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Abstract: Rotation symmetric Boolean functions have been extensively studied in the last 15 years or so be-
cause of their importance in cryptography and coding theory. Until recently, very little was known about such
basic questions as when two such functions are affine equivalent. This question in important in applica-
tions, because almost all important properties of Boolean functions (such as Hamming weight, nonlinearity,
etc.) are affine invariants, so when searching a set for functions with useful properties, it suffices to consider
just one function in each equivalence class. This can greatly reduce computation time. Even for quadratic
functions, the analysis of affine equivalence was only completed in 2009. The much more complicated case
of cubic functions was completed in the special case of affine equivalence under permutations for mono-
mial rotation symmetric functions in two papers from 2011 and 2014. There has also been recent progress for
some special cases for functions of degree > 3. In 2007 it was found that functions satisfying a new notion
of k-rotation symmetry for k > 1 (where the case k = 1 is ordinary rotation symmetry) were of substantial in-
terest in cryptography and coding theory. Since then several researchers have used these functions for k = 2
and 3 to study such topics as construction of bent functions, nonlinearity and covering radii of various codes.
In this paper we develop a detailed theory for the monomial 3-rotation symmetric cubic functions, extending
earlier work for the case k = 2 of these functions.
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1 Introduction

Boolean functions have a variety of applications in the field of cryptography, a thorough overview of which
can be found in [12]. A Boolean function in n variables can be defined as a map from V,,, the n-dimensional
vector space over the two element field IF,, to IF,. If f is a Boolean function in » variables, the truth table of
f is defined to be the 2"-tuple given by (f(vy), f(v}), ..., f(vy_,)) where v, = (0,...,0,0),v; = (0,...,0,1),...,
Vyy = (1,...,1,1) are the 2" elements of V,, listed in lexicographical order. The weight or Hamming weight of
f (notation wt(f)) is the number of 1’s that appear in the truth table of f.

As described in [12, pp. 5-6], every Boolean function on V,, can be expressed as a polynomial over F, in
n binary variables by

flxp,....x,) = z CXY X
aev,

where ¢, € F, and a = (a,,...,a,) with each a; equal to 0 or 1. The above representation is referred to as the
algebraic normal form (ANF) of f. Let d; be the number of variables in the i-th monomial of f, so d; is the
algebraic degree (or just the degree) of the monomial. If we let D be the set of the distinct degrees of the
monomials in f which have non-zero coefficients, then the degree of f is given by max(D). If D contains only
one element, then each monomial in f has the same degree and f is said to be homogeneous. If the degree of
fis 1, then f is said to be affine, and if f is affine and homogeneous (i.e. the constant term is 0), f is said to
be linear.
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A Boolean function f is said to be rotation symmetric if its ANF is invariant under any power of the cyclic
permutation p(x,,...,x,) = (x,,...,x,, x;). The function is said to be k-rotation symmetric if it is invariant
under the k-th power of p but not under any smaller power (so the number of variables must be divisible
by k). A rotation symmetric function (respectively, k-rotation symmetric function) is said to be monomial
rotation symmetric (MRS) if it is generated by applying powers of p (respectively, powers of pk) to a single
monomial. The k-rotation symmetric functions were introduced in [18], where they were used to extend the
results of [16, 17]. Paper [17] announced that searching the set of rotation symmetric functions had led to the
discovery of 9-variable Boolean functions with nonlinearity 241. In the previous 30 years no examples with
nonlinearity exceeding 240 had been found. In later work [16] it was possible to show by exhaustive search
that no 9-variable rotation symmetric functions with nonlinearity exceeding 241 exist. However, in [18] some
functions with nonlinearity 242 were found by searching a subset of the 9-variable 3-rotation symmetric func-
tions. This result gave the best known result for the covering radius of the Reed—Muller code R(1,9). Paper
[19] used k-rotation symmetric functions to extend this coding theory work to the Reed—Muller codes with
n = 11 and 13. More recently, [15] extends the definition of k-rotation symmetric functions to the multi-output
case and uses these functions to get new results in the design of cryptographic S-boxes. Also, the 2-rotation
symmetric functions are used to construct bent functions in [4].

The 3-symmetric rotation symmetric functions were essential for the coding theory results in [18, 19]. In
this paper, we give a detailed theory of the monomial 3-rotation symmetric cubic functions; for brevity, we
refer to these functions as (cubic) 3-functions. We expect that this theory will be useful in further applications
of the 3-rotation symmetric functions. A detailed theory of the monomial 2-rotation symmetric cubic functions
was given in [10]. The case k = 3 has significant differences, as explained below.

We use the notation 3-(1, 1, s)5, (or 3-(1,7,s) when the number of variables is understood) for the cubic
3-function in 3x variables generated by the monomial x, x,x,. If we assume r < s < 3n then formula

3-(L,7,8)3, = X1 XX, + Xy Xy 3Kz 00+ Xy X, 53X 3 (11)

is called the standard form of the above 3-function. We use the notation (1,7, s),,, as in [6], for the (ordinary)
cubic MRS function in »n variables generated by the monomial x, x,x..

We shall use the notation [i, j, k] for the monomial x;x;x;. Unless otherwise specified, all subscripts in
given monomials will be taken Mod 3n (where the capital Mod notation i Mod 3x indicates that i is reduced
modulo 3nandi € {1,2,...,3n}) and all 3-functions will have 3n variables.

