in the following lemma.

Lemma 2. If 1 � a1 � a2 � � � � � an, 0 � ` � n; t � 0, then

‚t;n;`.a1; : : : ; an/ D Pr
hX̀
iD1

xi � t W xi  Œai �
i
: (4.1)

We now outline the proof idea; details are in Appendix B. Use Left and Right
to denote the left- and right-hand side of (4.1), respectively. First of all, there is
an algorithm A0 achieving Right and so Left � Right. A0 simply draws the ball
from box 1 until the red ball is picked. Then, it turns to box 2 using the same
strategy, then box 3, etc. Let the red ball in box i be obtained by using xi picks
and then xi  Œai �. Since it succeeds if and only if x1 C � � � C x` � t , Right is
achieved.
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It remains to show that Left � Right. This is done by induction. Case ` D 0 or
t D 0 is trivial. Generally, if the box id of the first pick by A is j , we have

‚t;n;`.a1; : : : ; an/ D a
�1
j �‚t�1;n;`�1.a1; : : : ; aj�1; 0; ajC1; : : : ; an/

C .1 � a�1j /‚t�1;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/

D a�1j �‚t�1;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/

C .1 � a�1j /‚t�1;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/:

By induction, ‚t�1;n�1;`�1. / and ‚t�1;n;`. / can be bounded using the right-
hand side of (4.1). Substituting these into the above equation, simplifying will give
Right. The main effort in Appendix B is to handle the tedious details and show
that the sum is in fact equal to the neat result

Pr
hX̀
iD1

xi � t W xi  Œai �
i
:

Theorem 1. If t < ˛`a and ˛ < 0:5, then

‚t;n;`.a; : : : ; a/ < exp
�
�2.0:5 � ˛/2`

�
:

Proof. By Lemma 2,

‚t;n;`.a; : : : ; a/ D PrŒx1 C � � � C x` � t �

D Pr
hP`

iD1 xi

`
�
a

2
� �

�a
2
�
t

`

�i
�

� exp.�2ı2`=a2/; ı D
a

2
�
t

`
> .0:5 � ˛/a

� exp
�
�2.0:5 � ˛/2`

�
;

where inequality � holds since EŒxi � D
a
2

and the Hoeffding inequality.

5 Our PAKE framework

We now introduce our client-server password key exchange framework. Let I D

¹I�º� be a hard subset membership problem. Sample

ƒ D .X;L;W;R;D.L/;D.XnL// I�:

Assume that ‰ D .H ;K; X;L;G; S; ˛/ is a tag-based projective hash family
for ƒ, where G D ¹0; 1º2�. Note that usually G is not of the form ¹0; 1º� and
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Ci .�i / S.�i ; �/

x
w
 � D.L/, y D T.�i ; x/

.k0; k1/ D H� .i; x/ using w
�0 D MACk0

.Ci jS jy/

Ci j y j �0
���������!

x D T�.�i ; y/, �  ¹0; 1º�

.k00; k
0
1/ D H� .i; x/ using �

�0
‹
D MACk0

0
.Ci jS jy/

! D Ci jS jyj�, �1 D MACk0
0
.!j1/

! D Ci jS jyj�

�1
‹
D MACk0

.!j1/

�2 D MACk0
.!j2/

output sk D k1

S j �1 j �
 ���������

�2
���������! �2

‹
D MACk0

0
.!j2/, output sk D k01

Figure 1. Password key exchange framework HPS-PAKE (details in the bodytext).

we can obtain this by further going through a key derivation function (e.g., [9])
KDF W G0 ! ¹0; 1º� , where KDF has the property that when x  G0, KDF.x/
is statistically close to uniform in ¹0; 1º� . Let D D ¹1; : : : ; N º be the set of all
possible passwords with uniform distribution. We say T; T� W D � X ! X are a
regular transformation pair if they are efficiently computable and also satisfy the
following.

R-1 For any � 2 D , T�.�; T.�; x// D x, for all x 2 X , i.e., T�.�; �/ is the inverse
function of T.�; �/.

R-2 For any y 2 X , there is at most one � 2 D such that T�.�; y/ 2 L.

MACk W ¹0; 1º
� ! ¹0; 1º� is a secure message authentication code. The system

setup is as follows. For the server S , take �  K and compute ‚ D ˛.�/. Then,
� will be the private key for S and ‚ will be its public key. For each client Ci ,
take �i  D as the password for Ci , shared with S . The key exchange protocol
between S and Ci is as follows (also see Figure 1).

(1) Ci takes x
w
 � D.L/, computes .k0; k1/ D H� .i; x/ using (w; x;‚), y D

T.�i ; x/ and �0 D MACk0
.Ci jS jy/. Finally, he sends Ci jyj�0 to S .

(2) Upon Ci jyj�0, S de-transforms x D T�.�i ; y/ and computes .k00; k
0
1/ D

H� .i; x/ using .�; x/. It then verifies if

�0
‹
D MACk00.Ci jS jy/:

If no, reject; otherwise, it takes �  ¹0; 1º� and computes �1 D MACk00.!j1/
for ! D Ci jS jyj�. Finally, it sends S j�1j� to Ci .
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(3) Upon S j�1j�, Ci verifies if

�1
‹
D MACk0

.!j1/

for ! D Ci jS jyj�. If no, reject; otherwise, he sends �2 D MACk0
.!j2/ to S

and outputs session key sk D k1.

(4) Upon �2, S verifies if

�2
‹
D MACk00.!j2/:

If no, reject; otherwise, output session key sk D k01.

Remark. We outline how some attacks are prevented.
1. Impersonation attack. If the attacker impersonates Ci to generate and send

msg1 D Ci jyj�0 to S , then since he does not know �i , T�.�i ; y/ 2 L holds with
probability 1=jD j only. When x WD T�.�i ; y/ 62 L, �0 will be rejected since
.k0; k1/ D H� .i; x/ appears random to the attacker.

2. Insider attack [7]. When a malicious Cj eavesdrops a transcript tr D
Ci jyj�0jS j�1j�j�2 between Ci and S , then he executes the protocol with S in
the name of himself but using tr as a help. Toward this, he might send msg1 D
Cj jyj�

�
0 to S and hope to receive a response from the latter. ��0 is acceptable only

if ��0 D MACk�0 .Cj jS jy/, where .k�0 ; k
�
1 / WD H� .j; x

�/ for x� D T�.�j ; y/. The
only useful information is �0 which is computed using .k0; k1/ WD H� .i; x/ for
x D T�.�i ; y/. However, no matter �j D �i or not, we have that .i; x�/ ¤ .j; x/
as i ¤ j (this is the main reason we use tag-HPS instead of HPS in this paper).
This allows us to claim that k�0 and k0 are computationally independent. If x 62 L,
this is automatically true by the computational universal2 definition. In our pro-
tocol, even if x  D.L/, this computational independency still holds; otherwise,
one can simply reduce to break the hardness of L. Thus, S will always reject ��0 .
Since this rejection occurs without considering the value of �i , it follows that the
candidate space of � in view of the adversary does not reduce.

3. Session key secrecy. The session key sk D k1 is computed by .k0; k1/ D
H� .i; x/. Client Ci can compute this since he knows the witness w of x 2 L and
server S can compute this since it knows �i (for recovering x from y) and � for
.k0; k1/. Any outsider can not compute .k0; k1/ since given x and ‚, H� .i; x/ is
indistinguishable from random (Lemma 1).

5.1 A concrete example

In the following, we present a concrete tag-based HPS toward realizing our proto-
col framework by slightly revising HPS in [10, 27].
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Hard subset membership problem. Let q; p D 2q C 1 be large primes. Let
G be the prime subgroup of order q in Z�p . Take g1; g2  G. Define X D
¹.g

w1

1 ; g
w2

2 / j w1; w2 2 Zqº and L D ¹.gw1 ; g
w
2 / j w 2 Zqº. Notice that

.gw1 ; g
w
2 / 2 L has the witness w. By Decisional Diffie–Hellman assumption, L

and X are indistinguishable.

