
J. Math. Cryptol. 8 (2014), 1–29
DOI 10.1515/ jmc-2012-0016 © de Gruyter 2014

Constructing elliptic curve isogenies in
quantum subexponential time

Andrew Childs, David Jao and Vladimir Soukharev

Communicated by María González Vasco

Abstract. Given two ordinary elliptic curves over a finite field having the same cardinal-
ity and endomorphism ring, it is known that the curves admit a nonzero isogeny between
them, but finding such an isogeny is believed to be computationally difficult. The fastest
known classical algorithm takes exponential time, and prior to our work no faster quantum
algorithm was known. Recently, public-key cryptosystems based on the presumed hard-
ness of this problem have been proposed as candidates for post-quantum cryptography. In
this paper, we give a new subexponential-time quantum algorithm for constructing nonzero
isogenies between two such elliptic curves, assuming the Generalized Riemann Hypoth-
esis (but with no other assumptions). Our algorithm is based on a reduction to a hidden
shift problem, and represents the first nontrivial application of Kuperberg’s quantum algo-
rithm for finding hidden shifts. This result suggests that isogeny-based cryptosystems may
be uncompetitive with more mainstream quantum-resistant cryptosystems such as lattice-
based cryptosystems. As part of this work, we also present the first classical algorithm for
evaluating isogenies having provably subexponential running time in the cardinality of the
base field under GRH.

Keywords. Elliptic curves, isogenies, hidden shift problem, quantum algorithms.

2010 Mathematics Subject Classification. 81P94, 68Q12, 11Y40, 14H52.

1 Introduction

We consider the problem of constructing a nonzero isogeny between two given
isogenous ordinary elliptic curves defined over a finite field Fq and having the
same endomorphism ring. This problem has led to several applications in elliptic
curve cryptography, both constructive and destructive. The fastest known proba-
bilistic algorithm for solving this problem is that of Galbraith and Stolbunov [14],
based on the work of Galbraith, Hess, and Smart [13]. Their algorithm is expo-
nential, with a worst-case (and average-case) running time roughly proportional
to 4
p
q.

This work was supported in part by MITACS, NSERC, the Ontario Ministry of Research and Inno-
vation, QuantumWorks, and the US ARO/DTO.

2 A. Childs, D. Jao and V. Soukharev

Although quantum attacks are known against several cryptographic protocols
of an algebraic nature [11, 15, 28], until now there has been no nontrivial quan-
tum algorithm for constructing isogenies. The difficulty of this problem has led
to various constructions of public-key cryptosystems based on finding isogenies.
The first such proposal appears in a preprint of Couveignes [9], although it makes
no mention of quantum computation. More recently, Rostovtsev and Stolbunov
[25] and Stolbunov [30] proposed refined versions of these cryptosystems with the
specific aim of obtaining cryptographic protocols that resist attacks by quantum
computers.

In this work, we give a subexponential-time quantum algorithm for constructing
a nonzero isogeny between two given elliptic curves (of the type arising in the
aforementioned cryptosystems). We show that the running time of our algorithm
is bounded above byLq.12 ;

p
3
2
/ under (only) the Generalized Riemann Hypothesis

(GRH), where

LN .˛; c/ WD exp
�
.c C o.1//.lnN/˛.ln lnN/1�˛

�
:

This result raises serious questions about the viability of isogeny-based crypto-
systems in the context of quantum computers. At present, isogeny-based crypto-
systems are not especially attractive since their performance is poor compared to
other quantum-resistant cryptosystems, such as lattice-based cryptography [16].
Nevertheless, they represent a distinct family of cryptosystems worthy of analy-
sis (for reasons of diversity if nothing else, given the small number of quantum-
resistant public-key cryptosystem families available [23]). Since isogeny-based
cryptosystems already perform poorly at moderate security levels [30, Table 1],
any improved attacks such as ours would seem to disqualify such systems from
consideration when the possibility of efficient quantum computation is taken into
account.

1.1 Contributions

Our first main contribution, described in Section 4, is a reduction from the problem
of isogeny construction to the abelian hidden shift problem. While a connection
between isogenies and hidden shifts was noted previously by Stolbunov [30], we
make the simple observation that the reduction gives an injective hidden shift prob-
lem. This lets us apply an algorithm of Kuperberg [21] to solve the hidden shift
problem using a subexponential number of queries to certain functions. Though
straightforward, this reduction constitutes the first nontrivial application of Kuper-
berg’s algorithm outside of the black-box setting.

The reduction to the hidden shift problem implies that a subexponential-time
algorithm for computing the hiding functions yields a subexponential-time al-
gorithm for computing isogenies. Although such subexponential-time algorithms

Constructing elliptic curve isogenies 3

were previously known [19], their running time analysis depends on nonstandard
heuristic assumptions. Our second main contribution, described in Section 3, is a
subexponential-time (classical) algorithm to compute the hiding functions whose
running time analysis depends only on GRH. We achieve this improvement using
expansion properties of a certain Cayley graph [18].

Kuperberg’s algorithm for the abelian hidden shift problem uses superpolyno-
mial space (i.e., a quantum computer with superpolynomially many qubits), so
the same is true of the most straightforward version of our algorithm. Since it
is difficult to build quantum computers with many qubits, this feature could limit
the applicability of our result. However, we also obtain an algorithm using poly-
nomial space by taking advantage of Regev’s alternative approach to the abelian
hidden shift problem [24]. Regev only explicitly considered the case of the hid-
den shift problem in a cyclic group whose order is a power of 2, and even in that
case did not compute the constant in the exponent of the running time. We fill
both of these gaps in our work, showing that the hidden shift problem in any finite
abelian group A can be solved in time LjAj.12 ;

p
2/ by a quantum computer using

only polynomial space. Consequently, we give a polynomial-space quantum algo-
rithm for isogeny construction using time Lq.12 ;

p
3
2
C
p
2/. The group relevant

to isogeny construction is not always cyclic, so the extension to general abelian
groups is necessary for our application.

1.2 Related work

Our algorithm for evaluating the hiding functions is based on reducing an ideal
modulo principal ideals to obtain a smooth ideal. This idea is originally due to
Galbraith, Hess, and Smart [13]. Bröker, Charles, and Lauter [6] and Jao and
Soukharev [19] also use this idea to give algorithms for evaluating isogenies. Bis-
son and Sutherland [5] use a similar smoothing technique to compute endomor-
phism rings in subexponential time. We stress that, with the exception of [6],
which is restricted in scope to small discriminants, all the results mentioned above
make heuristic assumptions of varying severity [5, §4], [13, p. 37], [19, p. 224]
in addition to the Generalized Riemann Hypothesis in the course of proving their
runtime claims. Our work is the first to achieve provably subexponential running
time with no heuristic assumptions other than GRH. In practice, the heuristic algo-
rithms in [5] and [19] run slightly faster than our algorithms in Section 3 – though
their asymptotic running times are identical – because they make use of an opti-
mized exponent distribution (originating from [5]) that minimizes the number of
large-degree isogenies appearing in the smooth factorization. We do not use this
optimization, because doing so would reintroduce the need for additional heuristic
assumptions.

4 A. Childs, D. Jao and V. Soukharev

Following the appearance of our work, Bisson [4, Theorem 6.1] gave a subex-
ponential algorithm for computing endomorphism rings of ordinary elliptic curves
under only GRH, citing Theorem 2.1 of our work in the proof. Bisson also presents
a faster algorithm [4, Proposition 4.4] for directly determining the isogenous curve
corresponding to a prime ideal, which can be used to improve our algorithm (see
Remark 3.4).

An alternative approach to computing isogenies, considered by Couveignes [9,
p. 11] and Stolbunov [30, p. 227], is to treat the class group as a Z-module and
use lattice basis reduction to compute the action of the class group on elliptic
curves. In practice, the lattice-based approach works well for moderate parameter
sizes. However, since it amounts to solving the closest vector problem, the method
asymptotically requires exponential time (even with known quantum algorithms),
and thus is slower than our approach.

2 Isogenies

For general background on elliptic curves, we refer the reader to Silverman [29].
LetE andE 0 be elliptic curves defined over a field F . An isogeny �WE ! E 0 is

an algebraic morphism mapping the identity element of E to the identity element
of E 0. For consistency with the definition of Silverman [29, Section III.4], which
permits zero isogenies, we must include the zero isogeny in our definition. How-
ever, throughout the paper, when we refer to computing or constructing isogenies,
we always mean the computation or construction of a nonzero isogeny. The degree
of an isogeny is its degree as an algebraic morphism. The endomorphism ring
End.E/ is the set of isogenies from E to itself over NF . This set forms a ring under
pointwise addition and composition.