Let o( f) denote a permutation of the variables in the function f. If, given any rotation symmetric (respec-
tively, 3-rotation symmetric) function f, o(f) is also rotation symmetric (respectively, 3-rotation symmetric),
we say o preserves rotation symmetry (respectively, preserves 3-rotation symmetry). Also, without loss of gener-
ality, we assume thatifo : 3-(1,7,s) — 3-(1, p,q), theno([1,r,s]) = [1, p,ql. Ifo([1, 7, s]) = [}, j, k], where [3, j, k]
is another monomial term in 3-(1, p, q), then we could take a map S that decreases the index of each variable
by i — 1 Mod 3 and consider instead ¢’ = 8o 0.

Two Boolean functions f and g in » variables are said to be affine equivalent if there exist an invertible
matrix A with entries in IF, and b € V,, such that f(x) = g(Ax @ b). In general, determining whether or not two
Boolean functions are affine equivalent is difficult, even in the simplest cases. Recently, however, much work
has been done on affine equivalence of MRS functions (see [2, 3, 6-8, 20]). In particular, [20] determines all of
the affine equivalence classes for quadratic MRS functions. Also, [6] determines all of the affine equivalence
classes under permutations which preserve rotation symmetry for cubic MRS functions, and the recent paper
[7] shows that in fact these equivalence classes are the same under all permutations. Also [9] determines all
of the affine equivalence classes under permutations which preserve rotation symmetry for the quartic MRS
functions.

In this paper we determine the equivalence classes under permutations which preserve 3-rotation sym-
metry for the cubic 3-functions. Next, using methods similar to those used for ordinary cubic MRS functions
in [2], we derive recursions for the weights of the cubic 3-functions. We prove that the roots of the characteris-
tic polynomials (we shall call them recursion polynomials) for these recursions have very special forms. This
leads to the theorem that the previously determined equivalence classes under permutations are in fact the
equivalence classes under arbitrary affine transformations.
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2 Some important definitions

For integers, as usual a|b means a divides b.

Definition 2.1 (Form of a monomial). Given a monomial [a, b, c], the form of the monomial is defined as the
unordered triple [a mod 3, b mod 3, ¢ mod 3] with entries in {0, 1, 2}.

It is obvious that if a cubic 3-function is written in the form (1.1), then every monomial in (1.1) has the same
form.

Definition 2.2 (Pure, mixed and simple forms). A monomial (or function) whose form is {1, 1, 1} is said to be
pure form. A monomial (or function) whose form has exactly two distinct elements is said to be mixed form.
A monomial (or function) whose form is has three distinct elements is said to be simple form.

A pure form function 3-(1,r, s);, actually contains only variables x; with i = 1 mod 3 subscripts and there-
fore is essentially the same as the ordinary rotation symmetric function (1, (r + 2)/3, (s + 2)/3),, with variables
y; = (%3, +2)/3, 1 <i < n. Note that by [6, Lemma 3.1, p. 5071], there are (",')/3 pure form functions if 3n
or (n* — 3n + 6)/6 pure form functions if 3|n. A simple form function 3-(1, 7, s)s, is @ sum of n» monomials with
each x;, 1 < i < n, occurring exactly once. There are # choices for each of r and s, so there are »* simple form
functions. Any two simple form functions are trivially affine equivalent, by a permutation of the variables,
to 3-(1,2, 3),,,, which is easy to analyze since all of its monomials have disjoint sets of variables. Hence from
now on in this paper we shall only consider the mixed form functions.

Definition 2.3 (Repeated and unique variables). Inamixed form monomial, there are three variables, exactly
two of which have indices which are congruent mod 3. We refer to the variables whose indices are congruent
mod 3 as repeated and the remaining variable as unique. The indices of the corresponding variables are called
the repeated and unique indices, respectively.

Definition 2.4 (Defining monomial). Given a function 3-(1, , s);, with r < s and both r and s are # 1 mod 3, it
is clear from (1.1) that x; appears in only one monomial. We call [1, r, s] the defining monomial of the function.
If instead exactly one of r or s is = 1 mod 3, then x, appears in exactly one other monomial, say [1, ¢, u] with
t < u. In this case we designate the defining monomial to be the monomial in which min(r, t) appears.

Definition 2.5 (Form of a function). Given a function 3-(1, r, s),,, with defining monomial [1, r, s], the form of
the function is the form of the defining monomial.

The difference between the repeated variables turns out to be essential to the study of equivalences among
mixed form 3-functions. Thus, we need the following definition.

Definition 2.6 (y-value). Let 3-(1,r, s) be a mixed form 3-function with defining monomial [1,r, s]. Assume a
is the unique index and b, ¢ are repeated (Where a,b,c € {1,r,s} and b < ¢). Then we define y = ¢ — b to be the
x-value for 3-(1,r,s).

Note that since b and ¢ are repeated, y is always a multiple of 3.
One basic question about cubic MRS 3-functions is how many different mixed form functions there are
with 3n variables. Our first lemma answers this.

Lemma 2.7. The number of cubic MRS mixed form 3-functions 3-(1,1, s),,, is 2n* — 2n.