Tag-based projective hash function H� . Let a hash key � D .a1; a2; b1; b2/ 2

Z4q and its projection ‚ D ˛.�/ D .‚1; ‚2/ D .g
a1

1 g
a2

2 ; g
b1

1 g
b2

2 /. Let KDF W

G ! ¹0; 1º2� be a secure key derivation function (that is, for x  G and u  
¹0; 1º2�, KDF.x/ and u are statistically close). Assume that h� W ¹0; 1º� ! ¹0; 1º�

is a collision-resistant hashing indexed by �  ¹0; 1º�. For .x1; x2/ 2 X and tag
i , define the projective hash H� .i; .x1; x2// D KDF.xa1Cb1�

1 x
a2Cb2�
2 /, where

� D h�.i; x1; x2/. If .x1; x2/ D .gw1 ; g
w
2 /, then

H� .i; x1; x2/ D KDF.xa1Cb1�
1 x

a2Cb2�
2 / (using � )

D KDF..‚1‚
�
2/
w/ (using witness w):

So H� is a projective hash function.
The difference of the above HPS from original HPS [10,27] is that originally h�

does not get input tag i and that KDF is not used there. These changes are minor.
With almost the same proof as in [19, Lemma 6.3], we can show the following
result.

Lemma 3. If h� is collision-resistant, then H� must be computational universal2.

In order to realize our framework, we need to further specify T and T�.

Regular transformation pair (T; T�). For � 2 D , .x1; x2/ 2 X , let .y1; y2/ D
T.�; .x1; x2// D .x1; x2g

�
2 / and T�.�; .y1; y2// D .y1; y2g

��
2 /. Evidently,

property R-1 is satisfied. Property R-2 is satisfied as long as there are no �1; �2 2
D such that �1 � �2 .modq/. To satisfy this, it suffices to take D D ¹1; : : : ; N º

forN < q. However, in order to show the persistency, we actually takeN D 2�=3.

Efficiency of the protocol realization. Besides �i (in Ci and S ) and � (in S )
are securely stored, assume g�i

2 is securely stored in S (but not in Ci as he can
not memorize this long secret). The cost of MAC is negligible. So the cost of
the realized protocol is dominated by x

w
 � D.L/ and H� .i; x/. Specifically, the

client’s cost is dominated by 5 exponentiations for computing .g�i

2 ; g
w
1 ; g

wC�i

2 /

and KDF..‚1‚
�
2/
w/. The server’s cost is dominated by two exponentiations for

computing KDF.ya1Cb1�
1 y0

a2Cb2�
2 /. We do not account the cost for verifying

.y1; y2/ 2 G2, as in Section 8 we show that this can be waived with only a negli-
gible price. Note that a password-only key exchange can also solve the server key
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leak problem. However, our protocol is much more efficient than such protocols;
see Table 1 in Section 1.

6 Security

Now we prove the security of our protocol. Before this, we define the session
id in the protocol as sid`U

U D Ci jS jyj�, where U is the client i or server S .
Since the password �i and the high entropic secret key � are both fixed after the
system initiation, H� .i; x/ is determined for given Ci jS jy. Hence, two partnered
parties must have the same session key. It remains to show the authentication and
secrecy. They are showed together. The proof idea is as follows; details are put in
Appendix C.

Idea of authentication and secrecy. The authentication property is to bound
Non-Authi for each i and the secrecy property is to bound the adversary success
in Test query. Both events lie in the adversary view. Our strategy is to revise
the adversary-challenger game �0 into �1; �2 such that neighboring games have
indistinguishable adversary views and then consider �2 for these two events. �1
differs from �0 only at .k0; k1/ in Send.0; �/ oracle, where �1 takes .k0; k1/  
¹0; 1º2� while �0 takes .k0; k1/ D Hk.i; x/. Indistinguishability in adversary
views between �1 and �0 is based on the negligible advantage of Experiment EXP
in Lemma 1. Indeed, .k0; k1/ can be set as .ac ; sc/ in Chal query and �i can be
verified in Comp query. So the simulation when c D 0 is �0 while it is �1 when
c D 1. Indistinguishability follows from Lemma 1. Then �2 differs from �1 at
x in Send.0; �/, where �2 takes x  X while �1 takes x  L. This revision
does not change the adversary view due to the hardness of the subset membership
problem. It remains to analyze �2. Toward this, we first show some properties
for �2. Firstly, for each …`i

i that accepts S j��j��1 , it must have a unique partner
…
`s
s . This is true; otherwise, this implies that the adversary can forge a valid ��1

under MAC key k�0 (set by …`i

i ), violating the unforgeability of MAC. Secondly, if
…
`s
s accepts ��2 and Flow1 D Ci jy

�j��0 was from some …`i

i , then …`s
s must have

a unique partner …`i

i . The reason for this is similar to the first property. We now
consider the secrecy in �2 conditional on:Non-Authi for any i . Since no Non-Auth

event, “Flow1 D Ci jy
�j��0 was from some …`i

i ” required in the second property
above is always satisfied. So any accepting instance (especially, test instance) has
the unique partner, which also has this instance as its unique partner. That is,
accepting instances can be uniquely paired with partnership. Especially, .k0; k1/
is only used in two partnered instances. If one of them is the test instance, then
both instances can not be compromised by the restriction of Test oracle and hence
the session key k1 of the test instance is independent of the adversary view. So the
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adversary success probability in Test query is 1=2, conditional on :Non-Authi for
any i . Further, by the above two properties, we know that Non-Authi occurs only
at Send.1; S; `S ; Ci jyj�0/ oracle, which has two cases. In Case 1, T�.� 0i ; y/ 62 L
for any password � 0i in candidate space Di of �i . In this case, k0 is independent of
the adversary view due to computation universal2 ofHk.i; x/ and hence �0 can be
rejected without leaking anything about �i (because each candidate of �i will give
the same result: reject). In Case 2, x 2 L for some � 0i 2 Di . In this case, if �i ¤
� 0i , then the decision is reject and no information beyond �i 2 Di D Din¹�

0
iº is

leaked and hence after this �i is uniform in the updated Di ; otherwise �i D � 0i
which has the probability 1=jDi j. As a summary, the first Send.S; �; Ci jyj�0/ with
y not generated by Ci is accepted with probability 1=jD j. Similarly, the second
query is accepted with probability jDj�1

jDj
�

1
jDj�1

D
1
jDj

, etc. Since there are at
most Qi queries with client Ci , Non-Authi occurs with probability at most

Qi �
1

jD j
D
Qi

jD j
:

Hence, the theorem follows.

Theorem 2. Let I D ¹I�º� be a hard subset membership problem. Assume that
MAC W ¹0; 1º� ! ¹0; 1º� is an existentially unforgeable message authentication
code. Assume that‰ is computational universal2 for I. Then HPS-PAKE is secure.

7 Persistency

In this section, we prove our protocol’s persistency. We need the following notion.

Definition 4. Let H D ¹H�º�2K with H� W ¹0; 1º� � X ! ¹0; 1º2� be a tag-
PHF. We say that H is locally unique with respect to a deterministic function
F W D �X ! X if for any PPT adversary A,

Pr
h
bH� .z; F.�1; y//c� D bH� .z; F.�2; y//c� for some �1 ¤ �2 W

�  K; .z; y/ A.�; desc.H //
i
;

is negligible, where bxc� is the least �-bit of x and the probability is over the
randomness of A;H , � .