When F is a finite field, the rank of End.E/ as a Z-module is either 2 or 4.
We say E is supersingular if the rank is 4, and ordinary otherwise. A supersingu-
lar curve cannot be isogenous to an ordinary curve. In this paper, as in [30], we
restrict our attention to ordinary elliptic curves. Our results have motivated a sep-
arate study of cryptographic protocols based on isogenies between supersingular
curves [17], and it remains an interesting open problem to better understand the
computational difficulty of constructing such isogenies in the supersingular case.

Over a finite field Fq , two elliptic curves E and E 0 are isogenous if and only
if #E.Fq/ D #E 0.Fq/; see [31]. The endomorphism ring of an ordinary elliptic
curve over a finite field is an imaginary quadratic order O� D ZŒ�C

p
�

2
� of dis-

criminant � < 0. In general, all curves over Fq with the same endomorphism
ring are isogenous up to a twist. The set of all isomorphism classes (over NFq) of
isogenous curves with endomorphism ring O� is denoted Ellq;n.O�/, where n is

Constructing elliptic curve isogenies 5

the cardinality of any such curve. We represent elements of Ellq;n.O�/ by taking
the j -invariant of any representative curve in the isomorphism class.

Any separable isogeny �WE ! E 0 between curves in Ellq;n.O�/ can be spec-
ified, up to isomorphism, by giving E and ker�; see [29, Proposition III.4.12].
The kernel of an isogeny, in turn, can be represented as an ideal in O�; see [32,
Theorem 4.5]. Denote by �bWE ! Eb the isogeny corresponding to an ideal
b (keeping in mind that �b is only defined up to isomorphism of Eb). Princi-
pal ideals correspond to endomorphisms, so any other ideal equivalent to b in the
ideal class group Cl.O�/ of O� yields the same codomain curve Eb, up to iso-
morphism [32, Theorem 3.11]. Hence one obtains a well-defined group action
�WCl.O�/ � Ellq;n.O�/ ! Ellq;n.O�/ taking Œb� � j.E/ to j.Eb/, where Œb�
denotes the ideal class of b. This group action, which we call the complex mul-
tiplication action, is free and transitive [32, Theorem 4.5], and thus Ellq;n.O�/
forms a principal homogeneous space over Cl.O�/.

2.1 Isogeny graphs under GRH

Our runtime analysis in Section 3 relies on the following result of [18] stating,
roughly, that random short products of small primes in Cl.O�/ yield nearly uni-
formly random elements of Cl.O�/, under GRH.

Theorem 2.1. Let O� be an imaginary quadratic order of discriminant� < 0 and
conductor c. Set G D Cl.O�/. Let B and x be real numbers satisfying B > 2

and x � .lnj�j/B . Let Sx be the multiset A [A�1, where

A D
®
Œp� 2 G W gcd.c;p/ D 1 and N.p/ � x is prime

¯
with N.p/ denoting the norm of p. Then, assuming GRH, there exists a positive
absolute constant C > 1, depending only on B , such that for all �, a random
walk of length

t � C
lnjGj

ln lnj�j

in the Cayley graph Cay.G; Sx/ from any starting vertex lands in any fixed subset
S � G with probability at least 1

2
jS j
jGj

.

Proof. Apply [18, Corollary 1.3] with the parameters

� K D the field of fractions of O�,

� G D Cl.O�/,

� q D j�j.

6 A. Childs, D. Jao and V. Soukharev

Following [10], we refer to G D Cl.O�/ as the ring class group of �. Observe
that by [18, Remark 1.2 (a)], Corollary 1.3 of [18] applies to the ring class group
G, since ring class groups are quotients of narrow ray class groups [10, p. 160].
By [18, Corollary 1.3], Theorem 2.1 holds for all sufficiently large values of j�j,
i.e., for all but finitely many j�j. To prove the theorem for all j�j, simply take a
larger (but still finite) value of C .

Corollary 2.2. Theorem 2.1 still holds with the set A redefined as

A D
®
Œp� 2 G W gcd.m�;p/ D 1 and N.p/ � x is prime

¯
;

where m is any integer having at most O.x1=2�" logj�j/ prime divisors.

Proof. The alternative definition of the setA differs from the original definition by
no more thanO.x1=2�" logj�j/ primes. As stated in [18, p. 1497], the contribution
of these primes can be absorbed into the error term O.x1=2 log.x/ log.xq//, and
hence does not affect the conclusion of Theorem 2.1.

2.2 The group action inverse problem

For a fixed discriminant �, the vectorization [9, §2] or group action inverse [30,
§2.4] problem is the task of finding an ideal class Œb� 2 Cl.O�/ such that Œb� �
j.E/ D j.E 0/, given j.E/ and j.E 0/. We refer to Œb� as the quotient of j.E/
and j.E 0/. The computational infeasibility of finding quotients in Ellq;n.O�/
is a necessary condition for the security of isogeny-based cryptosystems [9, §3],
[30, §7]. In the remainder of this paper, we present our subexponential algorithm
for evaluating quotients in Ellq;n.O�/ on a quantum computer.

A notable property of isogeny-based cryptosystems is that they do not require
the ability to evaluate the complex multiplication action efficiently on arbitrary
inputs. It is enough to sample from random smooth ideals (for which � can be
evaluated efficiently) when performing operations such as key generation [9, §5.4],
[30, §6.2]. However, to attack these cryptosystems using our approach, we do
require the ability to evaluate the complex multiplication action on arbitrary inputs.
We turn to this problem in the next section.

3 Computing the complex multiplication action

In this section, we describe a new classical (i.e., non-quantum) algorithm to eval-
uate the complex multiplication action and show that, under GRH, our algorithm
has a running time of Lq.12 ;

p
3
2
/, which is subexponential in the input size. All

notation is as in Section 2. Given an ideal class Œb� in Cl.O�/, and a j -invariant

Constructing elliptic curve isogenies 7

j.E/ of an ordinary elliptic curve E of endomorphism ring O� over Fq , we wish
to evaluate Œb� � j.E/. Recall that

LN .
1
2
; c/ WD exp

�
.c C o.1//

p
lnN ln lnN

�
:

For convenience, we denote Lmax¹j�j;qº.
1
2
; c/ by L.c/.

Our algorithms are modified versions of prior algorithms that also achieved
asymptotically identical subexponential running time, but under additional heuris-
tics. Algorithm 1 is based on [19, Algorithm 3], which is in turn based on Seysen’s
algorithm [27]; Algorithm 2 is based on [6, Algorithm 4.1]. Our bounds on t in
Algorithm 1 are new, and allow us to prove the crucial runtime bound (Proposi-
tion 3.1).

Computing a relation. Given an ideal class Œb� 2 Cl.O�/, Algorithm 1 pro-
duces a relation vector z D .z1; : : : ; zf / 2 Zf for Œb�, with respect to a factor
base F D ¹p1; : : : ;pf º, satisfying Œb� D F z WD pz1

1 � � � p
zf
f

, with the additional
property (cf. Proposition 3.2) that the L1-norm jzj1 of z is less than O.lnj�j/ for
some absolute implied constant (here the L1 norm of a vector is the sum of the
absolute values of its coordinates). Algorithm 1 is similar to [7, Algorithm 11.2],
except that we impose a constraint on jvj1 in Step 5 in order to keep jzj1 small, and
(for performance reasons) we use Bernstein’s algorithm instead of trial division to
find smooth elements. Alternatively, one can use Lenstra’s elliptic curve method,
which reduces the space requirement from superpolynomial to polynomial. How-
ever, the running time analysis of that method requires additional heuristics, which
we are trying to avoid. (On a quantum computer, there are no such difficulties: one
can simply factor integers directly in polynomial time [28].)

Corollary 9.3.12 of [7] together with the restriction C > 1 in Theorem 2.1
implies that there exists a value of t satisfying the inequality in Algorithm 1.

Computing j.E 0/. Algorithm 2 is the main algorithm for evaluating the com-
plex multiplication action. It takes as input a discriminant � < 0, an ideal class
Œb� 2 Cl.O�/, and a j -invariant j.E/ 2 Ellq;n.O�/, and produces as output
the element j.E 0/ 2 Ellq;n.O�/ such that Œb� � j.E/ D j.E 0/. Primes dividing
q �n ��must be eliminated in order to compute the isogenies in the final step of the
algorithm (cf. [6, Algorithm 4.1]). In Step 2 of the algorithm, we adopt the same
convention used in [6, p. 102], where the notation EŒL� for an ideal L � End.E/
denotes

EŒL� WD
®
P 2 E W ˛.P / D 0 for all ˛ 2 L

¯
:

Algorithm 2 is correct since the ideals b and F z belong to the same ideal class,
and thus act identically on Ellq;n.O�/.