Proof. We begin by counting the number of functions which are not pure form. We first count the number
of functions 3-(1,r, s);, with r = 1 mod 3 and s # 1 mod 3: we have n — 1 choices of r, 2 < r < 3n — 1, and since
r+1<s<3n we obtain 2n-2)+2n—-4)+ 2n—-6) +---+ 4+ 2 = n* —n different 3-functions. The triple
1,7, s will not always give the defining monomial for these functions, but the count of them is correct. If
both r and s are # 1 mod 3 with r < s, then the defining monomials [1,7,s] withs # 1mod3andr +1<s < 3n
for given r # 1mod3,2<r<3n-1,give @2n—1)+ 2n—2) +--- + 2 + 1 = 2n*> — n different 3-functions. Each
monomial is a monomial of form [1, ¢, u] which appears in some function whose defining monomial [1, 7, s]
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has r < t and is one of the successful candidates. We discard the n* simple form functions. Thus the total
number of different mixed form functions is 2n* — 2n. O

Example 2.8. For functions 3-(1,, s), (n = 3), the 6 defining monomials with exactly one of r or s equivalent to
1mod3 are [1,2,4],[1,2,7],[1,3,4],[1,3,7], [1,4, 8], [1,4, 9]. The 15 defining monomials with both r # 1 mod 3
and s # 1mod 3 are [1,2,s],s = 3,5,6,8,9; [1,3,s],s = 5,6,8,9; [1,5,5], s = 6,8;9; [1,6,s],s = 8,9; and [1, 8, 9].
Note that 9 of these monomials give the simple form functions. The remaining possible monomials contain-
ing 1 do not give any new functions; for instance, 3-(1,2,4)y = 3-(1,7, 8),, 3-(1,2,7)y = 3-(1,4, 5),, etc.

The corresponding count (for example, see [6, Lemma 3.1]) for the ordinary cubic MRS functions (1,r, s),, is
(n* - 3n+ 6)/6 if 3[n and (#* — 3n + 2)/6 otherwise. Thus the count for n = 9 is 10. Of course it often happens
that a function (1, 4, b)3, is equal to the sum of three functions 3-(1, 1, s)3,, one of which will be 3-(1, a, b)s,,.
For instance, (1,2, 3)y = 3-(1,2,3)4 + 3-(1,2,9)y + 3-(1,8,9)g and (1, 2, 6)y = 3-(1,2,6)y + 3-(1,5,6)q + 3-(1,5,9),.

For future reference, we give the linear recursion for the weights of simple form functions in the next
lemma. By the remarks after Definition 2.2, it suffices to consider only the functions 3-(1, 2, 3)5,,.

Lemma 2.9. Define s(n) = wt(3-(1,2,3),) forn=1,2,.... Then s(1) = 1, s(2) = 14 and s(n) satisfies the linear
recursion s(n) = 14s(n — 1) — 48s(n — 2) forn > 2.

Proof. The function s(n) has n monomials, which have disjoint sets of 3 variables each. Hence [11, Lemma 2.1]
can be applied with f =3-(1,2,3),,, k=3 and g = 3-(1,2,3)5,, S0 g, = (1,2, 3);. Since trivially wt(s(1)) = 1,
Lemma 2.1 of [11] gives

s(n) =7s(n—-1)+2°"2 —s(n-1).

This inhomogeneous recursion is easily seen to be equivalent to the homogenous one given in the lemma. [

3 Mixed form functions

In this section we always assume that when we write a mixed form function as 3-(1, r, s), the defining mono-
mial for the function is [1, r, s] (see Definition 2.4).

Lemma 3.1. Let3-(1,r1,s)s, be a mixed form function. For a € {1, r, s}, x, is the unique variable if and only if x, 5,
appears in exactly one monomial of 3-(1,7, )5, fork = 0,1,2,...,n— 1. Similarly b, c € {1,r, s} are the repeated
variables if and only if each of b + 3k and ¢ + 3k appear in exactly two monomials fork = 0,1,2,...,n— 1.

Proof. Leta, b, cbe as above. Since the terms of 3-(1, r, s) are of the form [1 + 3k, r + 3k, s + 3k] and a # b Mod 3
and a # c¢Mod3, it is clear that there do not exist p,q such that a+3p =b+3g and a + 3p = ¢ + 3q. Now
assume x,_ ;. appears in two monomials. That is, assume there exist p such that a + 3k = a + 3p Mod 3n. This
implies 3n|3k — 3p, but since k < n, k = p, so x,,_ 3, appears in exactly one monomial.

For the reverse implication, assume x,, 5, appears in only one monomial of 3-(1,r, s). This implies that
there is no 0 < p < n such that a+ 3k =b+3pMod3n or a+ 3k =c+3pMod3n. Thus a # bMod3n and
a # ¢ Mod 3n, so a is unique.

For the second part of the lemma, assume b, ¢ are repeated and without loss of generality, assume b < c.
So x = ¢ — b by Definition 2.6. We recall that because b, c are repeated, y is a multiple of three (3u). Further,
sincec < 3n,b > 1, and b # ¢, we know 0 < x < 3n. Then, in addition to the monomial

la + 3k,b + 3k, ¢ + 3k],
Xp,3, also appears in the monomial
[a+ Bk—-x),b+Bk-x),c+Bk—x)] =la+Bk-x),b+ (3k—x),b+3k]
and x_, 5, also appears in

[a+ (Bk+x),b+Bk+ x),c+ Bk+ x]=[a+ Bk+ x),c+3k,c+ 3k + x)l.
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For the reverse implication, assume x,,, 5, appears in two monomials:
[a+3k,b+3k,c+3k] and [a+3p,b+3p,c+3p].