Remark. A tag-PHF is always defined with respect to a hard subset membership
problem ƒ. So H inherits the randomness in sampling ƒ. The local uniqueness
of H essentially requires that for any adversarially chosen .z; y/, each �-bit string
s corresponds to at most only one password � such that bH� .z; F.�; y//c� D s.
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Persistency idea of our protocol. We want to show that for an adversary who has
an access to Send oracles and MAC oracle (maintained by a challenger), within
˛`jD j basic steps, Non-Authi occurs to ` different i only with exponentially small
probability. Toward this, we first modify Send.0; �/ oracle so that x  D.X/

instead of x  D.L/. This modification does not change the adversary success
as X and L are indistinguishable due to the hardness of L in X . Then, y can
be further modified as y  D.X/ (instead of y D T.�i ; x/ for x  D.X/) as
these two generations are identically distributed. After this, y no longer carries
information of �i . We also modify Send oracle such that k1; sk are not computed.
This is no problem since they are not used to compute the oracle output. After this
treatment, the only place to use password �i is to compute k0 and in turn k0 will be
only used to compute MACs �0; �1; �2. We then present a simulation of challenger
by splitting it to two entities .C1;C2/. Here C1 holds the password assignment
¹�iº for all clients and C2 does not have ¹�iº and will maintain Send oracle and
MAC oracle using .‚; �; desc.H //. We present a technique in simulating MAC
oracle such that �i can be computed without password assignment ¹�j º and instead
C2 only needs to ask C1 with .i; �/ whether �i D � . Our simulation has the
property that any Authi implies the successful password verification query .i; �/.
Hence, the adversary success in ` different Authi implies ` successful password
verifications at C1. On the other hand, the password verification process implies a
red ball game: .i; �/ is a pick of � in box i and it hits �i if �i D � . As there are
at most `˛jD j picks, by Theorem 1, it hits ` different passwords with probability
exponentially small. The detailed proof is in the following theorem.

Theorem 3. Let MAC W ¹0; 1º� � ¹0; 1º� ! ¹0; 1º� be a random oracle and
H D ¹H�º be locally unique with respect to T�. Then, HPS-PAKE is persistent,
where one MAC evaluation is a basic step.

Proof. We use PRS` to denote the event that Non-Authi occurs to ` different i ,
when adversary A is given .�;‚; desc.H // and access to Send oracles and ran-
dom oracle MAC. We regard the interaction between A and the challenger (who
maintains Send oracles and MAC oracle) as a game. Denote the game, where Send
oracle is maintained according to the specification, by �0. Then, we need to bound
the probability Pr.PRS`.A; �0//.

Game �1. We revise �0 to �1 such that if for Send.1; S; `S ; Ci jyj�0/, there
exist a 2 ¹0; 1º� and more than one � such that bH� .i; T�.�; y//c� D a, then
we announce the success of A. Otherwise, for any Send.1; S; `S ; Ci jyj�0/ query
from A and any a 2 ¹0; 1º�, there is at most one such � and hence we can define
pw�;i;y.a/ D � in case of existence and pw�;i;y.a/ D nil otherwise. By local
uniqueness of H� , we have the following result.
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Lemma 4. Pr.PRS`.A; �0// D Pr.PRS`.A; �1//C negl.�/.

For simplicity, from now on, we assume that A never succeeds due to multiple �
event above and hence for any Send.1; S; `S ; Ci jyj�0/ query, pw�;i;y.a/ is always
well-defined.

Game �2. We modify �1 to �2 such that Send.0; �/ oracle takes x  D.X/

(instead of D.L/). To be consistent, the only change in maintaining oracles in �1
is to evaluate H� .z; x/ using � (instead of using the witness of x) in Send.0; �/
oracle. By the hardness of L in X , adversary views View in �1 and �2 are negligi-
bly close, where an adversary view is defined as his random tape and all the data
received from the challenger. As PRS` is deterministic in the adversary view, we
have the following result.

Lemma 5. Pr.PRS`.A; �1// D Pr.PRS`.A; �2//C negl.�/.

Game �3. We modify �2 to �3 such that the challenger is split into two par-
ties .C1;C2/, where C1 holds the password assignment ¹�iº of all clients, and C2
holds h‚; desc.H /; �i. In addition, C2 maintains Send oracles and MAC oracle.
Send.0; �/ oracle directly takes y  D.X/ without computing x. To maintain
Send oracles, C2 can request C1 to compute k0 D H� .i; T�.�i ; y/ with a descrip-
tion of function H� .i; T�.�; y// (i.e., .i; y; �; desc.H /; desc.T�//) as the query in-
put. Send oracles never compute k1 and sk. The remaining description for Send
oracle and MAC oracle is normal.

Lemma 6. Pr.PRS`.A; �2// D Pr.PRS`.A; �3//.

Proof. Taking y  D.X/ has an identical distribution as taking x  D.X/

and computing y D T.�i ; x/ because T.�i ; �/ is a permutation of X . Hence, the
revised Send.0; �/ does not change the adversary view. Notice that k0 computed
in the alternative in �3 is identical to that in �2. Further, k1 and sk are never used
in generating an oracle output. Hence, each send oracle output in �3 has a perfect
distribution as �2. Finally, PRS` is deterministic in adversary view. Hence the
lemma follows.

Game �4. We modify �3 to �4 with the following changes. C2 never asks C1 to
compute k0 but he will request C1 with any pair .i; �/ to verify whether �i D � .
In addition, he also maintains a candidate space Di of �i for each i , where initially
Di D D . In Send oracle with client Ci , if jDi j D 1, C2 can process normally us-
ing the only �i in Di to compute k0; if jDi j > 1, whenever it requires to compute
MAC.k0; Ci jS jyj�/, he defines a virtual symbol undef-k0.i; y/ to represent k0 D
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bH� .i; T
�.�i ; y//c� (unknown) and issues a MAC query MAC.undef-k0.i; y/;

Ci jS jyj�/. Since in �3, �i is only used to compute k0 and k0 is only used to
compute the MAC function, �4 is well-defined if MAC oracle is changed to be
compatible with the above query, which is done as follows.

MAC.key; m/. Here key is the MAC key. The oracle maintains a list L of records
.x;MAC.x//. If .key; m/ was queried before, then reply with the existing record;
otherwise, process in two cases.

(i) key D undef-k0.i; y/. This query is from C2 and m D Ci jS jyj�. Take
mac ¹0; 1º�, add .key; m;mac/ into L and return mac.

(ii) key is a concrete number. If m D Ci jS jyj� and jDi j > 1, check

�i
‹
D pw�;i;y.key/

by querying C1. In case of yes, update Di D ¹pw�;i;y.key/º; in case of no,
update Di D Din¹pw�;i;y.key/º.
If it is the first MAC query where jDi j D 1, update each undef-k0.i; y0/ in L

with its concrete value bH� .i; T�.�i ; y0//c�.
In any case (including case m ¤ Ci jS jyj�), if .key; m;mac/ was recorded
in L for some mac, then return mac; otherwise, take mac ¹0; 1º� and add
.key; m;mac/ into L and return mac.

To analyze �4, we first prove the following claim.

Claim 1. After each MAC query, if we take ¹�j º as any ¹� 0j º 2
Q
j Dj (hence

realize every symbol undef-k0.i; y/ in L), then L is consistent: there does not
exist two distinct records .key; m;mac1/ and .key; m;mac2/ in L.

Proof. Otherwise, after some MAC query and when realizing ¹�j º D ¹� 0j º 2Q
j Dj , there exist .key; m;mac1/ and .key; m;mac2/ in L for mac1 ¤ mac2.

Since for each query .key; m/, MAC oracle will first check whether there exists an
existing record, it follows that before realizing ¹�j º D ¹� 0j º, the two (unordered)
records must be .undef-k0.i; y/; Ci jS jyjA;mac1/ and .key; Ci jS jyjA;mac2/.
This implies that key D bH� .i; T

�.� 0i ; y//c� and so pw�;i;y.key/ D � 0i 2 Di .
There are two cases:

1. The record with mac1 was recorded in L earlier than that with mac2. In
this case, when processing query .key; m/, either update Di D ¹pw�;i;y.key/º and
make undef-k0.i; y/ concrete, or update Di D Din¹pw�;i;y.key/º. For the former,
the oracle reply will be mac1; for the latter, � 0j is removed from Di . Both cases
are impossible.



Persistent asymmetric password-based key exchange 53

2. The record with mac1 was recorded in L later than that with mac2. From
the specification, when processing .key; m/ query, either update Di D Din¹�

0º

or jDi j D 1 after query. The former is impossible by our assumption. By
our specification of Send oracles, when jDi j D 1, no MAC query of the form
.undef-k0.i; y/;�/ will be issued, a contradiction.

