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Abstract. In this paper we cryptanalyze two protocols: the Grigoriev–Shpilrain authen-
tication protocol and a public key cryptosystem due to Wang, Wang, Cao, Okamoto and
Shao. Both of these protocols use the computational hardness of some variations of the
conjugacy search problem in a class of noncommutative monoids. We devise a practical
heuristic algorithm solving those problems. As a conclusion we claim that these protocols
are insecure for the proposed parameter values.
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1 Introduction

The conjugacy search problem plays a special role in group-based cryptography
(see [2, 24, 25]). Most of the cryptosystems based on groups use one or another
variation of that problem. For instance:

� [16] employs conjugacy search problem in braid groups;

� [4] employs shifted conjugacy search problem in braid groups;

� [1, 36] employ simultaneous conjugacy search problem in braid groups;

� [34] employs twisted conjugacy problem;

� [31, 32, 35] employ decomposition problem in different (semi)groups;

� [30] employs conjugation and exponentiation in matrix groups.

The mentioned above schemes use the complexity of variations of the conju-
gacy search problem over different algebraic structures. The complexity as well
as the methods used for the analysis of such cryptographic schemes vary dramat-
ically depending on the underlying algebraic structure and its representation. For
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instance, analysis of braid-based schemes use the property of the braid group Bn

to be linear and the generic convexity properties of the random subgroups. Analy-
sis of the scheme based on the Thompson group F uses a smart representation of
elements of F as certain directed graphs.

Most of the protocols mentioned above are currently broken, see [6–9, 12, 13,
17–23, 26–29, 33]. But the search of a secure platform (semi)group continues.
In this paper we consider two new protocols proposed in [10] by Grigoriev and
Shpilrain, who introduced two authentication protocols: one is called the beta
protocol and the other is called the full protocol. The security of both protocols
relies on the hardness of the conjugacy search problem in a semigroup of matrices
over truncated polynomials. The semigroup of 2 � 2 matrices over truncated one-
variable polynomials over Z2 has already appeared as a platform for an authenti-
cation scheme in [34] and was broken in [9] using techniques based on Gröbner
bases. In [10] Grigoriev and Shpilrain update parameter values to make the com-
putation of Gröbner bases infeasible and defend against Grassl–Steinwandt attack.
They claim:

Our platform semigroup might be the first serious candidate for having
generically hard conjugacy search problem.

The goal of this paper is to show that the claim is false. Informally, generic case
complexity is the complexity on “almost all” of the inputs, see [14, 15]. We prove
that the claim is not true and, in fact, the conjugacy search problem is trivial in most
of the cases (see Theorem 2.3). Trying to find difficult instances of the problem
we modify the method of key generation. Our modification allows to generate
nontrivial instances of the conjugacy search problem, but even that does not make
the protocol secure, we show that it can be attacked by a certain heuristic algorithm
(see Section 3).

We also discuss a related work by L. Wang, L. Wang, Z. Cao, E. Okamoto and
J. Shao (see [37]) which proposes a non-commutative version of Diffie–Hellman
type encryption protocol which uses conjugation in the same class of monoids as
the Grigoriev–Shpilrain scheme, and demonstrate their inadequacy.

1.1 The Grigoriev–Shpilrain authentication scheme

Here we introduce basic notions and formulate the conjugacy search problem to-
gether with the main security assumptions used in [10]. Fix N;m; n; k 2 N. The
Grigoriev–Shpilrain authentication protocol uses a semigroup of n � n matrices
over N -truncated polynomials with coefficients in Zm. An N -truncated polyno-
mial over a ring Zm is an element of the factor algebra

R D ZmŒx1; : : : ; xk�=hxi1
� � � xis

j s D N i:
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Let G be the ring of all n � n matrices over truncated k-variable polynomials
over Zm. We say that X 2 G is invertible if there exists Y 2 G satisfying
XY D YX D I , where I is the identity matrix.

Conjugacy search problem (CSP) in a semigroup G . Given elements A;C 2
G find an invertible element X satisfying C D X�1AX , provided that such an
element exists.

Public/private keys in the Grigoriev–Shpilrain protocol:

� The private key is an invertible element X 2 G.