8 A. Childs, D. Jao and V. Soukharev

Algorithm 1 Computing a relation

Input: �, q, n, z, Œb�, and an integer t satisfying C lnjCl.O�/j
ln lnj�j � t � C lnj�j,

where C is the constant of Theorem 2.1/Corollary 2.2
Output: A relation vector z 2 Zf such that Œb� D ŒF z�, or nil

1: Compute a factor base F D ¹p1;p2; : : : ;pf º consisting of split primes in O�

of norm less than exp.z
p

lnN ln lnN/, discarding any primes dividing q �n��
2: Set S ;, P ¹N.p/ W p 2 F º

3: Set ` exp. 1
4z

p
lnN ln lnN/

4: for i D 0 to ` do
5: Select v 2 ¹0; : : : ; j�j � 1ºf uniformly at random subject to the condition

jvj1 D t
6: Calculate the reduced ideal av in the ideal class Œb� � ŒF v�

7: Set S S [N.av/

8: end for
9: Using Bernstein’s algorithm [3], find a P -smooth element N.av/ 2 S (if one

exists), or else return nil
10: Find the prime factorization of the integer N.av/

11: Using Theorem 3.1 of Seysen [27] on the prime factorization of N.av/, factor
the ideal av over F to obtain av D F a for some a 2 Zf

12: Return z D a � v

3.1 Runtime analysis

Here we determine the asymptotic running time of Algorithm 2, as well as the
optimal value of the parameter z in Algorithm 1. As is typical for subexponential-
time factorization algorithms involving a factor base, these two quantities depend
on each other, so both are calculated simultaneously.

Proposition 3.1. Under GRH, the probability that a single iteration of the for loop
of Algorithm 1 produces an F -smooth ideal av is at least L.� 1

4z
/.

Proof. We adopt the notation used in Theorem 2.1 and Corollary 2.2. Apply
Corollary 2.2 with the values m D qn, B D 3, and x D f D L.z/� .lnj�j/B .
Observe that m has at most O.log q/ prime divisors, and

O.log q/� Lq.
1
2
; z.1

2
� "// � L.z.1

2
� "// D x1=2�":

Therefore Corollary 2.2 applies. The ideal class Œb� � ŒF v� is equal to the ideal class
obtained by taking the walk of length t in the Cayley graph Cay.G; Sx/, having
initial vertex Œb�, and whose edges correspond to the nonzero coordinates of the

Constructing elliptic curve isogenies 9

Algorithm 2 Computing j.E 0/

Input: �, q, Œb�, and a j -invariant j.E/ 2 Ellq;n.O�/
Output: The element j.E 0/ 2 Ellq;n.O�/ such that Œb� � j.E/ D j.E 0/

1: Using Algorithm 1 with any valid choice of t , compute a relation z 2 Zf such
that Œb� D ŒF z� D Œpz1

1 pz2

2 � � � p
zf
f
�

2: Compute a sequence of isogenies .�1; : : : ; �s/ such that the composition
�c WE ! Ec of the sequence has kernel EŒpz1

1 pz2

2 � � � p
zf
f
�, using the method

of [6, §3]
3: Return j.Ec/

vector v. Hence a random choice of vector v under the constraints of Algorithm 1
yields the same probability distribution as a random walk in Cay.G; Sx/ starting
from Œb�.

Let S be the set of reduced ideals in G with L.z/-smooth norm. By [7, Lemma
11.4.4],

jS j �
p
j�jLj�j.

1
2
;� 1

4z
/ �

p
j�jL.� 1

4z
/:

Hence, by Corollary 2.2, the probability that av lies in S is at least

1

2

jS j

jGj
�
1

2
�

p
j�j

jGj
� L.� 1

4z
/:

Finally, [7, Theorem 9.3.11] states that
p
j�j
jGj
�

1
lnj�j . Hence the probability that

av is F -smooth is at least

1

2
�
1

lnj�j
� L.� 1

4z
/ D L.� 1

4z
/;

as desired.

The following proposition shows that the relation vector z produced by Algo-
rithm 1 is guaranteed to have small coefficients.

Proposition 3.2. Any vector z output by Algorithm 1 satisfies jzj1 < .CC1/ lnj�j.

Proof. Since z D a � v, we have jzj1 � jaj1 C jvj1. But jvj1 � C lnj�j by
construction, and the norm of av is less than

p
j�j=3; see [7, Proposition 9.1.7].

So jaj1 < log2
p
j�j=3 < log2

p
j�j < lnj�j.

Finally, we analyze the running time of Algorithm 2.

10 A. Childs, D. Jao and V. Soukharev

Theorem 3.3. Under GRH, Algorithm 2 has a worst-case running time of at most
Lq.

1
2
;
p
3
2
/ and succeeds with probability at least 1 � 1

e
.

Proof. Algorithm 1 has a running time of L.z/ C L. 1
4z
/ (dominated by the

b.log2 b/
2C" cost of Bernstein’s algorithm, where b D L.z/CL. 1

4z
/ is the com-

bined size of S and P) and success probability at least 1� 1
e

(since it loops through
` vectors v, each with an independent 1=` chance of producing a smooth ideal av
by Proposition 3.1). Assuming that it succeeds, the analysis of [19, §4.4] applied
to Algorithm 2, together with Propositions 3.1 and 3.2, shows that the running
time of Step 2 is at most L. 1

4z
C 3z/. Using the inequality j�j � 4q, the optimal

choice of z D 1

2
p
3

yields the running time bound of Lq.12 ;
p
3
2
/.

Remark 3.4. Using our Theorem 2.1 (cited as [4, Theorem 6.1]), Bisson has re-
cently developed a subexponential-time algorithm for determining endomorphism
rings of elliptic curves, assuming only GRH. As part of that work, Bisson presents
a faster algorithm [4, Proposition 4.4] for determining the curves appearing in the
sequence of isogenies in Step 2 of Algorithm 2, with running time quadratic in
the isogeny degrees, improving upon the cubic time required in prior algorithms.
Using this algorithm, the running time of Algorithm 2 improves to Lq.12 ;

1p
2
/.

4 A quantum algorithm for constructing isogenies

Our quantum algorithm for constructing isogenies uses a simple reduction to the
abelian hidden shift problem. This problem is defined as follows. Let A be a
known finite abelian group (with the group operation written multiplicatively) and
let f0; f1WA ! S be black-box functions, where S is a known finite set. We say
that f0; f1 hide a shift s 2 A if f0 is injective and f1.x/ D f0.xs/ (i.e., f1 is
a shifted version of f0). The goal of the hidden shift problem is to determine s
using queries to such black-box functions. Note that this problem is equivalent
to the hidden subgroup problem in the A-dihedral group, the nonabelian group
A Ì Z2, where Z2 acts on A by inversion.

Isogeny construction is easily reduced to the hidden shift problem using the
group action defined in Section 2. Given two isogenous curves E0; E1 with endo-
morphism ring O�, we define functions f0; f1WCl.O�/ ! Ellq;n.O�/ that hide
Œs� 2 Cl.O�/, where Œs� is the ideal class such that Œs� � j.E0/ D j.E1/. Specifi-
cally, let fi .Œb�/ D Œb� � j.Ei /. Then f0 and f1 hide Œs�:

Lemma 4.1. The function f0 is injective and f1.Œb�/ D f0.Œb�Œs�/.

Constructing elliptic curve isogenies 11

Proof. Since � is a group action,

f1.Œb�/ D Œb� � j.E1/ D Œb� � .Œs� � j.E0// D .Œb�Œs�/ � j.E0/ D f0.Œb�Œs�/:

If there are distinct ideal classes Œb�; Œb0� such that f0.Œb�/ D f0.Œb
0�/, then Œb� �

j.E0/ D Œb
0� � j.E0/, which contradicts the fact that the action is free and transi-

tive [32, Theorem 4.5]. Thus f0 is injective.

Note that the connection between isogenies and hidden shift problems was de-
scribed in [30, Section 7.2]. However, that paper did not exploit the connection,
and in particular, did not mention the injectivity of the hiding functions in the
context of the reduction. Without the assumption that f0 is injective, the hidden
shift problem can be as hard as the search problem, requiring exponentially many
queries [2]. With injective hiding functions, the problem has polynomial quantum
query complexity [12], allowing for the possibility of faster quantum algorithms.

This reduction allows us to apply quantum algorithms for the hidden shift prob-
lem to construct isogenies. The (injective) hidden shift problem can be solved in
quantum subexponential time assuming we can evaluate the group action in subex-
ponential time. The latter is possible due to Algorithm 2.