Hence, the two cases never occur and L is consistent with any assignment
¹�iº 2

Q
i Di .

Lemma 7. Pr.PRS`.A; �3// D Pr.PRS`.A; �4//.

Proof. We show that the adversary view in �4 is identical to that in �3. The
adversary view consists of its local randomness, messages from Send oracle and
MAC. The adversary view at Send oracle between �3 and �4 differs only in the
MAC replies. However, by Claim 1 above, L in MAC oracle can be consistently
explained as the record list of MAC oracle when ¹�iº takes any value in

Q
i Di ,

which of course includes the true password assignment in C1 as each removed
password from Di is confirmed not �i by the equality test. As the MAC value mac
in each record .x;mac/ is taken uniformly random in ¹0; 1º�, L in MAC oracle of
�4 for the true password assignment is in fact identically distributed as that in �3.
This proves the equivalence of the adversary view in these two games. Finally, as
PRS is deterministic in the adversary view, the lemma follows.

Bounding Pr.PRS`.A; �4//. We first characterize event Non-Authi . It can occur
only in Send.2; �/ and Send.3; �/ as follows. Let sid`i

i D sid`s
s D Ci jS jyj�.

(a) Non-Authi occurs in Send.2; i; `i ; S jyj�1j�/ query only if �1 is accepted
while S does not hold a session with sid`s

s D Ci jS jyj� and hence has never issued
a MAC query .key; Ci jS jyj�/, where key is either the concrete k0.i; y/ or its virtual
symbol undef-k0.i; y/. If L does not have a record for this .key; Ci jS jyj�j1/
before verifying �1, then �1 is accepted with probability at most 2�� (ignored);
otherwise, the corresponding MAC query must be issued by A where key is the
concrete k0.i; y/, which means that the test

�i
‹
D pw�;i;y.key/

issued during processing this MAC query is successful.

(b) Non-Authi occurs in Send.3; S; `S ; �2/ with client Ci . So �2 is accepted
(e.g., by session sid`s

s D Ci jS jyj�) while Ci does not have a session sid`i

i D

Ci jS jyj�, which implies that C2 did not issue a MAC query .key; Ci jS jyj�j2/,
where key is the concrete k0.i; y/ or its virtual symbol undef-k0.i; y/. If L does
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not have a record for this .key; Ci jS jyj�j2/ before verifying �2, then �2 is accepted
with probability at most 2�� (ignored); otherwise, the corresponding MAC query
must be issued by A where key is the concrete k0.i; y/, which means that test

�i
‹
D pw�;i;y.key/

issued during processing this MAC query is successful.

From cases (a), (b), we can see that Authi implies a successful verification of �i
at C1. Denote the probability of the successful verification of ` different �i by p`.
Then Pr.PRS`.A; �4// � p`. We note that the password equality test between
C1 and C2 is exactly a red ball experiment: �i is red ball and pw�;i;y.key/ is a
pick from box i . Notice that ¹�iº initially is completely uniformly random in Dn.
Each pick either hits the red ball �i or eliminates one white ball pw�;i;y.a/ from
box i . To be successful, ` red balls should be hit. One pick in the induced red ball
game implies one MAC query. As A makes at most ˛`jD j queries, the number of
picks by C2 is bounded by it. By Theorem 1, within T < ˛`jD j picks, ` red balls
are selected with probability at most by exp.�2`.0:5 � ˛/2/.

Summarizing the above bounding on p` and Lemmas 4–7, we conclude the
proof of Theorem 3.

8 Analysis of our concrete protocol

In Section 5.1, we present an HPS for our framework HPS-PAKE. Call the realized
protocol HPScs-PAKE. In this section, we analyze it.

Security. As H� is computationally universal2, security is implied by Theorem 2.

Persistency. By Theorem 3, the persistency holds if H� .z; x/ is locally unique,
which is seen in the following lemma.

Lemma 8. If h� is a random oracle and KDF W G ! ¹0; 1º2� is a statistically
secure key derivation function. Then, H� . / is locally unique with respect to T�.

Proof. Since b2 is uniform over Zq , we ignore the probability b2 D 0. Let
.z�; x�1 ; x

�
2 / be the output of A. For any distinct �1; �2 2 ŒN �, let

A D H� .z
�; T�.�1; x

�
1 ; x
�
2 // D x

�a1

1 x
�a2

2 g
��1a2

2 � .x�
b1

1 x
�b2

2 g
�b2�1

2 /�1 ;

B D x�
a1

1 x
�a2

2 g
��2a2

2 � .x�
b1

1 x
�b2

2 g
�b2�2

2 /�2 ;

where �1 D h�.z�; x�1 ; x
�
2g
��1

2 / and �2 D h�.z�; x�1 ; x
�
2g
��2

2 /. As q > N ,

.x�
b1

1 x
�b2

2 g
�b2�1

2 /=.x�
b1

1 x
�b2

2 g
�b2�2

2 / D g
b2.�2��1/
2
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has an order of q. Further notice that �1 and �2 are independent and uniformly
random (in Zq). It follows that either B or A is uniformly distributed over G.
Assume B has an order of q. From the independence between �1 and �2, B is
uniformly random over G for a fixed A. Hence, bKDF.B/c� D bKDF.A/c� with
probability 2�� only. As N D 2�=3, the existence of a pair .�1; �2/ such that the
equality holds, only has a probability at most 2��=3, negligible.

Avoid a verification of y 2 G2. Our efficiency claim in Section 5.1 does not
include the cost for the verification of .y1; y2/ 2 G2 by S which needs one more
exponentiation. This cost can be avoided by a slight modification. In msg1, instead
of sending y D .gw1 ; g

wC�i

2 /, client i computes

y� WD .y�1 ; y
�
2 / WD .g

w=2
1 ; g

.wC�/=2
2 /;

sets y D .y�1
2; y�22/ and replaces y in the original msg1 message by y�. The

remaining specification for the client is unchanged. Correspondingly, the server
computation is as follows. It first recovers y D .y�21; y

�2
2/ from y� when re-

ceiving msg1 and the remaining specification for the server is unchanged. Denote
the modified protocol by HPS�cs-PAKE. The cost for the client and the server each
increases by 2 squarings, which is tiny. In addition, the security of HPScs-PAKE
implies the security of the modified protocol HPS�cs-PAKE. The proof uses the fact
that for y 2 G,

p
y D y.qC1/=2. So the attacker for HPScs-PAKE can easily sim-

ulate the environment for an attacker in HPS�cs-PAKE and the reduction follows.
Details are omitted here.

A Proof of Lemma 1

Use EXPc to denote EXP when the challenge bit is c. It suffices to show that
PrŒA.EXP0/ D 1� � PrŒA.EXP1/ D 1�. Let EXP`0 denote the variant of EXP0,
where the first ` Chal queries are answered as in EXP1 while the remaining such
queries are answered as in EXP0. Let the number of Chal queries be bounded by
N . Then, EXP00 D EXP0 and EXPN0 D EXP1. If the lemma is violated by A,
then there exists ` such that jPrŒA.EXP`�10 / D 1� � PrŒA.EXP`0/ D 1�j is non-
negligible. Let bEXPi0; i D `� 1; ` be the variant of EXPi0 such that in the `th Chal
query, x  D.XnL/ (instead of x  D.L/), where correspondingly Hk.z; x/ is
computed using k. By reducing to the hardness of I, we have

PrŒA.EXPi0/ D 1� � PrŒA.bEXPi0/ D 1�:

Hence, PrŒA.bEXP`�10 / D 1� � PrŒA.bEXP`0/ D 1� is non-negligible. We build
an adversary D that uses A to break computationally universal2 of ‰. Upon
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.˛.k/; desc.‰//, D invokes A with it and simulates bEXP`0 as follows. He defines
c to be the hidden bit in his challenge key Kc (parsed as .a�c ; s

�
c / in this proof).