� The public key is a pair .A;X�1AX/, where A 2 G.

The key generation procedure is discussed in detail in Section 2. To check Alice’s
identity, Bob runs the following protocol exactly once (cf. Feige–Fiat–Shamir type
protocols, [5]).

Algorithm 1.1 (The Grigoriev–Shpilrain authentication protocol (beta version)).
1: Bob sends a random B 2 G to Alice.
2: Alice responds with X�1BX .
3: Bob chooses a random positive word w.x; y/ and checks the equality

trace.w.A;B// D trace.w.X�1AX;X�1BX//:

4: Authentication is successful if the equality holds.

Obviously this protocol has the completeness property (Alice is able to prove
her identity) of proof-systems. The soundness property (the probability of a wrong
person proving that (s)he is Alice is negligible) is much less obvious and probably
is not satisfied. The zero knowledge property simply does not hold, although the
authors are aware of that and do not claim it.

It is stated in [10, p. 199] that forgery seems infeasible without finding the
prover’s private key. This is not completely correct because there are equivalent
private keys and to break this protocol it is sufficient to find any conjugator for the
pair .A;X�1AX/, i.e., to solve the conjugacy search problem for G. The security
of the full version of the Grigoriev–Shpilrain protocol relies on the difficulty of the
same conjugacy problem, as it has exactly the same public key pair .A;X�1AX/.
We omit the description of the full protocol here.

Another claim made in [10, p. 199] is:

Our platform semigroup might be the first serious candidate for having
generically hard conjugacy search problem.
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This claim is the primary target of this paper. We investigate computational hard-
ness of the conjugacy search problem for G and prove that it is easy on most of
the inputs under the proposed key distribution.

1.2 Wang–Wang–Cao–Okamoto–Shao cryptosystem

Wang et al. in [37] propose several public key encryption schemes based on the
CSP over a noncommutative monoid G. The most basic of the protocols works as
follows. Fix A;X 2 G, with X being invertible, and a number K 2 N. Public/
private keys in the protocol of Wang et al. are:

� Alice’s private key is a number s 2 N.

� Alice’s public key is an element X�sAXs .

� Bob’s private key is a number t 2 N.

� Bob’s public key is an element X�tAX t .

After exchanging public information Alice and Bob can immediately compute the
shared key X�s�tAXsCt . Based on this simple protocol, Wang et al. develop two
ElGamal-type public key encryption protocols. Security of this scheme is based
on the difficulty of the following computational problem:

CSP-based computational Diffie–Hellman problem in G . Given elements A,
X , X�sAXs and X�tAX t in G, for some random 1 � s; t � K, compute
X�s�tAXsCt .

The value K is the main security parameter here and, hence, should be suffi-
ciently large to provide a necessary level of security. That implies that the order
of the cyclic subgroup generated by X must be at least K. Similarly we define the
associated decision problem:

CSP-based decision Diffie–Hellman problem in G . Given elements A, X ,
X�sAXs and X�tAX t in G, for some 1 � s; t � K, distinguish elements
X�s�tAXsCt and X�lAX l for some random l 2 Œ1;K� with probability crypto-
graphically-significantly better than 1=2.

To use these protocols, a concrete class of non-commutative monoids must be
chosen. Wang et al. suggest using the semigroup of n � n matrices over N -trun-
cated polynomials with coefficients in Zm, as above. We cryptanalyze this instan-
tiation of the protocol of Wang et al. in Section 4.
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1.3 Parameter values

Both papers, [10] and [37], use almost the same set of parameters. They use the
semigroupG of 3�3matrices of 1000-truncated polynomials in 10 variables over
Z11 (in [10]) and over Z12 (in [37]). To be consistent with the notation above, we
have n D 3, N D 1000, k D 10 and m D 11 or m D 12. Precisely, [37, p. 11]
states:

According to [15], we can choose the parameters as follows: � D 3,
� D 1000 and k D 10, while the ring R is instantiated with Z12.

The citation “[15]” references the Grigoriev–Shpilrain protocol [10] discussed
above. The choice of Z11 or Z12 gives different algebraic structures with, per-
haps, very different algorithmic properties. To have a more complete picture, we
analyze the protocol from [37] for both cases: Z11 and Z12 in Section 4.