We consider two different approaches to solving the hidden shift problem in
subexponential time on a quantum computer. The first, due to Kuperberg [21], has
a faster running time but requires superpolynomial space. The second approach
generalizes an algorithm of Regev [24]. It uses only polynomial space, but is
slower than Kuperberg’s original algorithm.

Method 1: Kuperberg’s algorithm. Kuperberg’s approach to the abelian hid-
den shift problem is based on the idea of performing a Clebsch–Gordan sieve on
coset states.

Theorem 4.2 ([21]). The abelian hidden shift problem has a quantum algorithm
with time and query complexity 2O.

p
n/, where n is the length of the output, uni-

formly for all finitely generated abelian groups.

In our context, 2O.
p
n/ D 2O.

p
lnj�j/ since jCl.O�/j D O.

p
� ln�/; see [7,

Theorem 9.3.11]. Furthermore, 2O.
p

lnj�j/ D L.o.1// D L.0/ regardless of the
value of the implied constant in the exponent, since the exponent on the left has nop

ln lnj�j term, whereas L.0/ does. As mentioned above, Kuperberg’s algorithm
also requires superpolynomial space (specifically, it uses 2O.

p
n/ qubits).

Method 2: Regev’s algorithm. Regev [24] showed that a variant of Kuperberg’s
sieve leads to a slightly slower algorithm using only polynomial space. In partic-

12 A. Childs, D. Jao and V. Soukharev

ular, he proved Theorem 4.3 below in the case where A is a cyclic group whose
order is a power of 2 (without giving an explicit value for the constant in the ex-
ponent). Theorem 4.3 generalizes Regev’s algorithm to arbitrary finite abelian
groups. A detailed proof of the following appears in Section 5 (see Theorem 5.8).

Theorem 4.3. Let A be a finite abelian group and let functions f0; f1 hide some
unknown s 2 A. Then there is a quantum algorithm that finds s with time and
query complexity LjAj.

1
2
;
p
2/ using space poly.logjAj/.

We now return to the original problem of constructing isogenies. Note that
to use the hidden shift approach, the group structure of Cl.O�/ must be known.
Given �, it is straightforward to compute Cl.O�/ using existing quantum algo-
rithms (see the proof of Theorem 4.5). Thus, we assume for simplicity that the
discriminant � is given as part of the input. This requirement poses no difficulty,
since all existing proposals for isogeny-based public-key cryptosystems [9,25,30]
stipulate that O� is a maximal order, in which case its discriminant can be com-
puted easily: simply calculate the trace t .E/ of the curve using Schoof’s algorithm
[26], and factor t .E/2 � 4q to obtain the fundamental discriminant � (note of
course that factoring is easy on a quantum computer [28]).

Remark 4.4. One can conceivably imagine a situation where one is asked to con-
struct an isogeny between two given isogenous curves of unknown but identical
endomorphism ring. Although we are not aware of any cryptographic applica-
tions of this scenario, it presents no essential difficulty. Bisson has shown using
Theorem 2.1 (see [4, Theorem 6.1]) that the discriminant � of any ordinary el-
liptic curve can be computed in Lq.12 ;

1p
2
/ time under only GRH (assuming that

factoring is easy, which is the case for quantum computers [28]).

Assuming� is known, we decompose Cl.O�/ as a direct sum of cyclic groups,
with a known generator for each, and then solve the hidden shift problem. The
overall procedure is described in Algorithm 3.

Theorem 4.5. Assuming GRH, Algorithm 3 runs in time Lq.12 ;
p
3
2
/ (respectively,

Lq.
1
2
;
p
3
2
C
p
2/) using Theorem 4.2 (respectively, Theorem 4.3) to solve the hid-

den shift problem.

Proof. We perform Step 1 using [8, Algorithm 10], which determines the structure
of an abelian group given a generating set and a unique representation for the group
elements. We represent the elements uniquely using reduced quadratic forms, and
we use the fact that, under ERH (and hence GRH), the set of ideal classes of norm
at most 12 ln2j�j forms a generating set [1, Theorem 4]. Note that the result in

Constructing elliptic curve isogenies 13

Algorithm 3 Isogeny construction

Input: A finite field Fq , a discriminant � < 0, and Weierstrass equations of
isogenous elliptic curves E0; E1 with endomorphism ring O�

Output: Œs� 2 Cl.O�/ such that Œs� � j.E0/ D j.E1/
1: Decompose Cl.O�/ D hŒb1�i ˚ � � � ˚ hŒbk�i, where jhŒbj �ij D nj
2: Solve the hidden shift problem defined by functions f0; f1WZn1

�� � ��Znk
!

Ellq;n.O�/ satisfying fc.x1; : : : ; xk/ D .Œb1�
x1 � � � Œbk�

xk / � j.Ec/, giving
some .s1; : : : ; sk/ 2 Zn1

� � � � � Znk

3: Output Œs� D Œb1�s1 � � � Œbk�sk

[1, Theorem 4] applies to non-maximal as well as maximal orders – take f in
the statement of that theorem to be the conductor of the non-maximal order. By
Theorem 4.2 (resp. Theorem 4.3), Step 2 uses 2O.

p
lnj�j/ D L.o.1// D L.0/

(resp. L.
p
2/) evaluations of the functions fi . By Corollary 3.3, these functions

can be evaluated in time Lq.12 ;
p
3
2
/ using Algorithm 2, assuming GRH. Overall,

Step 2 takes time
Lq.

1
2
;
p
3
2
C o.1// D Lq.

1
2
;
p
3
2
/

using Theorem 4.2, or Lq.12 ;
p
3
2
C
p
2/ using Theorem 4.3. The cost of Step 3 is

negligible.

Remark 4.6. Using the improved algorithm for evaluating the complex multipli-
cation action described in Remark 3.4, the running time of Algorithm 3 is im-
proved to Lq.12 ;

1p
2
C o.1// D Lq.

1
2
; 1p

2
/ using Theorem 4.2 to solve the hid-

den shift problem (requiring superpolynomial space), and to Lq.12 ;
1p
2
C
p
2/ D

Lq.
1
2
; 3p

2
/ using Theorem 4.3 (requiring only polynomial space).

Remark 4.7. The running time of the algorithm is ultimately limited by two fac-
tors: the best known quantum algorithm for the hidden shift problem runs in su-
perpolynomial time, and the same holds for the best known (classical or quantum)
algorithm for computing the complex multiplication action. Improving only one of
these results to take polynomial time would still result in a superpolynomial-time
algorithm.

5 Subexponential-time, polynomial-space quantum algorithm for
the general abelian hidden shift problem

Following Kuperberg’s discovery of a subexponential-time quantum algorithm for
the hidden shift problem in any finite abelian group A (see [21]), Regev presented

14 A. Childs, D. Jao and V. Soukharev

a modification of Kuperberg’s algorithm that requires only polynomial space, with
a slight increase in the running time [24]. However, Regev only explicitly consid-
ered the case A D Z2n , and while he showed that the running time is LjAj.12 ; c/,
he did not determine the value of the constant c.

In this section we describe a polynomial-space quantum algorithm for the gen-
eral abelian hidden shift problem using timeLjAj.12 ;

p
2/. We assume some famil-

iarity with quantum computation; for general background, see for example [22].
We use several of the same techniques employed by Kuperberg [21, Algorithm 5.1,
Theorem 7.1] to go beyond the case A D Z2n , adapted to work with a Regev-style
sieve that only uses polynomial space.

Let A D ZN1
� � � � � ZNt

be a finite abelian group. Consider the hidden
shift problem with hidden shift s D .s1; : : : ; st / 2 A. By Fourier sampling, one
(coherent) evaluation of the hiding functions f0; f1 can produce the quantum state

j xi WD
1
p
2

�
j0i C exp

h
2�i

�s1x1
N1
C � � � C

stxt

Nt

�i
j1i
�

()

with a known label x D .x1; : : : ; xt / 2R A, where x 2R A denotes that x is
drawn uniformly at random from A (see for example the proof of [21, Theorem
7.1]). Here j xi is the state of a single qubit, a vector in the complex vector space
C2 spanned by orthonormal basis states j0i and j1i. For simplicity, we begin by
considering the case where A D ZN is cyclic. Then Fourier sampling produces
states

j xi D
1
p
2

�
j0i C !sxj1i

�
;

where x 2R ZN is known and ! WD e2�i=N .
If we could make states j xi with chosen values of x, then we could determine

s. In particular, the following observation is attributed to Høyer in [21]:

Lemma 5.1. Given one copy each of the states j 1i; j 2i; j 4i; : : : ; j 2k�1i,
where 2k D �.N/, one can reconstruct s in polynomial time with probability
�.1/.