Since the monomials are distinct, this implies that b + 3k = a + 3p Mod 3n (impossible since a is unique) or
b + 3k = ¢ + 3p Mod 3n. Thus b = ¢ Mod 3n and so b is repeated. O

We now want to examine the relationship between y and the total number of variables. A helpful tool in this
endeavor is the concept of strings.

Definition 3.2 (Strings). Given a mixed form function 3-(a, b, ¢),, where a is unique and b, ¢ are repeated, let
(3n, x) = 3d (where y is as defined above) and 3n = 3dl. We define the i-th string of 3-(a, b, c) to be the set of
monomials 8; such that

S;={la+3i+vy,b+3i+vy,c+3i+vyl:v=01,...,1-1}

wherei=0,1,...,d - 1.

Example 3.3. Consider the function f = 3-(1,2,7),5. The repeated variables in the defining monomial of f
are x, and x,. The unique variable is x,. Thus, we have that the y-value of fis7 -1 =6, 3n, x) = (15,6) = 3
and3n=3-5=15=3dl =3-1-1, so comparing with Definition 3.2 we have 3d = 3 and I = 5. Thus, we have
one string of length 5. It is

8o = 1{[1,2,71,(7,8,13], [13, 14, 4], [4, 5, 10], [10, 11, 1]}.

Lemma 3.4. Every monomial of the mixed form function 3-(1,r, s) is in one and only one string.

Proof. Let 3-(a, b, ), be a mixed form function such that a is unique and b, c are repeated. It is clear that each
monomial appears in at least one string, so we begin by showing that no monomial appears in more than one
string. Assume that a given monomial [p, g, w] appears in §; and §;. This implies that there exist k;, k; such
that

(p,gw]l =la+3i+kx,b+3i+ky c+3i+kyl
(pgwl=la+3j+kjx;b+3j+kjx,c+3j+kx]

and thus
l[a+3i+kx,b+3i+ky,c+3i+kyl=[a+3j+kjx;b+3j+kjx,c+3j+kxl.

Since, by Lemma 3.1, each of the unique terms appears in only one monomial, we must have that
a+3i+kx=a+3j+k;x Mod3n.

This implies that 3i + k;x = 3j + k;x Mod 3n, so 3n|3i — 3j + (k; — k;)x. Since 3d|3n and 3d|y, 3d must divide
3(i — j). But, since i, j < d — 1, we have i = j, as required. Now, since y is 3u, it is easy to see that there is no
pair i, k; such thata = b + 3i + k; x. Further, we claim that within a given string, there is no pair k;, k; such that
a+3i+kx=a+3i+k;x. If there is, then we have k;y = k;x Mod 3n, which would imply 3n|(k; — k;) x. Since
ged(3n, x) = 3d and 3dl = 3n, we must have I|(k; - kj). Since k;, kj <1-1, this implies k; = kj.

Thus, in each string there are / unique monomials, which do not appear in any other string. As a result,
we have accounted for  monomials in each of the d strings, or Id = n total monomials. Since every 3-function
in 3n variables is composed of n monomials, we have the desired result. O

Apart from being useful in identifying specific monomials, the presence of unique variables limits the ways
in which we can permute the indices of 3-functions to find affine equivalent ones. In particular, we have the
following lemma.

Lemma 3.5. If f is a mixed form function and a permutation o : f — g preserves 3-rotation symmetry, then g
must be mixed form.
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Proof. Let 3-(1,r,s) be a mixed form function and assume o : f — g preserves 3-rotation symmetry. Let
a € {1,r, s} be unique and b, c be repeated. If

3_fr,s = XgXpXc + Xa+3Xp+3%Xc+3 teeet Xq-3Xp-3%Xc-3>

then
9 = 0(f) = Xo@Xot)Xo(e) T Xo(a+3)Xab+3)Xa(cs3) T+ Xo(a=3)Xo(b-3)Xo(c-3)-

By Lemma 3.1, for each k = 0, 1,2,...,n - 1, we know that x,, 5, appears in exactly one monomial and x;, 3
and x,,;, each appear in two. Thus x,,, 3, must appear in exactly one monomial of g and x,(,3x)> X(c+3k)
must each appear in two. Thus each monomial of g contains 1 unique variable and 2 repeated ones and so g
is mixed form. O

Remark 3.6. We note that the above lemma does not imply that f and g have the same form (recall Defi-
nition 2.5), only that they are both mixed form functions. As we shall see later, the equivalence classes are
determined by the distance between the repeated variables (the y-value), not by a shared form.

With the previous lemma, we have shown that mixed form functions can only be affine equivalent to other
mixed form functions. In addition, during the proof of said lemma, we indicated that a 3-rotation symmetry
preserving mapping between mixed functions must send unique variables to unique variables and repeated
variables to repeated variables. Further, since the repeated variables each appear in two different monomials,
if we know the image of a repeated variable under a 3-rotation symmetry preserving map o, we can get some
information about the image of both the monomials in which it appears. We use these ideas in the proof of
Theorem 3.8 below, which gives a simple way to define the equivalence classes for functions 3-(1, r, s),,, under
permutations which preserve 3-rotation symmetry. We shall need the following useful lemma for the proof.