1.4 Our contribution

The main contribution of this paper is a heuristic algorithm for solving the con-
jugacy search problem in matrices over a semigroup of N -truncated polynomials.
The heuristics used in the algorithm allow us to solve the conjugacy search prob-
lem on a majority of inputs generated using the parameters proposed in [10, 37]
which invalidates the security claims. We also argue that the proposed sam-
pling procedure with high probability generates trivial instances of the conjugacy
problem.

In the following sections we argue the validity of the assumptions above with the
main focus on solving the conjugacy search problem inG. In Section 2 we discuss
in more detail the sampling procedures proposed in [10] and emphasize the flaws
in the construction of the problem instances. In Section 4 we show that the protocol
of Wang et al. is neither secure nor feasible for the proposed parameter values. In
Section 3 we describe our heuristic algorithm for the conjugacy search problem in
the semigroup of matrices over truncated polynomials and provide experimental
results.

2 Key generation

In this section we discuss the key generation procedures for protocols mentioned
in the introduction. Both use two matrices A and X , where X is invertible.

The matrix A is somewhat similar to the base element in the Diffie–Hellman
protocol and, in particular, the simpler A the faster the computations. To make
computations more efficient it is suggested in [10] to use 5-sparse polynomials,
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i.e., polynomials with five monomials. A random 5-sparse polynomial is generated
by selecting five random monomials of degree at most N � 1.

The matrix X is generated as a product of matrices:

X D Ei1j1
.m1/Ei2j2

.m2/ � � �Eil jl
.ml/;

where Eij .m/ is an n � n matrix that differs from the identity matrix I by one
nontrivial off-diagonal polynomial m 2 R in the position .i; j / (with i ¤ j ). We
can assume that mi ’s used in the generation of X are monomials because for any
1 � i ¤ j � 3 and polynomials m1; m2 2 R we have

Eij .m1 Cm2/ D Eij .m1/ �Eij .m2/:

The monomials ml and indices il ; jl are chosen randomly. It is easy to check that
the matrices Eij .m/ are invertible and

Eij .m/
�1
D Eij .�m/:

Therefore,
X�1

D Eil jl
.�ml/ � � �Ei2j2

.�m2/Ei1j1
.�m1/:

In the next subsection we discuss some crucial observations and flaws of the pro-
posed generation procedure with respect to the assumptions above.

2.1 Sparse truncated polynomials chosen uniformly randomly make CSP
trivial

The original paper [10] does not state explicitly how to generate random mono-
mials used in the generation of entries for A and Ei;j .m/. On the other hand
mentioning the generic case hardness in one of the claims implies that they are
generated uniformly. Hence, eachm is a sum of five monomials axi1

: : : xis
where

� a is uniformly chosen from Z11 n ¹0º;

� xi1
: : : xis

is uniformly chosen from the (finite) set of power product over
¹x1; : : : ; x10º of power up to N D 1000.

Proposition 2.1. The following hold:

(a) The probability that a uniformly randomly chosen power product has degree
smaller than 500 is 0:00102107974.

(b) The probability that a uniformly randomly chosen 5-sparse polynomial in-
volves a monomial of degree less than 500 is approximately 0:0051.
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(c) The probability that a uniformly randomly chosen matrix A involves a mono-
mial of degree less than 500 is approximately 0:0450.

Proof. The number of power products of degree at most d in k variables is
�
dCk

d

�
.

Therefore, the number of power products of degree less thanN is
�
NCk�1

N�1

�
and of

degree less then N=2 is
�N=2Ck�1

N=2�1

�
and

Pr
�
deg.m/ < N=2

�
D

�N=2Ck�1
N=2�1

��
NCk�1

N�1

� D �
509
499

��
1009
999

� D 0:00102107974:
A randomly generated polynomial p involves five uniformly randomly chosen
monomials and hence

Pr
�
all monomials in p are of degree � 500

�
D .1 � 0:00102107974/5

� 0:9949:

Similarly, a randomly generated matrix A involves 45 uniformly randomly chosen
monomials and hence