Proof. We have

k�1O
jD0

j 2j i D
1
p

2k

2k�1X
yD0

!sy jyi:

Apply the inverse quantum Fourier transform over ZN (which takes poly.logN/
time [20]) and measure in the computational basis. The Fourier transform of jsi,

Constructing elliptic curve isogenies 15

namely 1p
N

PN�1
yD0 !

sy jsi, has overlap squared with this state of 2k=N , which
implies the claim.

We aim to produce states of the form j 2j i using a sieve that repeatedly com-
bines states to prepare new ones with more desirable labels. The combination pro-
cedures used by this sieve all have the following basic structure. First we collect
the k input states together, giving a quantum state

j x1
i ˝ � � � ˝ j xk

i D
1
p

2k

X
y2¹0;1ºk

!s.x�y/jyi;

where x �y WD
Pk
iD1 xiyi . Next we compute some function h.x; y/ of the known

classical value x and the value y in the quantum register. Storing h.x; y/ in an
ancilla register gives a state of the form

1
p

2k

X
y2¹0;1ºk

!s.x�y/jyijh.x; y/i:

We then measure the ancilla register, giving a superposition over values in the
first register that are consistent with the measurement outcome. Finally, we make
another measurement to project this superposition onto a particular pair of terms,
and relabel these terms as j0i and j1i to produce a state of the form j x0i for some
x0 2 ZN .

More concretely, the first such combination procedure is Algorithm 4, which
selects pairs of terms with a common quotient in order to produce states with
smaller labels.

Lemma 5.2. Algorithm 4 runs in time 2k poly.logN/ and succeeds with probabil-
ity �.1/ provided 4k � B=B 0 � 2k=k.

Proof. The running time is dominated by the brute force calculation in Step 6 and
the projection in Step 10, both of which can be performed in time 2k poly.logN/.

The probability of aborting in Step 2 for any one xi is 1 � 2B 0

B
b
B
2B 0
c �

2B 0

B
,

so by the union bound, the overall probability of aborting in this step is at most
k 2B

0

B
� 1=2. Conditioned on not aborting in Step 2,

xi 2R ¹0; 1; : : : ; 2B
0
bB=2B 0c � 1º:

Let x � yj D q.2B 0/ C rj , where 0 � rj < 2B 0 (q is the measurement
outcome, which is independent of j). By the uniformity of the xi s, each rj D
x � yj mod 2B 0 is uniformly distributed over ¹0; 1; : : : ; 2B 0 � 1º. Thus the output

16 A. Childs, D. Jao and V. Soukharev

Algorithm 4 Combining states to give smaller labels

Input: Parameters B;B 0 and states j x1
i; : : : ; j xk

i with known x1; : : : ; xk 2R
¹0; 1; : : : ; B � 1º

Output: State j x0i with known x0 2R ¹0; 1; : : : ; B
0 � 1º

1: if 9i W xi � 2B 0bB=2B 0c then
2: Abort
3: end if
4: Introduce an ancilla and compute

1
p

2k

X
y2¹0;1ºk

!s.x�y/jyijb.x � y/=2B 0ci

5: Measure the ancilla, giving an outcome q and a state

1
p
�

�X
jD1

!s.x�y
j /
jyj i;

where y1; : : : ; y� ¤ 0k are the k-bit strings such that b.x � yj /=2B 0c D q
6: Compute y1; : : : ; y� by brute force
7: if � D 1 then
8: Abort
9: end if

10: Project onto span¹jy1i; jy2iº or span¹jy3i; jy4iº or span¹jy5i; jy6iº . . . or
span¹jy2b�=2c�1i; jy2b�=2ciº, giving an outcome span¹jy?i; jyqiº

11: Let x0 D x � .yq � y?/, where x � yq � x � y? without loss of generality
12: if x0 2 ¹1; : : : ; B 0 � 1º then
13: Abort with probability B 0=.2B 0 � x0/
14: else if x0 2 ¹B 0; : : : ; 2B 0 � 1º then
15: Abort
16: end if
17: Relabel jy?i 7! j0i and jyqi 7! j1i, giving a state j x0i

label is x0 D x � .yq � y?/ D jrq � r?j, where r?; rq 2R ¹0; 1; : : : ; 2B
0 � 1º. A

simple calculation shows that the distribution of jrq � r?j is

Pr.jrq � r?j D ı/ D

´
1
2B 0

for ı D 0,
2B 0�ı
2B 02

for ı 2 ¹1; : : : ; 2B 0 � 1º:

Thus the probability that we abort in Steps 12–16 is 1=2, and conditioned on not

Constructing elliptic curve isogenies 17

Algorithm 5 Sieving quantum states

Input: Procedures to prepare states from a set S0 and to combine k states
from Si�1 to make a state from Si with probability at least p for each
i 2 ¹1; : : : ; mº

Output: State from Sm
1: repeat
2: while for all i we have fewer than k states from Si do
3: Make a state from S0
4: end while
5: Combine k states from some Si to make a state from SiC1 with probability

at least p
6: until there is a state from Sm

aborting in these steps, x0 2R ¹0; 1; : : : ; B
0�1º. Therefore, the algorithm is correct

if it reaches Step 17.
It remains to show that the algorithm succeeds with constant probability. We

have already bounded the probability that we abort in Step 2 and Steps 12–16.
Since y D 0 occurs with probability 2�k and at most one state jy�i can be un-
paired (and this only happens when � is odd), the projection in Step 10 fails with
probability at most ��1 C 2�k � 1=3 C o.1/. We claim that the probability of
aborting in Step 8 (i.e., the probability that � D 1) is also bounded away from 1.
Call a value of q bad if � D 1. Since 0 � x � y � k.B � 1/, it follows that there
are at most kB=2B 0 possible values of q, and in particular, there can be at most
kB=2B 0 bad values of q. Since the probability of any particular bad q is 1=2k ,
the probability that q is bad is at most kB=B 02kC1 � 1=2. This completes the
proof.

We now apply this combination procedure using the generalized sieve of Algo-
rithm 5, which is equivalent to Regev’s “pipeline of routines” [24].

Lemma 5.3. Suppose me�2k D o.1/. Then Algorithm 5 is correct, succeeds with
probability 1 � o.1/ using k.1Co.1//m state preparations and combination opera-
tions, and uses space O.mk/.

Proof. If Algorithm 5 outputs a state from Sm then it is correct. Since the algo-
rithm never stores more than O.mk/ states at a time, it uses space O.mk/. It
remains to show that the algorithm is likely to succeed using only k.1Co.1//m state
preparations and combination operations.

18 A. Childs, D. Jao and V. Soukharev

If we could perform combinations deterministically, we would need

1 state from Sm,

k states from Sm�1,

k2 states from Sm�2,
:::

km states from S0.

Since the combinations only succeed with probability p, we lower bound the prob-
ability of eventually producing .2k=p/m�i states from Si for each i 2 ¹1; : : : ; mº
(so in particular, we produce one state from Sm). Given .2k=p/m�iC1 states from
Si�1, the expected number of successful combinations is p.2k=p/m�iC1=k D
2.2k=p/m�i , whereas only .2k=p/m�i successful combinations are needed. By
the Chernoff bound, the probability of having fewer than .2k=p/m�i successful
combinations is at most e�p.2k=p/

m�i

. Thus, by the union bound, the probability
that the algorithm fails is at most

m�1X
iD1

e�p.2k=p/
m�i

� me�2k;

so the probability of success is 1 � o.1/.
Finally, the number of states from S0 is .2k=p/m D k.1Co.1//m and the total

number of combinations is
Pm�1
iD0 .2k=p/

m�i=k D k.1Co.1//m.

When using the sieve, we have the freedom to choose the relationship between
k and m to optimize the running time. Suppose that mk D .1 C o.1// log2N
(intuitively, to cancel log2N bits of the label), and also suppose that the combi-
nation operation takes time 2k poly.logN/ (as in Lemma 5.2). Then if we take
k D c

p
log2N log2 log2N , we find that the overall running time of Algorithm 5

is
2k2.1Co.1//m log2 k poly.logN/ D LN .12 ; c C

1
2c
/:

Choosing c D 1p
2

gives the best running time, LN .12 ;
p
2/.

We now consider how to apply the sieve. To use Lemma 5.1, our goal is to
prepare states of the form j 2j i for each j 2 ¹0; 1; : : : ; blog2N cº. First we
show how to prepare the state j 1i in time LN .12 ;

p
2/ using Algorithm 4 as the

combination procedure in Algorithm 5. For i 2 ¹0; 1; : : : ; mº, the i th stage of the
sieve produces states with labels from Si D ¹0; 1; : : : ; Bi � 1º. Lemma 5.4 below
shows that there is a choice of the Bi s with B0 D N , Bm D 2, and successive

Constructing elliptic curve isogenies 19

ratios of theBi s satisfying the conditions of Lemma 5.2, such that 2kk.1Co.1//m D
LN .