Lemma3.7. Ifo: 3-(1,7,s) — 3-(1, p,q) preserves 3-rotation symmetry and has the property that o(t) = u im-
plies o(t + ky) = u+ ky' forallk = 0,1,...,3n— 1 (where y and ' are the y-values for 3-(1,r,s) and 3-(1, p, q),
respectively), then (3n, x) = (3n, X’).

Proof. Let o be as above. Let (3n, x) = 3d and (3, x') = 3d'. Let] and p satisfy 3dl = 3nand 3du = y and I’ and
y' satisfy 3d'l' = 3nand 3d'y’ = y'. 1f o(t) = u, then

u=o(t+3dly) =oct+Ily) =u+ lx'.

Thus u = u + Iy’ Mod 3nand so 3d|y’. Since 3d also divides 3, this implies 3d|3d’. Since ¢ is a permutation of
variables, there exists a reverse permutation o' : 3-(1, p,q) — 3-(1,r, s) which preserves 3-rotation symmetry
and has the property that o' (u) = t implies o' (u + Iy') = t + Iy. Using the same argument as above, we have
that 3d'|y. Again, since 3d’ also divides 3n, this implies 3d'|3d. Thus 3d = 3d’, as required. O

Theorem 3.8. Let f = 3-(1,7,s);, and g = 3-(1, p, q)5, be mixed form functions which have associated y-values
Xy and x,. Then there exists a permutation o : f — g which preserves 3-rotation symmetry if and only if
gcd(3n, Xf) = gcd(3n, Xg)-

Proof. We begin with the forward implication. Let f = 3-(a,b,c) and g = 3-(w, p,q). Suppose a,w are the
unique variables of f and g, respectively, and x; =c-b=3mand x, =q-p = 3m'. Assume o : f — g pre-
serves 3-rotation symmetry.

From the proof of Lemma 3.5, we know that ¢ maps the unique variables in f to the unique variables in g.
Thus, given any monomial [a + 3k, b + 3k, c + 3k] in f, we have

o([a + 3k,b + 3k, c + 3k]) = [o(a + 3k), o(b + 3k), o(c + 3k)]
=[w+3B,0(b + 3k),o(c + 3k)]
=[w+3B,p+3B,q9+3pl, (3.

where the last equality results from the fact that the unique variable with index w + 38 occurs only in one
monomial.
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Case 1: Assume 3m # —3m Mod 3n. Since b, c are repeated, x;,, 5, also appears in the monomial

la + 3k —-3m,b+ 3k —3m,c+ 3k —3m] = [a+3(k—m),b+3(k—m),b+ 3k]
and x,, 5 also appears in the monomial

[a + 3k +3m,b+ 3k + 3m,c + 3k + 3m] = [a + 3(k + m),c + 3k,c + 3(k + m)].
Since b # ¢, 3m #+ 0 and by assumption 3m # —3m, we have

a+3k+a+3k+m)+a+3(k-m).
Thus the three monomials
[a+3k,b+3k,c+3k], [a+3(k-m),b+3(k-m),b+3k], [a+3(k+m),c+3k,c+3k+m)]
are different, and hence their images under o must be different. From (3.1), we know
o([a +3k,b+3k,c+3k]) = [w+3B,p+3B,q+3pl (3.2)

Thus,
o(la+3(k—m),b+3(k—-m),b+3k]) = [o(a + 3(k - m)),o(b + 3(k - m)), p+ 3f].

But, by Lemmas 3.1 and 3.4, 0 must send x,,, 3;_,,,y t0 @ variable with index of the form w + 3«,, which appears
uniquely in the monomial [w + 3«4, p + 3, g + 3a,]. SO we have

[o(a +3(k—m)),a + 3(k—m)), p+3B] = [w+3a, p+ 30,9 + 304]. (3.3)

Since a + 3k # a + 3(k - m), we have w+3a, = o(a +3(k—m)) # o(a+3k) =w+3p. So p+3a;, # p+3p.
Thus, we have g + 3a; = p + 38 which implies 3a; = —(q - p) + 3B = —x, + 3p.
Similarly,

o([a+3(k +m),c+3k,c+3(k+m)]) = [o(a+3(k +m)),q+3B,0(c+3(k +m))]
= [w+ 30, p + 30y, q + 30,]. (3.4)

From above, none of a + 3(k + m), ¢ + 3k, ¢ + 3(k + m) is equal to a + 3k, so we have
pt+3ay=q+3f or 3a,=(q-p)+3p=yx,+3p
From (3.2), (3.3), (3.4) we have that, if (3.2) is true for some 3,0 < < n- 1, then
o(la+3k+ xpb+3k+ xpc+3k+ xs]) = [w+3B+x, p+3B+x,q+3B+y,l

Since every variable of f = (1,r,s),, can be represented by i + 3k, wherei € {a,b,c},k=0,1,...,n—1, 50
o satisfies
oct)y=1 = a(tixf) =T X,

Thus from Lemma 3.7, we have the desired result, namely, (3#, x f) = (3n, Xg)-

Case 2: If 3m = —3m Mod 3n, then 3m = n. Since each of the two repeated terms appears in two distinct
monomials (which in this case happen to be the same two monomials), then for every k = 0,1,...,n— 1, we
still have two distinct monomials which differ in their unique term:

[a+3k,b+3k,c+3k] and [a+3m+3k,b+3k+3m,c+3k+3m]=[a+3m+3k,c+3kb+3k].
Applying o to each of these monomials gives us (3.2) in the first case and

o(la+ 3k +3m,c+3k,b+3k]) = [w+3a, p+3a,qg+3a] = [w+3a,q+ 3B, p+ 3Pl
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in the second. Since m # 0, we must have p + 3a = g+ 3B and g + 3a = p + 3B. Thus 3a = (g - p) + 3 and
3a=—(q- p)+3B. S0 3m’ =(q- p) =—-(q— p) = -3m’' Mod 3n. Hence, 3m' = —3m’' Mod 3n so 3m’ =n =3m
and ged(3n, x¢) = ged(3n, x,) trivially.