Pr
�
all monomials in A are of degree � 500

�
D .1 � 0:00102107974/45

� 0:9550:

Next observe how conjugation by an elementary matrix E12.m/ transforms A:

E�1
12 .m/ � A �E12.m/ D

2641 �m 0

0 1 0

0 0 1

375
264a11 a12 a13

a21 a22 a23

a31 a32 a33

375
2641 m 0

0 1 0

0 0 1

375

D

264a11 �ma21 a12 Cm.a11 � a22/ �m
2a21 a13 �ma23

a21 a22 Cma21 a23

a31 a32 Cma31 a33

375 : (2.1)

Conjugation by other elementary matrices give similar formulae (see Appendix A).
These formulae imply the following.

Lemma 2.2. If the degree of the smallest monomial involved in A is at least 500
and deg.m/ � 500, then E�1

12 .m/ � A �E12.m/ D A.

Proof. Under the conditions of the lemma, all monomials maij in formula (2.1)
will be of degree 1000 or more, and so these monomials are truncated to zero.
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Theorem 2.3. The probability that X�1AX D A for randomly chosen matrices A
and X is not smaller than 0:90750.

Proof. The matrix A is randomly chosen and involves 45 monomials; then it is
conjugated by 50 random elementary matrices. The probability that at all steps no
monomial of degree less than 500 will appear is

.1 � 0:00102107974/95
� 0:90750:

By Lemma 2.2 in this event we have X�1AX D A. Since we considered only a
subset of all events that result in equality X�1AX D A the actual probability of
obtaining a trivial conjugacy equation is even higher.

Therefore, for the suggested generation method the conjugacy search problem is
trivial on most of the inputs. That does not mean that there are no difficult instances
of CSP, but the key generation procedure is bad. Trying to find hard instances we
modified the procedure for generating random monomials. Instead of choosing the
monomials uniformly, it randomly uniformly chooses the degree of the monomial
and then the required numbers of the involved variables are chosen. As above,
N � 1 is the maximal degree of a monomial and k is the number of variables. The
procedure is the following:

Algorithm 2.4 (Monomial generation).
1: Choose the degree s from ¹1; : : : ; N � 1º uniformly randomly.
2: Choose numbers i1; : : : ; is from ¹1; : : : ; kº uniformly randomly.
3: Choose a coefficient a from Z11 n ¹0º uniformly randomly.
4: Output the monomial axi1

xi2
� � � xis

.

3 Algorithm for solving the conjugacy problem

In this section we present a heuristic procedure for solving the conjugacy search
problem in G. Recall that, given two matrices A and C D X�1AX in G, our
goal is to compute a conjugator X . Essentially, our heuristic is a variation of a
length-based attack that has been successfully used several times in group-based
cryptography (see [7, 11, 19, 26, 27]).

3.1 General idea of the attack

Since X is generated as a product of elementary matrices E1E2 � � �En, the matrix
C can be viewed as a result of a sequence of conjugations by the matrices Ei :
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C0 D A

#

C1 D E�1
1 A E1

#

C2 D E�1
2 E�1

1 A E1E2

#

:::

C D Cn D E�1
n � � �E

�1
2 E�1

1 A E1E2 � � �En

(3.1)

The goal is to reverse the sequence (3.1) and recover each single elementary matrix
Ei one by one. EachEi is a solution to the CSP for the pair of matrices .Ci�1; Ci /,
with Ci�1 unknown. So, we need to solve the following problem several times:

Recovering Ei . Given a matrix of the form E�1
i Ci�1Ei , find Ei .

Clearly, the problem above is not very well defined because any elementary
matrix E could have been used to obtain Ci from the unknown Ci�1. We find the
matrix E which fits the best for the role of the conjugator. This is done using the
concept of a size function.

3.2 Size function attack

The following function will guide our process of recovery of elementary conjuga-
tors.