1
2
;
p
2/. It then follows that Algorithm 5 produces a uniformly random label

from Sm D ¹0; 1º with constant probability in time LN .12 ;
p
2/, and in particular,

can be used to produce a copy of j 1i in time LN .12 ;
p
2/.

Lemma 5.4. There is a constant N0 such that for all N > N0, letting Bi D
bN=�ic, where � D .N=2/1=m and

k D
jq

1
2

log2N log2 log2N
k
; m D

l log2N=2
k � log2 2k

m
D ‚

�s log2N
log2 log2N

�
;

we have B0 D N , Bm D 2, and 4k � Bi�1=Bi � 2k=k for all i 2 ¹1; : : : ; mº.

Proof. Clearly B0 D N , and the value of � is chosen so that Bm D 2.
For i 2 ¹1; : : : ; mº, we have

Bi�1

Bi
D
bN=�i�1c

bN=�ic
�

N=�i�1

N=�i � 1
D

�

1 � �i=N
:

Since �i=N � �m=N D 1=2, we have Bi�1=Bi � 2�. Then using

� � .N=2/
k�log2 2k

log2 N=2 D
2k

2k

gives Bi�1=Bi � 2k=k as claimed. Similarly, we have

Bi�1

Bi
D
bN=�i�1c

bN=�ic
�
N=�i�1 � 1

N=�i
D � �

�i

N
� � �

1

2
:

Since

� D .N=2/‚.
p

log2 log2N= log2N/ D 2‚.
p

log2N log2 log2N/ D 2‚.k/;

we have � � 1
2
� 4k for sufficiently large N . This completes the proof.

IfN is odd, then division by 2 is an automorphism of ZN . Thus we can prepare
j 2j i by performing the above sieve under the automorphism x 7! 2�jx. It
follows that the abelian hidden shift problem in a cyclic group of odd order N can
be solved in time LN .12 ;

p
2/.

Now suppose that N D 2n is a power of 2. In this case, we first use a combina-
tion procedure that zeros out low-order bits, as described in Algorithm 6. We use
the notation xS WD ¹xz W z 2 Sº for any x 2 Z and S � Z.

20 A. Childs, D. Jao and V. Soukharev

Algorithm 6 Combining states to cancel low-order bits

Input: Parameters `; `0 and states j x1
i; : : : ; j xk

i with known x1; : : : ; xk 2R
2`¹0; 1; : : : ; N=2` � 1º

Output: State j x0i with known x0 2R 2
`0¹0; 1; : : : ; N=2`

0

� 1º

1: Introduce an ancilla and compute

1
p

2k

X
y2¹0;1ºk

!s.x�y/jyijx � y mod 2`
0

i

2: Measure the ancilla, giving an outcome r and a state

1
p
�

�X
jD1

!s.x�y
j /
jyj i;

where y1; : : : ; y� ¤ 0k are the k-bit strings such that x � yj mod 2`
0

D r

3: Compute y1; : : : ; y� by brute force
4: if � D 1 then
5: Abort
6: end if
7: Project onto span¹jy1i; jy2iº or span¹jy3i; jy4iº or span¹jy5i; jy6iº or . . . or

span¹jy2b�=2c�1i; jy2b�=2ciº, giving an outcome span¹jy?i; jyqiº
8: Relabel jy?i 7! j0i and jyqi 7! j1i, giving a state j x0i with x0 D x � .yq �
y?/ mod N

Lemma 5.5. Algorithm 6 runs in time 2k poly.logN/ and succeeds with probabil-
ity �.1/ provided k � `0 � `C 1.

Proof. The proof is similar to that of Lemma 5.2. Again the running time is dom-
inated by the brute force calculation in Step 3 and the projection in Step 7, both of
which can be performed in time 2k poly.logN/.

We claim that the algorithm is correct if it reaches Step 8. Observe that x �
yj mod N D qj 2`

0

C r , where r is independent of j . Since yj ¤ 0k , we have
x � yj mod N 2R 2`¹0; 1; : : : ; N=2` � 1º, so qj 2R ¹0; 1; : : : ; N=2

`0 � 1º, and
hence

x0 D .qq � q?/2`
0

mod N 2R 2
`0
¹0; 1; : : : ; N=2`

0

� 1º

as required.
The projection in Step 7 fails with probability at most 1=3C o.1/. It remains to

show that the algorithm reaches Step 7 with probability �.1/, i.e., to upper bound

Constructing elliptic curve isogenies 21

the probability that � D 1. Call a value of r bad if � D 1. There are 2`
0�` possible

values of r , so in particular there are at most 2`
0�` bad values of r . Since the

probability of any particular bad r is 1=2k , the probability that r is bad is at most
2`
0�`�k � 1=2. This completes the proof.

Algorithm 6 is similar to the combination procedure used in [24], but differs
in that the latter requires � D O.1/, which is established in the analysis using a
second moment argument. The modification of pairing as many values of y as pos-
sible allows us to use a simpler analysis (with essentially the same performance).

To produce a state of the form j 2j i, we first use Algorithm 6 to cancel low-
order bits and then use Algorithm 4 to cancel high-order bits. Note that if all states
j xi have labels x with a common factor – say, 2j jx – then we can view the labels
as elements of Z2n�j and apply Algorithm 4 to affect the n � j most significant
bits. Specifically, to make the state j 2j i, we apply Algorithm 5 using Algorithm 6
as the combination procedure that produces states from Si using states from Si�1
for i 2 ¹1; : : : ; m1 C 1º, and Algorithm 4 (on the n � j most significant bits) as
the combination procedure for i 2 ¹m1 C 2; : : : ; m1 Cm2 C 1º, taking

Si D

´
2.k�1/i¹0; 1; : : : ; 2n�.k�1/i � 1º for i 2 ¹0; 1; : : : ; m1º,
2j ¹0; 1; : : : ; Bi � 1º for i 2 ¹m1 C 1; : : : ; m1 Cm2 C 1º,

where now

Bi D
j 2n�j

�i�m1�1

k
; m1 D

j j

k � 1

k
;

� D 2.n�j�1/=m2 ; m2 D
l n � j

k � log2 2k

m
;

and again

k D
jq

1
2

log2N log2 log2N
k
:

When making states in Si from states in Si�1 for i 2 ¹1; : : : ; m1º, we cancel k�1
bits with k states, so the condition of Lemma 5.5 is satisfied. For i D m1 C 1, we
cancel

j � .k � 1/m1 D j � .k � 1/
j j

k � 1

k
� j � .k � 1/

h j

k � 1
� 1

i
D k � 1

bits, so again the condition of Lemma 5.5 is satisfied. For i 2 ¹m1C 2; : : : ; m1C
m2 C 1º, Lemma 5.4 implies that the conditions of Lemma 5.2 are satisfied pro-
vided 2n�j � N0. (If 2n�j < N0 then we only need to perform the first m1 C 1
stages of the sieve, producing a state uniformly at random from Sm1C1; in this case

22 A. Childs, D. Jao and V. Soukharev

jSm1C1j D O.1/, soO.1/ repetitions suffice to produce a copy of j 2j i.) Finally,
since .m1Cm2C1/k D .1Co.1//n, the discussion following Lemma 5.3 shows
that Algorithm 5 takes time LN .12 ;

p
2/.

So far we have covered the case where the group is A D ZN with N either
odd or a power of 2. Now consider the case of a general finite abelian group A D
ZN1
�� � ��ZNt

. By the Chinese remainder theorem, we can assume without loss of
generality that each Ni is either odd or a power of 2. Consider what happens if we
apply Algorithm 4 or Algorithm 6 to one component of a product of cyclic groups.
Suppose we combine k states of the form of equation (). For each i 2 ¹1; : : : ; kº,
let xi 2 ZN1

� � � � � ZNt
denote the label of the i th state, with xi;j 2 ZNj

for
j 2 ¹1; : : : ; tº. To address the `th component of A, the combination procedure
prepares a state

1
p

2k

X
y2¹0;1ºk

exp
�
2�i

kX
iD1

tX
jD1

yixi;j sj

Nj

�
jyijh.

Pk
iD1 xi;`yi /i

for some function h (a quotient in Algorithm 4 or a remainder in Algorithm 6).
For j ¤ `, if xi;j D 0 for all i 2 ¹1; : : : ; kº then x0j D

Pk
iD1 xi;j .y

q
i � y

?
i / D 0,

so components that are initially zero remain zero. Thus, if we can prepare states
j xi with x` 2R ZN`

(for any desired ` 2 ¹1; : : : ; tº) and all other components
zero, we effectively reduce the problem to the cyclic case.