(i) Chal.z/. Assume it is the i th Chal query. If i ¤ `, D simulates normally
as in bEXP`0 except that .a0; s0/ D Hk.z; x/ is computed using witness w. If
i D `, he takes x�  D.XnL/ and sets .z; x�/ as his test query .z2; x2/.
When receiving Kc , he defines .a�c ; s

�
c / D Kc and then processes normally.

(ii) Comp.z; x; �;m/. If .z; x; a0; s0/ 2 ‚ for some a0; s0, he proceeds normally;
otherwise, he queries Eval1.z; x/ query to his challenger and in turn receives
.a; s/. If .a; s/ D ? (hence x 62 L), he outputs ?; otherwise, he proceeds
normally.

At the end of game, D outputs whatever A does.
Denote the simulated game of D with bit c by EXP

`�c
0 . Then EXP

`�c
0 is iden-

tical to bEXP`�c0 , except when x 62 L in Comp query. In this case, the challenger
of D returns .a; s/ D ? and D will output ? while in bEXP`�c0 , � will be ver-
ified using a in .a; s/ D Hk.x/ and (if valid) .a; s/ is returned. Hence, an
inconsistency between the two games occurs only if the following event occurs
to some Comp.z; x; �;m/ query in EXP

`�c
0 : .z; x;�;�/ 62 ‚ and x 62 L but

� D MACa.m/. Denote this event by E. We have thatˇ̌
PrŒA.bEXP`�c0 / D 1� � PrŒA.EXP

`�c
0 / D 1�

ˇ̌
� PrŒE.EXP

`�c
0 /�:

We claim that PrŒE.EXP
`�c
0 /� D negl.�/ with c D 0; 1; otherwise, computational

universal2 of ‰ can be broken by adversary D 0 as follows. Without loss of gen-
erality, assume that PrŒE.EXP

`
0/� is non-negligible. Upon receiving .‰; ˛.k//, D 0

simulates EXP
`
0 by playing the role of D and the challenger of D , except the

evaluation of Hk.z; x/ is done under his own challenger’s help. Specifically, the
i th Chal.z/ query for i ¤ ` is answered by himself using witness w; for the `th
Chal.z/ query, he takes x�  XnL and issues Eval2.z; x�/ query to evaluate
Hk.z; x

�/; for a Comp.z; x; �;m/ query, he issues Eval1.z; x/ to his own chal-
lenger and in turn he will receive .a; s/ D ? if x 62 L; Hk.z; x/ otherwise.
In case of the former, he records .z; x/ into a list L and rejects normally (as in
EXP

`�c
0 ); in case of the latter, D 0 answers the query using the received Hk.z; x/

normally. The remaining simulation is normal. This simulation is perfectly con-
sistent with EXP

`�c
0 for both cases c D 0 and 1. At the end of game, if c D 1, D 0

outputs 0/1 randomly; otherwise, he takes .z�; y�/ randomly from L and issues
Test.z�; y�/ query. In turn he will receive .a�

b
; s�
b
/, where .a�0 ; s

�
0 / D Hk.z

�; y�/

or .a1; s1/  ¹0; 1º2�. Then he reviews all the Comp queries in L with forms
.z�; y�; �;m/ for any �;m and denotes event � D MACa�

b
.m/ by inc. In case of
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inc, D 0 outputs 0; otherwise he outputs 1. Note that if b D 1, then inc occurs to
y� negligibly by ungorgeability of MAC. If b D 0, then inc event is E event in
EXP

`
0 that occurs to .z�; y�/. Since any E event must occur to some .z; x/ in L,

inc occurs in D’s algorithm for b D 0 with probability at least PrŒE.EXP
`
0/�=jLj,

non-negligible. The non-negligible gap of the two cases implies non-negligible
advantage of D 0, a contradiction. Hence,

PrŒA.EXP
`
0/ D 1� � PrŒA.EXP

`�1
0 / D 1�

is non-negligible, which is the success advantage of D , a contradiction.

B Proof of Lemma 2

Use Left and Right to denote the left- and right-hand side of (4.1), respectively.
First of all, we show that Left � Right by presenting an algorithm A0 achieving
Right. Here A0 simply draws the ball from box 1 until the red ball is picked. Then,
it turns to box 2 using the same strategy, then box 3, etc. If it draws a red ball from
box ` before t picks are used up, it succeeds; otherwise, it fails. Let the red ball
in box i be obtained by using xi picks. Then, it is simple to verify that xi  Œai �.
Hence, the success probability of A0 is exactly the right-hand side of (4.1).

It remains to show that Left � Right. When ` D 0, the conclusion holds
trivially since both sides are 1. Assume ` � 1. When n D 1, the two sides
of (4.1) equal min¹t=a1; 1º for the (only) case ` D 1. For n � 2 and ` � 1,
we use induction on t . Note that ‚t;n;`.a1; : : : ; an/ can always be achieved by a
deterministic algorithm by computing the maximum success probability over the
randomness of A. Hence, we assume that A is deterministic. When t D 0, the
two sides of (4.1) are zero. The conclusion holds trivially. When t D 1, assume
that the box id of the first pick by A is j . Then

‚1;n;`.a1; : : : ; an/ D a
�1
j �‚0;n;`�1.a1; : : : ; aj�1; 0; ajC1; : : : ; an/

C .1 � a�1j /‚0;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/

D a�1j �‚0;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/

C .1 � a�1j /‚0;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/:

If ` D 1, then this gives ‚1;n;`.a1; : : : ; an/ D a�1j � a�11 D Right. Hence,
Left � Right. If ` � 2, then ‚1;n;`.a1; : : : ; an/ D 0 as

‚0;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/ D 0;

‚0;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/ D 0:

In addition, since x1C� � �Cx` � ` > 1, we have Right D 0. Hence, Left D Right.
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Now assume Left � Right for t � 1 draws, which implies Left D Right for
t � 1 draws since Left � Right is proven at the beginning. We consider t (t � 2).
Assume that the first box chosen by A is j . Then,

‚t;n;`.a1; : : : ; an/ D a
�1
j �‚t�1;n;`�1.a1; : : : ; aj�1; 0; ajC1; : : : ; an/

C .1 � a�1j /‚t�1;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/

D a�1j �‚t�1;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/

C .1 � a�1j /‚t�1;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/

There are two cases.

Case aj D 1. Then,

‚t;n;`.a1; : : : ; an/ D ‚t�1;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/:

Let a�1 ; : : : ; a
�
`�1

be the ` � 1 smallest numbers in ¹a1; : : : ; anºn¹aj º. By induc-
tion, we have

‚t�1;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/

D Pr
�
x�1 C � � � C x

�
`�1 � t � 1 W x

�
i  Œa�i �

�
:

If j > `, then a1 D � � � D a` D 1 as a1 � a2 � � � � � an and aj D 1. Hence,
.a�1 ; : : : ; a

�
`�1

/ equals .a1; : : : ; a`�1/. Therefore,

Pr
h `�1X
iD1

x�i � t � 1 W x
�
i  Œa�i �

i
D Pr

h `�1X
iD1

xi � t � 1 W xi  Œai �
i
:

Since a` D 1, it follows that x` D 1 always holds when x`  Œa`�. So

Pr
h `�1X
iD1

xi � t � 1 W xi  Œai �
i
D Pr

hX̀
iD1

xi � t W xi  Œai �
i
:

The induction holds in this case.
If j � `, then ¹a�1 ; : : : ; a

�
`�1
º D ¹a1; : : : ; aj�1; ajC1; : : : ; a`º. Hence,

Pr
h `�1X
iD1

x�i � t � 1 W x
�
i  Œa�i �

i
D Pr

h X
1�i�`;i¤j

xi � t � 1 W xi  Œai �
i

D Pr
hX̀
iD1

xi � t W xi  Œai �
i
;
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where the last equality holds since aj D 1 and hence xj D 1 holds always. Hence,
the induction holds in this case too.