Definition 3.1. The size of a polynomial f 2 R is the total number of monomials
in f , denoted size.f /. The size of an n � n matrix M is the total number of
monomials in all entries of M :

size.M/ D
X

1�i;j�n

size.Mij /:

For polynomials p; q 2 R define a number �p.q/ to be the number of power
products in p that are not present in q. Similarly, for matrices A;B 2 G define a
number

�A.B/ D
X
i;j

�aij
.bij /:

Intuitively, this function indicates how much one matrix is contained in the other.
If two matrices are the same, then �A.B/ D �B.A/ D 0. The opposite direction is
not necessarily true because we disregard the coefficients of the polynomials.
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Proposition 3.2. Let A 2 G and B D Eij .m/
�1AEij .m/, where m is a mono-

mial. Then

Pr
�
�A.B/ D 0

�
� 1 �

7 size.A/2

10jBZ10.1000/j
;

whereBZ10.1000/ is the ball of radius 1000 in the Cayley graph of the free abelian
group Z10.

Proof. Without loss of generality we may assume that i D 1 and j D 2. By
formula (2.1), the matrix B gets new monomials from the products ma21,
m.a11 � a22/ �m

2a21, etc. Since, obviously,

size.aij / � size.A/;

each of those products involves not more than 3 size.A/ monomials. The number
�A.B/ is positive only if a new monomial cancels out some old monomial. There-
fore, the number of choices for m that induce cancelation of some old monomial
can be bounded above by 7 size.A/2. Since the monomialm is chosen as a product
of a random nonzero coefficient and a random power product, and since the total
number of random power products is jBZ10.1000/j, it is easy to get the claimed
bound on Pr.�A.B/ D 0/.

In fact, in Proposition 3.2 we proved a stronger result. We proved that with
high probability every new monomial in a conjugate matrix was not involved in
the original matrix. Next, the trivial estimate

jBZ10.1000/j D

 
1000

11

!
� 2 � 1025

implies the following result.

Corollary 3.3. Let A 2 G and B D Eij .m/
�1AEij .m/. If size.A/ � 105, then

Pr.�A.B/ D 0/ � 1 � 10
�15:

Corollary 3.4. Let A 2 G and B D Eij .m/
�1AEij .m/. If size.A/ � 105, then

Pr
�
A D B or size.A/ < size.B/

�
� 1 � 10�15:

Proof. Excluding all events when all the new monomials have power greater than
999 and, hence, being truncated (the trivial case for conjugacy) we obtain the same
estimate as in Corollary 3.3.
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We consider size 105 because we think that bigger matrices are not practical.
By Corollary 3.4 the main assumption of the length based attacks,

size
�
Eij .m/

�1AEij .m/
�
> size.A/;

holds for the majority of elements A;Eij .m/ 2 G. Hence, given a matrix Ck we
find a conjugator as the matrix Eij .m/ which gives the least value

size
�
Eij .m/CkEij .m/

�1
�
:

Here we encounter another challenge. The number of the elementary matrices
Eij .m/ can be bounded below as 6 � 10 � jBZ10.1000/j � 1027; we cannot simply
enumerate them and test which ones reduce the size of the current matrix Ci . In
the next subsection we discuss a method reducing the number of the elementary
matrices that need to be tested.

3.3 Reducing the number of the elementary matrices for tests

In this section we show, given a matrix of the form

Ci D Eij .m/
�1Ci�1Eij .m/;

how to find a small number of candidates for .i; j;m/. We perform our procedure
for all different values of i; j separately, so, here we only consider the values
i D 1, j D 2. Other cases are similar.

For a polynomial f 2 R we denote by Mon.f / the set of all monomials in-
volved in f , and for a pair of polynomials f; g 2 R we define Frac.f; g/ to be the
set of monomials®
x

s1�t1

1 : : : x
s10�t10

10 j x
s1

1 : : : x
s10

10 2 Mon.f /; xt1

1 : : : x
t10

10 2 Mon.g/; si � ti
¯
:

Let min.f / denote the minimal short-lex degree monomial in f 2 R. The next
theorem immediately follows from the discussion in Section 3.2.