To prepare such states, we use a new combination procedure, Algorithm 7.
Without loss of generality, our goal is to zero out the first t � 1 components,
leaving the last one uniformly random from ZNt

. Algorithm 7 is similar to Algo-
rithm 4, viewing the first t � 1 components of the label xi 2 ZN1

� � � � � ZNt
as

the mixed-radix integer

�.xi / WD

t�1X
jD1

xi;j

j�1Y
j 0D1

Nj 0 :

Because we are merely trying to zero out certain components, we no longer require
uniformity of the states output by the sieve, which simplifies the procedure and its
analysis.

Lemma 5.6. Algorithm 7 runs in time 2k poly.logN/ and succeeds with probabil-
ity �.1/ provided B=B 0 � 2k=2k.

Proof. As in Lemma 5.2 and Lemma 5.5, the running time is dominated by the
brute force calculation in Step 3 and the projection in Step 7, both of which can be
performed in time 2k poly.logN/.

Constructing elliptic curve isogenies 23

Algorithm 7 Combining non-cyclic states to reduce undesired components

Input: Parameters B;B 0 and states j x1
i; : : : ; j xk

i with known x1; : : : ; xk 2
ZN1
� � � � �ZNt

satisfying �.xi / 2 ¹0; 1; : : : ; B � 1º for each i 2 ¹1; : : : ; kº,
with xi;t 2R ZNt

Output: State j x0i with known x0 2 ZN1
� � � � � ZNt

satisfying �.x0/ 2
¹0; 1; : : : ; B 0 � 1º, with x0t 2R ZNt

1: Introduce an ancilla register and compute

1
p

2k

X
y2¹0;1ºk

exp
�
2�i

kX
iD1

tX
jD1

yixi;j sj

Nj

�
jyijb

Pk
iD1 �.xi /yi=B

0ci

2: Measure the ancilla register, giving an outcome q and a state

1
p
�

�X
jD1

exp
�
2�i

kX
iD1

tX
jD1

yixi;j sj

Nj

�
jyj i;

where y1; : : : ; y� ¤ 0k are the k-bit strings such that b
Pk
iD1 �.xi /y

j
i =B

0c D

q

3: Compute y1; : : : ; y� by brute force
4: if � D 1 then
5: Abort
6: end if
7: Project onto span¹jy1i; jy2iº or . . . or span¹jy2b�=2c�1i; jy2b�=2ciº, giving an

outcome span¹jy?i; jyqiº
8: Relabel jy?i 7! j0i and jyqi 7! j1i, where

Pk
iD1 �.xi /y

q
i �

Pk
iD1 �.xi /y

?
i

without loss of generality, giving a state j x0i with x0j D
Pk
iD1 xi;j .y

q
i �y

?
i /

for each j 2 ¹1; : : : ; tº

We claim that the algorithm is correct if it reaches Step 8. In this case, sincePk
iD1 �.xi /y

j
i D qB 0 C rj , where q is independent of j and 0 � rj < B 0, we

have

�.x0/ D

t�1X
jD1

x0j

j�1Y
j 0D1

Nj 0 D

t�1X
jD1

kX
iD1

xi;j .y
q
i � y

?
i /

j�1Y
j 0D1

Nj 0

D

kX
iD1

�.xi /.y
q
i � y

?
i / D r

q
� r? < B 0

24 A. Childs, D. Jao and V. Soukharev

as required. Since y? differs from yq and the xi;t are uniformly random, x0t DPk
iD1 xi;t .y

q
i � y

?
i / is uniformly random as required.

The projection in Step 7 fails with probability at most 1=3 C o.1/. We claim
the algorithm reaches Step 7 with probability �.1/. To show this, we need to
upper bound the probability that � D 1. Call a value of q bad if � D 1. Since
0 �

Pk
iD1 �.xi /yi � k.B�1/, there are at most kB=B 0 possible values of q, and

in particular, there can be at most kB=B 0 bad values of q. Since the probability of
any particular bad q is 1=2k , the probability that q is bad is at most kB=B 02k �
1=2. This completes the proof.

To apply Algorithm 7 as the combination procedure for Algorithm 5, we require
a straightforward variant of Lemma 5.4, as follows.

Lemma 5.7. There is a constant N 00 such that for all N > N 00, letting Bi D
bN=�ic, where � D N 1=m and

k D
jq

1
2

log2N log2 log2N
k

m D
l log2N
k � log2 4k

m
D ‚

�s log2N
log2 log2N

�
;

we have B0 D N , Bm D 1, and Bi�1=Bi � 2k=2k for all i 2 ¹1; : : : ; mº.

Proof. Clearly B0 D N , and the value of � is chosen so that Bm D 1.
We have Bm�1 � N=�m�1 D �, and since

� � N
k�log2 4k

log2 N D
2k

4k
;

the claimed inequality holds for i D m. For i 2 ¹1; : : : ; m � 1º,

Bi�1

Bi
D
bN=�i�1c

bN=�ic
�

N=�i�1

N=�i � 1
D

�

1 � �i=N
:

Since �i=N � �m�1=N D 1=�, we have Bi�1=Bi � �=.1 � 1=�/. Then using

� D N‚.
p

log2 log2N= log2N/ D 2‚.
p

log2N log2 log2N/;

we have � � 2 providedN > N 00 for some constantN 00, which impliesBi�1=Bi �
2k=2k. This completes the proof.

Combining these ideas, the overall procedure is presented in Algorithm 8.

Theorem 5.8. Algorithm 8 runs in time LjAj.
1
2
;
p
2/.

Constructing elliptic curve isogenies 25

Algorithm 8 Abelian hidden shift problem

Input: Black box for the hidden shift problem in an abelian group A
Output: Hidden shift s

1: Write A D ZN1
� � � � � ZNt

, where each Ni is either odd or a power of 2
2: for all i 2 ¹1; : : : ; tº do
3: if Ni is odd then
4: for all j 2 ¹0; : : : ; blog2Nicº do
5: Apply Algorithm 5, first using Algorithm 7 (as the subroutine in

Step 5) to zero out all components except the i th, and then using Algo-
rithm 4 under the ZNi

-automorphism x 7! 2�jx to produce a copy of
j .0;:::;0;2j ;0;:::;0/i (see the proof of Theorem 5.8 for detailed parame-
ters)

6: end for
7: else
8: Let Ni D 2n

9: for all j 2 ¹0; : : : ; n � 1º do
10: Apply Algorithm 5, first using Algorithm 7 to zero out all components

except the i th, then using Algorithm 6 to make states j .0;:::;0;x;0;:::;0/i
with 2j jx, and finally using Algorithm 4 to produce a copy of
j .0;:::;0;2j ;0;:::;0/i (see the proof of Theorem 5.8 for detailed parame-
ters)

11: end for
12: end if
13: Apply Lemma 5.1 with N D Ni to give si
14: end for
15: Output s D .s1; : : : ; st /

Proof. In Step 1, if the structure of the group is not initially known, it can be
determined in polynomial time using [8]. Given the structure of the group, for each
term ZN we can easily factorN D 2nM , whereM is odd; then ZN Š Z2n�ZM ,
and we obtain a decomposition of the desired form.

Now suppose without loss of generality that we are trying to determine st (i.e.,
i D t in Step 2). The main contribution to the running time comes from the sieves
in Step 5 (for Nt odd) and Step 10 (for Nt a power of 2).