Case aj > 1 and j > `. In this case, ¹a1; : : : ; a`�1º are the ` � 1 smallest
numbers in ¹a1; : : : ; anºn¹aj º. By induction assumption on t � 1, we have

a�1j �‚t�1;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/

D a�1j � Pr
h `�1X
iD1

xi � t � 1 W xi  Œai �
i
:

In addition, if aj > a`, then ¹a1; : : : ; a`º are the ` smallest numbers in ¹a1; : : : ;
aj�1; aj � 1; ajC1; : : : ; anº. Hence,

.1 � a�1j /‚t�1;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/

D .1 � a�1j / � Pr
hX̀
iD1

xi � t � 1 W xi  Œai �
i
:

Therefore, in (4.1), we have that Right � Left equals

Pr
hX̀
iD1

xi D t
i
C a�1j � Pr

hX̀
iD1

xi � t � 1
i
� a�1j � Pr

h `�1X
iD1

xi � t � 1
i
:

We need to show that Right � Left � 0. We split event
P`�1
iD1 xi � t � 1 into two

sub-events

A W t � 1 �

`�1X
iD1

xi � t � a` and B W

`�1X
iD1

xi � t � 1 � a`:

Note in case of event A, there exists 1 � x�
`
� a` such that x�

`
C
P`�1
iD1 xi D t .

Hence, as ` < j ,

Pr
hX̀
iD1

xi D t
i
� PrŒA� � Pr

hX̀
iD1

xi D t ^ x` D x
�
`

i
� a�1j PrŒA�

D a�1` PrŒA� � a�1j PrŒA� � 0:

In case of event B , since x` � a` always holds,

a�1j PrŒB� � a�1j Pr
hX̀
iD1

xi � t � 1
i
:

Hence, Right � Left holds in this case.
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If aj � a`, then aj D a` since by assumption aj � a` for j > ` holds
always. In this case, ¹a1; : : : ; a`�1; a` � 1º are the ` smallest numbers among
¹a1; : : : ; aj�1; aj � 1; ajC1; : : : ; anº. Hence,

.1 � a�1j /‚t�1;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/

D .1 � a�1` / � Pr
h
x�` C

`�1X
iD1

xi � t � 1 W xi  Œai �; x
�
`  Œa` � 1�

i

D .1 � a�1` /

a`�1X
uD1

Pr
h
x�` C

`�1X
iD1

xi � t � 1 ^ x
�
` D u W

xi  Œai �; x
�
`  Œa` � 1�

i
D a�1`

a`�1X
uD1

Pr
h
uC 1C

`�1X
iD1

xi � t W xi  Œai �; i < `
i

D

a`�1X
uD1

Pr
hX̀
iD1

xi � t ^ x` D uC 1 W xi  Œai �; i � `
i

D Pr
hX̀
iD1

xi � t ^ x` > 1 W xi  Œai �
i
:

Further,

a�1j �‚t�1;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/

D a�1` � Pr
h `�1X
iD1

xi � t � 1 W xi  Œai �
i

D Pr
hX̀
iD1

xi � t ^ x` D 1 W xi  Œai �
i
:

Combining the above two equations, we have that in this case Left D Right.

Case aj > 1 and j � `. In this case, ¹a1; : : : ; a`ºn¹aj º are the ` � 1 smallest
numbers among ¹a1; : : : ; anºn¹aj º. By induction assumption on t � 1, we have

a�1j �‚t�1;n�1;`�1.a1; : : : ; aj�1; ajC1; : : : ; an/

D a�1j � Pr
h X
1�i�`;i¤j

xi � t � 1 W xi  Œai �
i
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D Pr
h X
1�i�`

xi � t ^ xj D 1 W xi  Œai �
i
:

Note that ¹a1; : : : ; aj�1; aj � 1; ajC1; : : : ; a`º are the ` smallest numbers in
¹a1; : : : ; aj�1; aj � 1; ajC1; : : : ; anº. Hence,

.1 � a�1j /‚t�1;n;`.a1; : : : ; aj�1; aj � 1; ajC1; : : : ; an/

D .1 � a�1j /Pr
h
x�j C

X̀
iD1;i¤j

xi � t � 1 W xi  Œai �; x
�
j  Œaj � 1�

i

D .1 � a�1j /

a`�1X
uD1

Pr
h
x�j C

X̀
iD1;i¤j

xi � t � 1 ^ x
�
j D u W

xi  Œai �; i ¤ j; x
�
j  Œaj � 1�

i
D a�1j

a`�1X
uD1

Pr
h
uC 1C

X̀
iD1;i¤j

xi � t W xi  Œai �; i ¤ j
i

D

a`�1X
uD1

Pr
hX̀
iD1

xi � t ^ xj D uC 1 W xi  Œai �
i

D Pr
hX̀
iD1

xi � t ^ xj > 1 W xi  Œai �
i
:

Combining the above two equations, we conclude the result in this case. As a
summary, the induction holds for all cases. This completes the proof of Lemma 2.

C Proof of Theorem 2

We modify the security game (denoted by � rea) into games �0 (D � rea), �1, �2
such that any adversary view (hence events Non-Authi or Succ as they are in the
adversary view) between each neighboring pair is negligibly close. For simplicity,
we regard Execute query as a result of four Send queries (i.e., Send.d; �/, d D
0; 1; 2; 3) and later will remove its effect on Non-Authi and Succ by analyzing these
special Send queries. For simplicity, we assume the Normal condition: sampling
x  D.L/ never repeats the same x (as it is negligible; otherwise, I is not hard:
given challenge x, sample y  D.L/. Then x D y for x  D.L/ holds non-
negligibly while x ¤ y always holds for x  D.XnL/).

Game �1. We modify �0 to �1 with the following differences. Send.0; i; `i ; null/
oracle defines .k0; k1/ ¹0; 1º2� (instead of .k0; k1/ D H� .i; x/). �1 maintains
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a list Q of record .i; y; k0; k1/. For consistency, Send.1; S; `S ; Ci jyj�0/ is han-
dled as follows. First check if .i; y; u0; u1/ 2 Q for some .u0; u1/. If no, process
normally using � ; otherwise, define .k00; k

0
1/ D .u0; u1/ and proceed normally.

Lemma 9. View.A; �0/ � View.A; �1/.

Proof. If the views of A are distinguished by D , we construct adversary B to
violate Lemma 1. Upon desc.‰/;‚ D ˛.�/, B simulates �0 as follows. Let
Q D ¹ º.

Send.0; i; `i ; null/. Upon this, B queries Chal.i/ and in turn receives .x; ac ; sc/.
He defines .k0; k1/ D .ac ; sc/ and normally finishes the simulation in this query.
Finally, he defines state`i

i D Ci jS jyjk0jk1 and updates Q D Q [ ¹.i; y; k0; k1/º.
Note in this case, the challenger of B will update his list� D �[¹.i; x; k0; k1/º.

Send.1; S; `S ; Ci jyj�0/. Upon this, he computes x D T�.�i ; y/ and issues
Comp.i; x; �0; Ci jS jy/. In turn, he will receive .a; s/. If .a; s/ D ?, he rejects;
otherwise, he defines .k00; k

0
1/ D .a; s/ and finishes the remaining simulation in

this query normally. In the later case, he also updates stat`S

S D Ci jS jyj�jk
0
0jk
0
1.

Note that if x was generated in Send.0; i; �/, then .i; x; ac ; sc/ 2 �. In this case,
the simulation is consistent with �c : if �0 D MACac

.Ci jS jy/, then Comp oracle
returns .a; s/ D .ac ; sc/; otherwise, it returns .a; s/ D ? (and B will correctly
reject �0). If x is not generated in Send.0; i; �/ (note it could be generated by client
i 0 ¤ i ), then .i; x;�;�/ 62 � and hence �0 will be verified by the challenger of
B using .k0; k1/ D H� .i; x/ computed using � . In this case, .a; s/ D ? if �0
is invalid; .a; s/ D .k0; k1/ otherwise. Hence, in any case, the simulation in this
query is consistent with �c .