Proposition 3.5. If Ci D E12.m/
�1Ci�1E12.m/, Ci�1 ¤ Ci and size.Ci�1/ �

105, then with probability at least 1 � 10�15 the monomial m belongs to the fol-
lowing union:

M12.Ci / D Frac.�c11;min.c21// [ Frac.c12;min.c11//

[Frac.�c12;min.c22// [ Frac.�c13;min.c23//

[Frac.c22;min.c21// [ Frac.c32;min.c31//;

where cst is an element of Ci .
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Note that the size of the set M12.Ci / can be bounded above by

size.c11/C 2 size.c12/C size.c13/C size.c22/C size.c32/ � 2 size.Ci /:

The same bound works in all the other cases:

jMst .Ci /j � 2 size.Ci / for every s ¤ t

(explicit formulas for Mst .Ci / can be found in Appendix B). Define the corre-
sponding set of elementary matrices

Est .Ci / D
®
Est .u/ j u 2Mst .Ci /

¯
:

It follows from Proposition 3.5 that with probability at least 1 � 10�15 the true
conjugator Est .m/ belongs to the set Mst .Ci /. The set Est .m/ can be further
reduced using Proposition 3.2:

E 0st .Ci / D
®
E 2 Est .Ci / j �E�1Ci E .Ci / D 0

¯
:

Finally, we combine the sets E 0st .Ci / together to obtain the set

E.Ci / D
[
s;t

E 0st .Ci /;

called the reduced set of candidate elementary matrices. The following bound
holds:

jE.Ci /j �
X
jEst .Ci /j �

X
jMst .Ci /j � 12 size.Ci /:

(In general jE.Ci /j � n2 size.Ci /.) Given a matrix Ci , the set E.Ci / can be
computed in quadratic time in terms of size.Ci /.

3.4 The results

Algorithms 3.6 and 3.7 are the two components describing the heuristic procedure
for solving the conjugacy search problem in G. This procedure is similar to the
best descent variation of the length-based attack proposed in [27].

Algorithm 3.6 (Reduction).
Input: A matrix B .
Output: Matrix Y with minimal size.Y �1BY /.

1: Let Y D I .
2: loop
3: Compute E.B/.
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4: if E.B/ D ; then return Y .
5: Find OE 2 E.B/ minimizing size. OE�1B OE/.
6: if size.B/ � size. OE�1B OE/ � 0 then return Y .
7: Set Y D Y � OE.
8: Set B D OE�1B OE.
9: end loop

Algorithm 3.6 attempts to find the minimal matrix in the conjugacy class of a
given matrix B . If we give the matrix B D X�1AX as the input to Algorithm
3.6 then we expect matrix Y to be the best candidate for the solution to the cor-
responding conjugacy search problem. However, the matrix Y may fail to be the
solution in the case when A is not minimal, i.e., there is an elementary matrix that
may reduce the size of A itself. One extra step of reducing the size of A is needed
and it is implemented in Algorithm 3.7 which solves the conjugacy search problem
in G.

Algorithm 3.7 (Conjugacy search).
Input: A pair of matrices A and B D X�1AX for some X .
Output: A matrix Y such that Y �1BY D A or FAIL.

1: Set YA D Reduce.A/.
2: Set YB D Reduce.B/.
3: if Y �1

B BYB D Y
�1

A AYA then
4: return Y D YB � Y

�1
A .

5: else
6: return FAIL.
7: end if

Algorithm 3.7 receives a pair A, B D X�1AX as the input. If it successfully
finds a conjugator Y (not necessarily equal to X ) then it outputs Y , otherwise a
failure is reported. We tested the effectiveness of the procedure described above
by executing Algorithm 3.7 on sets of instances of the conjugacy search problem
generated using Algorithm 2.4.

Algorithms were implemented in C++ using the “CRyptography And Groups”
(CRAG) library (see [3]). Since the size of input significantly depends on the
number of elementary matrices used to generate the conjugator, experiments were
performed for different lengths of the product. There were 100 instances generated
using each value. Experiments were performed on a desktop PC with eight core
2.67GHz Intel i7 processor and 6 gigabytes memory.

The results of our experiments are shown in Table 1. From the table we can see
that the attack can successfully break a significant portion of instances. Almost
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Number of elementary matrices in
the product generating X

10 20 30 40 50

Success rate, % 94 82.7 67.1 44.2 28.5

Average time, s 0.3 17.7 556.4 2346.6 11279.3

Number of monomials in X�1AX

Average 283 1410 5186 19407 45048
Minimal 63 148 366 1256 3895
Maximal 1574 13989 47122 236308 406332

Table 1. The success rate of solving the conjugacy search problem using Algorithm
3.7.