For the reverse direction, we assume that (37, Xf) = (3n, Xg) = 3d, then we define o : f — g as follows:

ola+3i+kxs) =w+3i+ky,
o(b+3i+kys) =p+3i+kx,
o(c+3i+kxs) =q+3i+ky,.

We can see that this map is one-to-one, since given monomials [a + 3i + k;x 7, b + 3i + k; X, ¢ + 3i + k;x 7] and
l[a+3j+kjxpb+3j+kjxpc+3j+k;xs] such that

o(la+3i+kixpb+3i+kixpc+3i+kixel)=o(la+3j+kjxpnb+3j+kixpc+3j+kixl)
by the definition of o, we have
o(la+3i+kixpb+3i+kixpc+3itkixel)=[w+3i+kixg, p+3i+kixgq+3i+kx,l
and
o(la+3j+kixpb+3j+kixpc+3j+kixel)=lw+3j+kxg,p+3j+kixgsq+3j+kx,l
which implies
(w+3i+kixgp+3itkx,q+3itkxl=[w+3j+kix,p+3j+kix,q+3j+kix,l

Since w is unique, this implies
w+3itkix,=w+3j+k;x,.

So 3n|3(i - j) + (k; - kj)xg. Since 3d|3n and 3d|Xg, we have 3d|3(i - j). But, since i, j < d, we have i = j and
k; = k;. In addition, since there are the same number of monomial terms in f as in g, o must map f onto g.
Since both f and g are 3-rotation symmetric, o preserves 3-rotation symmetry, as required. O

Corollary 3.9. Two 3-functions in 3n variables whose defining monomials are given by [1,r,s] and [1, p, q] are
affine equivalent by some permutation for all n if and only if their y-values are equal.

Proof. Rotation symmetric functions are affine equivalent if there exists a permutation of variables that maps
one to the other. By Theorem 3.8, the existence of such a mapping between two functions f and g is equivalent
to ged(3n, x ) = ged(3n, x,). In order for this equivalence to hold for all n, we must have x, = x,. O

In light of Corollary 3.9, we see that every 3-function in 3n variables shares many of its properties with every
other 3-function in 3n variables with the same y-value (since they are all affine equivalent). As a result, we will
often refer to these functions simply by f;,, (or f, if the number of variables is clear), where the particular
member of the equivalence class being discussed is not important.

Theorem 3.8 enables us to give a simple formula for the number of equivalence classes under permu-
tations which preserve 3-rotation symmetry. To state this, we need the number theory function z(n) = the
number of positive integer divisors (including 1 and ») of the integer n.

Lemma 3.10. For any given number of variables 3n, the number of equivalence classes under permutations
which preserve 3-rotation symmetry for the functions 3-(1,r,s),, is t(n) — 1.

Proof. By Theorem 3.8, two 3-functions are equivalent under some permutation which preserves 3-rotation
symmetry if and only if the functions have the same value of gcd(3#, ) = 3 ged(n, x/3), so there is one equiva-
lence class for each possible value of the ged. Since y is 3u and must be < 3n — 3, this gives 7(n) — 1 classes. U

We remark that the count of equivalence classes in Lemma 3.10 is very small (because of the well-known
result that 7(n) = O(n°) for any e > 0) compared to the number of equivalence classes for ordinary RS functions
(1,7, s) in n variables. The latter count is > c¢n and the constant ¢ depends heavily on r and s (see [3, 6]); also,
there is no simple formula for the number of those classes (see [3]).
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r=2 2 3 3 2 5 5 2 9
r=3 3 2 3 5 2 5 9
r=4 3 3 4 3 3 6
r=>5 2 5 3 2 9
r=6 5 2 3 9
r=7 5 5 6
r=28 2 9
r=9 9

Table 1. Recursion order for 3-f, .

4 Recursions for weights of cubic 3-functions

Using the methods in [1, 2] we can prove that for any 3-function 3-(1, r, s) with 1 < r < s the sequence of weights
{wt(3-(1,7,5)3,) : 3n > s} satisfies a linear recursion with integer coefficients. In fact, unlike the case of the or-
dinary RS functions analyzed in [1], the order (order = degree of recursion polynomial) of the recursion for
mixed form functions depends only on the y-value for 3-(1,, s) (recall Definition 2.6), rather than on r and s.
In fact, if g = x/3 then the order of the recursion for the mixed form functions is g* - q + 3 (see Theorem 6.4
below). The recursion orders are given in Table 1, which includes pure and simple form functions for com-
pleteness. We use the abbreviated notation 3- f, ; for 3-(1,r, s).

In Table 1, each recursion of order i is identical to all the other recursions of order i. For instance, the
recursion for 3- f, , is identical to the recursions for 3- f, 5, 3- f; ,, 3- f, 5, and each of the other (r, 5) pairs in the
table with recursion order 3. This confirms the results found in Section 3, since 3- f, 4, 3- f, 5, 3- f3.4, and 3-f, 5
are all mixed form functions with y = 3 (see Corollary 3.9).