Send.2; i; `i ; S j�j�1/. Upon this case, use stat`i

i to simulate normally. Finally, if
�1 is accepted, update stat`i

i D Ci jS jk1.

Send.3; S; `S ; �2/. Upon this case, use stat`S

S to simulate normally. Finally, if �2
is accepted, update stat`S

S D Ci jS jk
0
1.

Reveal.U; `U / and Test.U; `U /. This occurs only when …`U

U is successfully com-
pleted. In this case, sk`U

U is well defined in stat`i

i above. So the simulation is
normal.

Corrupt.i/. As seen above, stat`i

i is well defined and �i is known. Hence, the
simulation is normal.

From the description of B, we can see that when challenge bit c D 0, the
simulated game by B is �0; otherwise, it is �1. Hence, the distinguishability
between �0 and �1 leads to violate Lemma 1.
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Game �2. We modify �1 to �2 as follows. In oracle Send.0; i; `i ; null/, take
x  X (instead of x  L). Note that since w is not used in the simulation of �1,
no further change is required toward the consistency with this modification. By
simply reducing to hardness of L, we have the following result.

Lemma 10. View.A; �1/ � View.A; �2/.

We analyze �2. Recall that, in Send.1; S; `S ; Ci jyj�0/, when .i; y;�;�/ 62 Q,
we define .k00; k

0
1/ D H� .i; x/ and verify �0 with k00. Consider a Bad event in this

query: .i; y;�;�/ 62 Q and T�.�i ; y/ 62 L but �0 is valid.

Lemma 11. PrŒBad.�2/� D negl.�/.

Proof. Let us assume that the lemma is not true. Let an irregular query be a
Send.1; S; `S ; Ci jyj�0/ query where .i; y;�;�/ 62 Q and T�.�i ; y/ 62 L. Let the
number of irregular queries be bounded by �. Use Badi to represent the event: the
i th irregular query is the first Bad event. Note that when Bad occurs, there exists a
unique Badi event.

We now construct an adversary A0 to break the computational universal2 prop-
erty of ‰. Upon desc.‰/;‚, A0 takes t  ¹1; : : : ; �º and initializes �i for each
Ci and simulates �2, except when he needs to use � , which is one of the following
scenarios (especially note that .k0; k1/ in Send.0; �/ is taken randomly in ¹0; 1º2�

without using � ). (1) S is corrupted and � should be given to A. This will not
occur since we assume S is uncorrupted. (2) In Send.1; S; `S ; Ci jyj�0/, A0 will
use � to compute .k00; k

0
1/ in case of .i; y;�;�/ 62 Q. In this case, A0 can compute

x D T�.�i ; y/ and query his Eval1 oracle to compute H� .i; x/. When x 2 L,
he will receive H� .i; x/; when x 62 L, he will receive ?. For the former case,
he proceeds normally; for the latter case, it is an irregular query. If this is the j th
irregular query for j < t , then he rejects �0; if it is the t th irregular query, he
issues .i; x/ as a Test query, in turn he will receive .ac ; sc/ for challenge bit c. If
�0 D MACac

.Ci jS jy/, he outputs 0; otherwise 1. First of all, when c D 1, ac is
independent of the adversary view prior to the current query, by unforgeability of
MAC, �0 D MACa1

.Ci jS jy/ holds negligibly only. We ignore this tiny probability.
When c D 0 and t is correct, the adversary view till the current query is identical
to his view in �2. In this case, the validity of �0 is a Badt event, in which A0 must
output 0. Since Badt event implies that �0 is valid and that upon such an event the
simulation by A0 prior to the t th irregular query is identical to �2 (even without
considering the output of A0 in the case c D 0 with an incorrect t ), we always
have that
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ˇ̌
PrŒA0Eval1.0;�/ D 0� � PrŒA0Eval1.1;�/ D 0�

ˇ̌
� PrŒBadt .�2/� � negl.�/

�
PrŒBad.�2/�

�
� negl.�/

(where PrŒBadt .�2/� D PrŒBad.�2/�=� as t is uniformly random), non-negligible,
a contradiction.

For simplicity, we now assume that Bad event never occurs.

Lemma 12. If initiator …`i

i accepts msg2 D S j��j��1 , it has a unique partner
…
`S

S .

Proof. Note that sid`i

i D Ci jS jy
�j��. Since S will not sample the same ��

twice (ignore the negligible probability), it follows that the number of partnered
instance …`S

S for …`i

i is at most one. It suffices to prove the existence. If it does
not exist, we show MAC is forgeable. Assume that stat`i

i after sending msg1 is
Ci jS jy

�jk�0 jk
�
1 . Then, reviewing the definitions of oracles in �2, besides com-

puting MACk�0 . / function, k�0 (and its identical copy k�
0

0 ) will be used only in the
following scenarios before …`i

i verifies msg2: k�0 is revealed due to the corrup-
tion of Ci (note S is uncorrupted), which is impossible since a corrupted party
is controlled by A and so Send.2; i; `i ;msg2/ query would not have occurred.
Hence, prior to verifying msg2 by …`i

i , �2 uses k�0 only for evaluating MACk�0 . /.
To reduce to the unforgeability of MAC, it suffices to show that prior to verify-
ing msg2 in …`i

i , the simulator never evaluates and outputs MACk�0 . / with input
Ci jS jy

�j��j1. Otherwise, since �0; �1; �2 have different input formats, this eval-
uation must be done by S in some Send.1; S; `0S ; �/, which already implies that
…
`0s
s is partnered with Ci , contradicting our assumption. Thus, the validity of ��1

implies breaking the unforgeability of MAC.

Lemma 13. Let pid`S

S .WD Ci / be uncorrupted. If .i; y�; �; �/ 2 Q in Send.1; S; `S ;

Ci jy
�j��0 / oracle and ��2 is accepted in Send.3; S; `S ; ��2 /, then…

`�S
S has a unique

partner …`i

i .

Proof. The number of partners of …`S

S is at most one, due to Normal condition on
x. It suffices to prove the existence. Assume this is not true. By assumption, in
Send.1; S; `�S ; Ci jy

�j��0 /, it holds that .i; y�; k�0 ; k
�
1 / 2 Q for some k�0 ; k

�
1 and

it also holds that ��0 D MACk�0 .Ci jS jy
�/ (otherwise, ��0 in msg1 was rejected

and it would be impossible for …`S

S to verify and accept ��2 ). Hence, the fact that
.i; y�; k�0 ; k

�
1 / was recorded in Q implies that…`i

i for some `i must have sampled
x D T�.�i ; y�/. By Normal condition, …`i

i is the only instance that samples this
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value. Since…`i

i is not partnered with…`S

S ,…`i

i does not compute MACk�0 . / with
input Ci jS jy�j��j2, where �� is generated by …`S

S . As in the previous lemma,
k�0 is only used in evaluating MACk�0 . /. To prove the lemma, it suffices to show
that the simulator never evaluates and outputs MAC k�0

. / with input Ci jS jy�j��j2.
Otherwise, it must be done by some instance …

`0
i

i in Ci in generating msg3 (recall
inputs for �0; �1; �2 have different formats). Hence, since Ci jS jy� implies that
…
`0

i

i samples x as T�.�i ; y�/, it follows that `0i D `i , contradicting that …`i

i is
not partnered with …`S

S . Hence, if …`i

i does not exist, then a forgery for MAC is
obtained, contradicting the MAC security.

Lemma 14. PrŒSucc.A/ j :Non-Auth� D 1=2 in �2.

Proof. Let …
`�U
U be the test instance and pid

`�U
U D V . Let sid

`�U
U D CJ jS jy

�j��.
Then, ¹U; V º D ¹J; Sº. If U D J , then V D S and (by Lemma 12) there is the

unique partnered …
`�S
S for …

`�J
J . If U D S , then V D J .