30% of instances generated using products of 50 elementary matrices were broken.
This is the most hard case because of the size of the matrices in the conjugacy
search problem. We want to point out that though we have considered matrices
with 105 monomials in our proofs above, matrices of size 104 are already not very
practical. It takes about 103 bits to store a single 1000-truncated monomial in 10
variables. Hence, public keys obtained using products of 50 elementary matrices
will require several megabits of storage on average.

4 Analysis of Wang et al. primitive

In this section, we discuss properties of the protocols of Wang et al. with the semi-
group of n � n matrices over N -truncated polynomials with coefficients in Zm as
a platform. The first observation is that the CSP-based Diffie–Hellman problem
in G and the CSP in G do not seem to be closely related. Indeed, the CSP-based
Diffie–Hellman problem in G is very restrictive because the conjugators come
from the cyclic subgroup generated by X . The problem is only to recognize the
power of X used in conjugation. CSP-DH can be reduced to the conjugacy search
problem relative to a subgroup generated by X (cf. [33]), but we do not see how it
can be reduced to the general CSP in G. Indeed, if Y is a solution of a conjugacy
equation

Y �1AY D B;

(with B D X�sAXs), then Y D cXs for some c in the centralizer of A, denoted
by CA. The element Y can replace Xs if and only if

Y �1X�tAX tY D X�.sCt/AXsCt
D X�tY �1AYX t ;
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which happens if and only if ŒŒY �1; X�t �; A� D 1 which is a nontrivial group-
theoretic identity (obviously implied by ŒX; Y � D 1 that can be efficiently tested).
Therefore, CSP-DH can be efficiently reduced to the conjugacy search problem
when CA is small and can be efficiently enumerated. Also, we do not see how one
can reduce the general CSP to the CSP-based DH problem. Therefore, computa-
tional hardness of any of these problems does not imply hardness of the other.

The main problem however is with the CSP-based Diffie–Hellman assumption
in the semigroup G. Recall that the order ord.X/ of a group element X is the
smallest positive integerm such thatXm D I . All protocols of Wang et al. require
computation of powers X i for large values of i so that i cannot be recovered from
the triple .A;X;X�iAX i / by simple enumeration. The requirement above implies
that the order of the conjugating elementX must be large. Indeed, let ord.X/ D m
and i > m. We can write i D m � k C r where r < m. Then

X i
D Xm�kCr

D .Xm/k �Xr
D Xr :

Therefore, Xr is an equivalent solution to the problem. In particular, since r < m,
the problem can be solved by exhaustively testing all powers of X up to Xm, and
so m D ord.X/ must be large.

Next we present empirical evidence that ord.X/ is small most of the time. First
of all if we use the uniform random approach of Grigoriev–Shpilrain, then using
the argument similar to Theorem 2.3 one can show that most of the instances of X
have small (in fact trivial) orders.

More surprisingly, similar behavior is observed when X is generated using Al-
gorithm 2.4. We performed a series of experiments and were able to compute the
order of every instance of the matrix X . Moreover, in the case when the polyno-
mial coefficients were taken from Z11, all instances had orders 11, 121 or 1331
with 121 being the most frequent. Notice that these are all powers of 11 which is
the order of the polynomial coefficients. In the case of Z12 the orders were more
diverse with 31 104, 62 208 and 124 416 being the greatest but each occurring only
once. Orders 72 and 144 were the most frequent and all values were multiples of
12. One explanation for the relatively small orders of X is that the terms of the
polynomials are eliminated due to the small finite order of the coefficients.

We have to mention here that, since the monomials are chosen randomly with
the uniform distribution on the degrees, the number of monomials in X i grows
very fast in terms of i (we can not say exponentially fast because we work with
a finite, though huge semigroup). So the scheme is neither secure nor practical
regardless of the generation procedure.

One can try to increase the order by introducing different sampling strategies.
We performed experiments where monomials from R were chosen randomly with
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the degree N=5 D 200 at most. The idea is that introducing smaller degree poly-
nomials will make truncation less common. Indeed, the size of power matrices
became times larger than in the previous experiments. However, the orders of
such matrices were again some small powers of 11.