We postpone discussing the proof that the above recursions exist, because in Section 5 below we show
that a relatively simple direct proof, not using the methods in [1, 2], can be given. The details are in Theo-
rem 6.4.

Let the recursion polynomial for the weights of a mixed form function with given y be F, (x). Then Table 2
lists x : F,(x) for 3 < y <18. Letd(y) = deg(F,(x)) — 1. It is easy to see that 8 is a root of every F (x); let the
remaining roots be {oj s 1< j<d(p} Define

2%

W, = Y (1™ =27 —2wt(f), (4.1)
i=0

where f is any 3-function in 3n variables with the given x value. We call W, , the Walsh value for f. See [12,
pp. 7-9] for more general functions, called Walsh transforms, related to (4.1). It follows from Theorem 3.8 that
for given n, W, , depends only on y and not on the choice of the 3-function f. It follows from the basic theory
of recursions (for example, [13, pp. 1-3]) that

d(x)
_ n
Wiy = Z; iy (4.2)
i

for some complex numbers c; . Theorem 6.4 gives explicit values for all of the ;..

5 Weights and equivalence classes

It is well known that for any Boolean function f, wt(f) is invariant under affine transformations. For cubic
RS functions, it is possible for two functions with the same weight to be in different equivalence classes un-
der permutations which preserve rotation symmetry; the case of cubic RS functions in 8 variables already
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F,(x)

3 X —12x%+16x + 128
=6 x> —12x* +32x> - 64x% + 256x + 2048
9 X —12x% + 16x7 + 192x° — 768x° + 1024x* + 4096x> + 49152x? — 65536x — 524288
12 % —12xM 4 16x" + 128x1% + 5124 — 6144x1 + 8192x° + 65536x° — 131072x7 + 1572864x°
—2097152x° — 16777216x* — 16777216x> + 201326592x” — 268435456x — 2147483648
x=15  x% —12x7 + 165" + 128x%° + 3072x"® — 36864x"7 + 49152x'¢ + 393216x"° — 6291456x"% + 75497472
—100663296x"! — 805306368x° — 3221225472x% + 38654705664x” — 51539607552x° — 412316860416x°
+1099511627776x° — 13194139533312x% + 17592186044416x + 140737488355328
¥ =18  x¥ —12x%% + 16" +128x° + 20480x% — 245760x%° + 327680x% + 2621440x** — 251658240x>"
+3019898880x%° — 4026531840x" — 32212254720x' — 1030792151040x"> + 12369505812480x*
—16492674416640x"> — 131941395333120x2 + 1407374883553280x° — 16888498602639360x°
+22517998136852480x” + 180143985094819840x° + 1152921504606846976x°
—13835058055282163712x> + 18446744073709551616x + 147573952589676412928

12

Table 2. List of x : Fx(x)'

gives an example [6, Remark 3.10, p. 5075]. The next theorem shows that such examples are impossible for
cubic 3-functions. Since the equivalence classes for cubic 3-functions under permutations which preserve
3-rotation symmetry are very large (see the remarks in the paragraph after the proof of Lemma 3.10), it is plau-
sible that they cannot be made any larger by applying all of the affine transformations. Theorem 5.1 proves
this is true. A similar result for the equivalence classes for ordinary cubic RS functions (these classes were de-
termined in [6]) was conjectured in [6, Remark 3.9, p. 5075], but, since these equivalence classes are so much
smaller and distinct classes can have functions with the same weight, the proof may be difficult.

Theorem 5.1. Let C(3n) denote the number of equivalence classes for mixed form functions 3-(1,r,s),, under
permutations which preserve 3-rotation symmetry. Let w, . .., w¢s,,) denote the list of weights of representative
functions for the classes. Then these C(3n) weights are all different. Thus the equivalence classes in Lemma 3.10
are the same as the equivalence classes under all affine transformations.

Before we prove Theorem 5.1, we need the following results (recall the notation f;, , introduced after Corol-
lary 3.9).

Theorem 5.2. Given a 3-function f3n,x such that ged(n, x/3) = d and | = n/d, then

Wt(f,) = %(23" — 2" - 2wt(hy3))Y),

where hy 5 = 3-(1,2,4)3.

Theorem 5.2 is an analog of [11, Theorem 2.2]. Before we prove Theorem 5.2, we will need the following well-
known lemma [11, Lemma 2.1].

Lemma 5.3. Suppose f can be decomposed as g + h where the variables of g and h are disjoint. (Without loss
of generality assume g uses variables x, . .., x; and h uses variables x,, ..., x,). Then

wt(f) = wt(g + h) = wt(g)(2" ™ - wt(h)) + 2~ — wt(g)) wt(h).