In this case, if a partnered …
`�J
J in CJ for …

`�S
S does not exist, then …

`�S
S ’s ac-

cepting ��2 implies Non-AuthJ event. Hence, under :Non-Auth event, there is a
partnered …

`�J
J for …

`�S
S and by Normal condition it is unique. So in any case, con-

ditional on :Non-Auth, there is a uniquely partnered …
`�V
V for …

`�U
U . Let .k�0 ; k

�
1 /

be the uniformly random keys defined in Send.0; J; `�J ; nil/ to replace H� .J; x�/
where x� D T�.�J ; y�/. Let b 2 ¹0; 1º; ˛1 2 ¹0; 1º� be the random number
in Test oracle. We notice that in �2, sk

`�U
U D k

�
1 is taken uniformly random from

¹0; 1º�. Let ˛0 D sk
`�U
U . Let the randomness in the whole game for �2, except

k�1 ; b; ˛1, be denoted by r . Use viewt .A/ to denote the adversary view after the
t th query. Then to prove the lemma, it suffices to show that view t .A/ for each t
is deterministic in r; ˛b . We actually also show that ¹stat`i

i º.i;`i /¤.J;`
�
J /;.S;`

�
S /

is
deterministic in r; ˛b . Initially, view0.A/ only consists of public parameters and
the conclusion holds. Assume it holds for t � 1 queries. Consider query t .

Send.0; i; `i ; null/. The randomness in sampling x and the randomness for k0
are from r . Hence, Ci jyj�0 is deterministic in viewt�1.A/ and r . Note that
stat`i

i D Ci jS jyjk0jk1. When .i; `i / ¤ .J; `�J /, k1 is determined by r . Hence,
the conclusion holds after this query.

Send.1; S; `S ; Ci jyj�0/. Oracle first checks if .i; y;�;�/ 2 Q. If yes, extract
k0 from it and proceed normally. If no, compute .k00; k

0
1/ D H� .i; x/ for x D

T�.�i ; y/ and proceed normally. Notice that .i; y; k0/ as part of a record in Q is
computed using the randomness r ; � is generated using r too. � is based on the
randomness in the initialization of �2 and hence based on r too. So adversary
view in this query is deterministic in viewt�1.A/ and r . If it outputs msg2, then
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stat`S

S is updated as Ci jS jyjk0jk1. As …
`�S
S is the unique partner of …

`�
i

i , when
.S; `S / ¤ .S; `

�
S /, k1 is computed using r . Hence, the conclusion holds after this

query.

Send.2; �/ and Send.3; �/. Send.2; �/ and Send.3; �/ are deterministic in the view
of A before the query and its session state. By the induction, the conclusion holds
after this query.

Reveal.i; `i /. This query is sk`i

i . By the restriction on Test definition, we have
…
`i

i ¤ …
`�S
S ;…

`�J
J and hence by induction, its internal state is deterministic in

viewt�1.A/ and r; ˛b . Since sk`i

i is in his internal state, the conclusion holds
after this query.

Corrupt.i/. Upon this query �i as well as ¹stat`i

i º`i
will be available to A. Since

i ¤ J; S by Test restriction, by induction, the conclusion holds after this query.

Test.u; `�u/. The reply in this query is ˛b . The conclusion holds trivially after this
query.

As a summary, our conclusion holds and hence view.A/ is independent of b.

Lemma 15. PrŒNon-Authi .A; �2/� �
Qi

jDj
C negl.�/.

Proof. To prove the lemma, we show how to simulate �2 when ¹�iºi is random
while the remaining randomness r of the game is fixed. Let Di be the candidate
space for �i after each query. Our simulation has a ?-property: after query t ,
viewt .A/ is unchanged over each .�1; : : : ; �n/ 2 D1 �D2 � � � � �Dn. Hence,
given viewt .A/, .�1; : : : ; �n/ is uniformly distributed over D1 � � � � �Dn.

Initially, view0.A/ D hdesc.ƒ/; ˛.�/i which is independent of .�1; : : : ; �n/.
Hence, D1 D � � � D Dn D D and ?-property holds. Assume this simulation is
done for query t � 1. Consider query t , which is one of the following.

Send.0; i; `i ; null/. Oracle takes y  X , .k0; k1/  ¹0; 1º2� and computes
�0 D MACk0

.Ci jS jy/. Finally, update Q D Q [ ¹.i; y; k0; k1/º. The adversary
view in this query is Ci jyj�0. For any ¹�j ºnjD1 2

Qn
jD1Dj , the adversary view

in the current query is identical. By induction assumption, after this query, if
Dj , t D 1; : : : ; n, remains unchanged, ?-property holds. Finally, set stat`i

i D

Ci jS jyjk0jk1.

Send.1; S; `S ; Ci jyj�0/. Upon this, if .i; y; k0; k1/ 2 Q, then (regardless of the
concrete value for �i ), the oracle will take .k0; k1/ from it and finish the remaining
simulation in this query normally and keep all ¹Dtº unchanged. If .i; y; k0; k1/ 62
Q, oracle will use � and �i to verify �0, and (if valid) announce the success of A,
which has two cases.
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(1) �0 is valid and T�.�i ; y/ 2 L. This case occurs only for at most one �i
(denoted by �i .y/) by regularity property R-2 of .T; T�/.

(2) �0 is valid and T�.�i ; y/ 62 L. This is a Bad event in �2 (negligible, ignored,
see Lemma 11).

Hence, case (1) occurs (hence �i D �i .y/) with probability � 1=jDi j by in-
duction (since, given viewt�1.A/, ¹�j ºj is uniform in

Q
j Dj and especially �i

is uniform in Di ); when case (1) does not occur (i.e., �0 invalid), then the ad-
versary view in this query is identical (i.e., reject) for any password setup: take
�i 2 Din¹�i .y/º and take �j 2 Dj for all j ¤ i . Hence, in this case, if Dj
for j ¤ i remains unchanged and Di D Din¹�i .y/º, ?-property holds. Finally,
stat`S

S D Ci jS jyjk0jk1 is well-defined.

Reveal; Test;Send.2; : : :/;Send.3; : : :/. They are processed only with a session
state from Send.0; �/ or Send.1; �/, which is well-defined as above. Thus the sim-
ulation is perfect.

Corrupt.i/. In this case, �i is revealed and hence Di is updated to ¹�iº. Notice
that ¹stat`i

i º`i
are consistent with all ¹�j ºj 2

Q
j Dj by induction. Thus, if we

keep Dj unchanged for j ¤ i , then ?-property still holds.

Now we consider Non-Authi event. It occurs at either some …`i

i or …`S

S with
pid`S

S D Ci . By Lemma 12, it is impossible to the former. For the latter, by Lemma
13, it must hold that .i; y;�;�/ 62 Q in Send.1; S; `S ; Ci jyj�0/ query and hence
case (1) (i.e., �i D �i .y/) must occur (since case (2) is negligible and ignored).
It remains to calculate the probability �i D �i .y/ throughout the game. As ana-
lyzed above, it has a probability 1=jDi j, conditional on that previous queries with
msg1 D Ci j� do not have such an event. Hence, as a summery, �i D �i .y/ occurs
in the `th such a Send.1; S; �; Ci j � j�/ query with probability

jD j � 1

jD j
�
jD j � 2

jD j � 1
� � �

1

jD j � ` � 1
D

1

jD j
:

We claim that there are at most Qi Send.1; S; �; Ci jyj�/ queries for fixed Ci such
that .i; y;�;�/ 62 Q with Client.…`S

S / D Ci . Indeed, although we decomposed
Execute at the beginning of the theorem proof into four Send.d; �/ queries, this
treatment does not invalidate the above statement: in the special Send.1; S; `S ;
Ci jyj�0/ query (decomposed from query Execute.i; `i ; S; `S /), .i; y;�;�/ 2 Q

was recorded by …`i

i in Send.0; i; `i ; null/ (decomposed from the same Execute
query). So Non-Authi does not occur to such a special Send query. Thus,

PrŒNon-Authi .A; �2/� �
Qi

jD j
:
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We return to the proof of Theorem 2. As Non-Authi and Succ are in view.A/,
each is negligibly close between �0; �1; �2. By Lemmas 14 and 15, our theorem
follows.
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