A Elementary conjugation formulas

E�1
12 .m/ � A �E12.m/ D

2641 �m 0

0 1 0

0 0 1

375
264a11 a12 a13

a21 a22 a23

a31 a32 a33

375
2641 m 0

0 1 0

0 0 1

375

D

264a11 �ma21 a12 Cm.a11 � a22/ �m
2a21 a13 �ma23

a21 a22 Cma21 a23

a31 a32 Cma31 a33

375 I

E�1
13 .m/ � A �E13.m/ D

2641 0 �m

0 1 0

0 0 1

375
264a11 a12 a13

a21 a22 a23

a31 a32 a33

375
2641 0 m

0 1 0

0 0 1

375

D

264a11 �ma31 a12 �ma32 a13 Cm.a11 � a33/ �m
2a31

a21 a22 a23 Cma21

a31 a32 a33 Cma31

375 I

E�1
31 .m/ � A �E31.m/ D

264 1 0 0

0 1 0

�m 0 1

375
264a11 a12 a13

a21 a22 a23

a31 a32 a33

375
264 1 0 0

0 1 0

m 0 1

375

D

264 a11 Cma13 a12 a13

a21 Cma23 a22 a23

a31 Cm.a33 � a11/ �m
2a13 a32 �ma12 a33 �ma13

375 I

E�1
23 .m/ � A �E23.m/ D

2641 0 0

0 1 �m

0 0 1

375
264a11 a12 a13

a21 a22 a23

a31 a32 a33

375
2641 0 0

0 1 m

0 0 1

375

D

264 a11 a12 a13 Cma12

a21 �ma31 a22 �ma32 a23 Cm.a22 �m33/ �m
2a32

a31 a32 a33 Cma32

375 I
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E�1
21 .m/ � A �E21.m/ D

264 1 0 0

�m 1 0

0 0 1

375
264a11 a12 a13

a21 a22 a23

a31 a32 a33

375
264 1 0 0

m 1 0

0 0 1

375

D

264 a11 Cma12 a12 a13

a21 Cm.a22 � a11/ �m
2a12 a22 �ma12 a23 �ma13

a31 Cma32 a32 a33

375 I

E�1
32 .m/ � A �E32.m/ D

2641 0 0

0 1 0

0 �m 1

375
264a11 a12 a13

a21 a22 a23

a31 a32 a33

375
2641 0 0

0 1 0

0 m 1

375

D

264 a11 a12 Cma13 a13

a21 a22 Cma23 a23

a31 �ma21 a32 Cm.a33 � a22/ �m
2a23 a33 �ma23

375 :

B Reduced sets of monomial candidates

M12.Ci / D Frac.�c11;min.c21// [ Frac.c12;min.c11//

[Frac.�c12;min.c22// [ Frac.�c13;min.c23//

[Frac.c22;min.c21// [ Frac.c32;min.c31//I

M13.Ci / D Frac.�c11;min.c31// [ Frac.�c12;min.c32//

[Frac.c13;min.c11// [ Frac.�c13;min.c33//

[Frac.c23;min.c21// [ Frac.c33;min.c31//I

M31.Ci / D Frac.c11;min.c13// [ Frac.c21;min.c23//

[Frac.c31;min.c33// [ Frac.�c31;min.c11//

[Frac.�c32;min.c12// [ Frac.�c33;min.c13//I

M23.Ci / D Frac.�c21;min.c31// [ Frac.�c22;min.c32//

[Frac.c13;min.c12// [ Frac.c23;min.c22//

[Frac.�c23;min.c33// [ Frac.c33;min.c32//I

M21.Ci / D Frac.c11;min.c12// [ Frac.c21;min.c22//

[Frac.�c21;min.c11// [ Frac.c31;min.c32//

[Frac.�c22;min.c12// [ Frac.�c23;min.c13//I
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M32.Ci / D Frac.�c31;min.c21// [ Frac.c12;min.c13//

[Frac.c22;min.c23// [ Frac.c32;min.c33//

[Frac.�c32;min.c22// [ Frac.�c33;min.c23//:
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