First suppose that Nt is odd. It suffices to handle the case where j D 0, so we
are making the state j .0;:::;0;1/i. Then we apply Algorithm 5 with

Si D

´
¹x 2 A W �.x/ < Biº for i 2 ¹0; 1; : : : ; m1º,
¹x 2 A W �.x/ D 0 and xt < Biº for i 2 ¹m1 C 1; : : : ; m2º,

26 A. Childs, D. Jao and V. Soukharev

where

Bi D

´
b.N=Nt /=�

i
1c for i 2 ¹0; 1; : : : ; m1º,

bNt=�
i�m1

2 c for i 2 ¹m1 C 1; : : : ; m1 Cm2º

with

�1 D .N=Nt /
1=m1 ; m1 D

l log2N=Nt
k � log2 4k

m
;

�2 D .Nt=2/
1=m2 ; m2 D

l log2Nt=2
k � log2 2k

m
;

and

k D
jq

1
2

log2N log2 log2N
k
:

We use Algorithm 7 as the combination procedure for the first m1 stages of Al-
gorithm 5. By Lemma 5.7, the condition of Lemma 5.6 is satisfied provided
N=Nt > N 00; otherwise we can produce a state with a label from Sm1

in only
O.1/ trials. Then we proceed to apply Algorithm 4 as the combination proce-
dure for the remaining m2 stages of Algorithm 5. By Lemma 5.4, the conditions
of Lemma 5.2 are satisfied provided Nt > N0; otherwise, producing states with
labels from Sm1

already suffices to produce the desired state with constant prob-
ability. Since .m1 C m2/k D .1 C o.1// log2N , Step 5 takes time LjAj.12 ;

p
2/

(see the discussion following the proof of Lemma 5.3).
Now suppose that Nt D 2n is a power of 2. Then we apply Algorithm 5 with

Si D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

¹x 2 A W �.x/ < Biº for i 2 ¹0; 1; : : : ; m1º,®
x 2 A W �.x/ D 0 and
xt 2 2

.k�1/i¹0; 1; : : : ; 2n�.k�1/iº
¯

for i 2 ¹m1 C 1; : : : ; m1 Cm2º,®
x 2 A W �.x/ D 0 and
xt 2 2

j ¹0; 1; : : : ; Bi � 1º
¯

for i 2 ¹m1 Cm2 C 1; : : : ;
m1 Cm2 Cm3 C 1º;

where

Bi D

8̂̂<̂
:̂
b.N=Nt /=�

i
1c for i 2 ¹0; 1; : : : ; m1º,

b2n�j =�
i�m1�m2�1
3 c for i 2 ¹m1 Cm2 C 1; : : : ;

m1 Cm2 Cm3 C 1º

Constructing elliptic curve isogenies 27

with

�1 D .N=Nt /
1=m1 ; m1 D

l log2N=Nt
k � log2 4k

m
;

�3 D 2
.n�j�1/=m3 ; m2 D

j j

k � 1

k
; m3 D

l n � j � 1
k � log2 2k

m
;

and again

k D
jq

1
2

log2N log2 log2N
k
:

We use Algorithm 7 as the combination procedure for the first m1 stages, Algo-
rithm 6 for the nextm2C 1 stages, and Algorithm 4 (on the n� j most significant
bits) for the final m3 stages. By Lemma 5.7 and Lemma 5.4, the conditions of
Lemma 5.6 and Lemma 5.2 are satisfied, respectively. Since we cancel at most
k � 1 bits in each stage that uses Algorithm 6, the conditions of Lemma 5.5 are
satisfied for the intermediate stages. Finally, since .m1 C m2 C m3 C 1/k D

.1C o.1// log2N , Step 10 takes time LjAj.12 ;
p
2/.

The loops in Step 2, Step 4, and Step 9 only introduce polynomial overhead.
Step 13 takes polynomial time and Step 15 is negligible. Thus the overall running
time is LjAj.12 ;

p
2/ as claimed.

Bibliography

[1] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55
(1990), 355–380.

[2] C. H. Bennett, E. Bernstein, G. Brassard and U. Vazirani, Strengths and weaknesses
of quantum computing, SIAM J. Comput. 26 (1997), 1510–1523.

[3] D. J. Bernstein, How to find smooth parts of integers, preprint (2004), http://cr.
yp.to/papers.html#smoothparts.

[4] G. Bisson, Computing endomorphism rings of elliptic curves under the GRH, J.
Math. Cryptol. 5 (2011), 101–113.

[5] G. Bisson and A. V. Sutherland, Computing the endomorphism ring of an ordinary
elliptic curve over a finite field, J. Number Theory 131 (2011), 815–831.

[6] R. Bröker, D. Charles and K. Lauter, Evaluating large degree isogenies and appli-
cations to pairing based cryptography, in: Pairing ’08: Proceedings of the 2nd In-
ternational Conference on Pairing-Based Cryptography, Lecture Notes in Comput.
Sci. 5209, Springer, Berlin (2008), 100–112.

[7] J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach,
Algorithms Comput. Math. 20, Springer, Berlin, 2007.

http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts

28 A. Childs, D. Jao and V. Soukharev

[8] K. K. H. Cheung and M. Mosca, Decomposing finite abelian groups, Quantum In-
form. Comput. 1 (2001), 26–32.

[9] J.-M. Couveignes, Hard homogeneous spaces, preprint (2006), http://eprint.
iacr.org/2006/291.

[10] D. A. Cox, Primes of the Form x2 C ny2: Fermat, Class Field Theory and Complex
Multiplication, Wiley, New York, 1989.

[11] W. van Dam, S. Hallgren and L. Ip, Quantum algorithms for some hidden shift prob-
lems, in: SODA ’02: Proceedings of the 14th ACM-SIAM Symposium on Discrete
Algorithms, (2002), 489–498.

[12] M. Ettinger and P. Høyer, On quantum algorithms for noncommutative hidden sub-
groups, Adv. Appl. Math. 25 (2000), 239–251.

[13] S. D. Galbraith, F. Hess and N. P. Smart, Extending the GHS Weil descent attack, in:
Advances in Cryptology (EUROCRYPT 2002), Lecture Notes in Comput. Sci. 2332,
Springer, Berlin (2002), 29–44.

[14] S. D. Galbraith and A. Stolbunov, Improved algorithm for the isogeny problem for
ordinary elliptic curves, preprint (2011), http://arxiv.org/abs/1105.6331v1.

[15] S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the princi-
pal ideal problem, J. ACM 54 (2007), article 4, preliminary version in STOC ’02.

[16] J. Hermans, F. Vercauteren and B. Preneel, Speed records for NTRU, in: CT-RSA,
Lecture Notes in Comput. Sci. 5985, Springer, Berlin (2010), 73–88.

[17] D. Jao and L. De Feo, Towards quantum-resistant cryptosystems from supersingu-
lar elliptic curve isogenies, in: PQCrypto, Lecture Notes in Comput. Sci. 7071,
Springer, Berlin (2011), 19–34.

[18] D. Jao, S. D. Miller and R. Venkatesan, Expander graphs based on GRH with an
application to elliptic curve cryptography, J. Number Theory 129 (2009), 1491–1504.

[19] D. Jao and V. Soukharev, A subexponential algorithm for evaluating large degree
isogenies, in: Algorithmic number theory: Proceedings of ANTS-IX, Lecture Notes
in Comput. Sci. 6197, Springer, Berlin (2010), 219–233.

[20] A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, preprint
(1995), http://arxiv.org/abs/quant-ph/9511026v1.

[21] G. Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem, SIAM J. Comput. 35 (2005), 170–188.

[22] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, Cambridge, 2000.

[23] R. A. Perlner and D. A. Cooper, Quantum resistant public key cryptography: A
survey, in: Proceedings of the 8th Symposium on Identity and Trust on the Internet
(IDtrust ’09), ACM, New York (2009), 85–93.

http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/291
http://arxiv.org/abs/1105.6331v1
http://arxiv.org/abs/quant-ph/9511026v1

Constructing elliptic curve isogenies 29

[24] O. Regev, A subexponential time algorithm for the dihedral hidden subgroup prob-
lem with polynomial space, preprint (2004), http://arxiv.org/abs/quant-ph/
0406151v1.

[25] A. Rostovtsev and A. Stolbunov, Public-key cryptosystem based on isogenies,
preprint (2006), http://eprint.iacr.org/2006/145.

[26] R. Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres
Bordeaux 7 (1995), 219–254.

[27] M. Seysen, A probabilistic factorization algorithm with quadratic forms of negative
discriminant, Math. Comp. 48 (1987), 757–780.

[28] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM J. Comput. 26 (1997), 1484–1509, preliminary
version in FOCS ’94.

[29] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106,
Springer, New York, 1992. Corrected reprint of the 1986 original.

[30] A. Stolbunov, Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves, Adv. Math. Commun. 4 (2010), 215–235.

[31] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966),
134–144.

[32] W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup.
(4) 2 (1969), 521–560.

Received June 29, 2012; revised June 7, 2013; accepted September 29, 2013.

Author information

Andrew Childs, Department of Combinatorics & Optimization and Institute for
Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
E-mail: amchilds@math.uwaterloo.ca

David Jao, Department of Combinatorics & Optimization,
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
E-mail: djao@math.uwaterloo.ca

Vladimir Soukharev, Department of Combinatorics & Optimization,
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
E-mail: vsoukhar@math.uwaterloo.ca

http://arxiv.org/abs/quant-ph/0406151v1
http://arxiv.org/abs/quant-ph/0406151v1
http://eprint.iacr.org/2006/145
mailto:amchilds@math.uwaterloo.ca
mailto:djao@math.uwaterloo.ca
mailto:vsoukhar@math.uwaterloo.ca