Proof of Theorem 5.2. By Corollary 3.9, all 3-functions in 3n variables with the same y-value are affine equiv-
alent. Therefore, since weight is affine-invariant, it suffices to consider only f, =3-(1,2, x + 1);,. Recall from
Definition 3.2 that the i-th string of f, is defined to be the set of monomials .#; such that

S={1+3i+v2+3i+vx+1+3i+wl:v=0,1,...,1-1},

wherei =0,1,...,d — 1. Note that, from this definition, the length of each string is / and there are d strings. By
Lemma 3.4, the sets of monomials that make up the d strings are disjoint. By definition, each string contains
exactly 3/ monomials, so by relabeling the variables of f,, we can view f, as the sum of d disjoint copies
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of hy; ;. This can be done as follows: Let the i-th string of f, be given by
{(1+35,2+35,1+3i+ x, [1+3i+ 3,2+ 3i+ x, 1+ 3i+ 2x],..., [1+3i — x,2 + 3i — x, 1 + 3i]}.
This string can be mapped to
{[3li + 1,3li + 2,3li + 4], [3li + 4,31i + 5,3li + 7],..., [3li — 2, 31i + 31, 3li + 1]}. (5.1)

The above can easily been seen to be affine equivalent to h;; ;. Since each of the d strings of f, can be mapped
to one similar to (5.1), we can see that f is affine equivalent to d copies of h; ;. Since weight is affine invariant,
we have

d
Wi(f,) = wt ( Y hsl,s,i), (5.2)
i=1

where hy; 5 ; is the i-th copy of h;; ; whose defining monomial is [31i + 1, 3li + 2, 3li + 4]. Using Lemma 5.3, it is
easy to see that

d d-1 d-1
wi(f,) = wt ( Y hm,.) - wt(h3,)3,1)<23"_3l - wt( Y h3,,3,i>) + (@Y — wi(has,) wt( Y hmi).
i=1 i=1 i=1

Since wt(hy; 5 ;) is the same for all i, we can write wt(h; ;) (without the index) whenever we are computing the
weight of a single copy of 4, ;. Using this notation and expanding (5.2) further, we get

m m—1 m—1
wt ( Y hs,,s,,.) = 2%~ wt(h)) wt( Y hs,ﬁ,,.) + wi(hys) wt<23"‘3'"’ -y hs,,s,i)
i=1 i=1 i=1

which can be solved (see [11, Theorem 2.2]) to give

d
W) =Wt (Y P ) = 327 - 2V = 2wtly)))
i=1

as required. O

Corollary 5.4. With d and 1 as defined above, we have
W) = 5 (27 (@014 V) + 201 - VB,
Proof. From Theorem 5.2, we have
Wt(fy,,) = %(23" - 2% = 2 wt(hy,))Y). (5.3)

If we let o, a,, a3 be the roots of the recursion polynomial for y = 3, by the remarks surrounding (4.2) there
exist ¢, ¢, ¢; such that, for any n,

3
Wt(f33) = Z Gy -
=1

After solving for the &;’s and their associated ¢;’s, we can see that &, = 8, a, = 2(1 + V5), a3 = 2(1 — V/5) and
¢ =1/2, ¢, = ¢ = —1/2. Thus we can rewrite (5.3) as

WH(f3,) = %(23" -(2"- 2(%(8’ -+ V5) -1 - ﬁ))’)))d)
- - - - 0+ VB - - VB

_ %(23" - (@ +VE) + 20 - V3))?)

as required. O

We can now use the above results to prove Theorem 5.1.
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Proof of Theorem 5.1. To prove Theorem 5.1 we need only prove that for a fixed n, every divisor d of n gives rise
to a unique weight. That is, we need to prove that

1
2"~ @~ 2wt(hg5))?)
is unique for all d that divide n. Let d, < d, such thatd;|nfori =1,2. Let f3,;; and f, 3,4, be 3-functions in 3n

variables with y; = 3d;. Assume wt(f,34 ) = Wt(f3,34,)- We will show thatd, = d,. By Theorem 5.2, since the
weights of the functions f,, are equal, we have

1 1
5(23" - @~ 2 wt(hay ) = E(23" - @ 2wty 3)™)

which implies
d d
@ = 2wy, )™ = 7% = 2 Wiy, 5))™.

Using Corollary 5.4, we can rewrite the above as
(01 + VB 1 (201 = V) M) = (201 + V5))" + (2(1 - VB)"E)®, (5.4)

We can see that the above can only hold if d, = d, as follows. Since

a

(1+x)" = Z (?)xi,

i=0

plugging in /5 and —/5 for x gives

a

1+ V5)* (1)5'/2 (5.5)

i=0

and .
(1- ZO( Jev's”, (5.6)

respectively. By adding (5.5) to (5.6) we see that

al2

(1+ V5" + (1 - V)" _22( )5

if a is even, and
(a-1)/2
1+V5)*+(1-V5)*=2 ( )

i=0

if a is odd. Now, fori = 1, 2, let

. n/d; if n/d; is even,
n/d; -1 otherwise.

Thus (5.4) is equal to
/2 \d /2 NS
(2 (")) = (2 ("))
=N 2 =\ 2
or
t,/2 t,/2
(3 ()" a3 ()
i0 o\ 2
and so

t/2 t,/2

(5 (50)" = (8 (50))

i=0 i=0
By looking at each side modulo 5, only the terms with i = 0 remain, and so equality can only hold if d, = d,,
as required. O
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6 Recursion orders and crucial weights

We can now prove some results on the recursion orders for the different values of y. Notice that, for
any y = 3q, if 3n # 3gk = ky, then gcd(n,q) # q. So by Theorem 3.8, there exists a y' dividing y such that
Wt(f3,,) = Wt(f3,,, ). This means that f,,, “inherits” its weight from a function with a smaller x-value for all
3n other than those that are multiples of y. Since f;,,  is distinguished from functions with smaller y values
by its behavior at these values of 3n, it is of interest to study wt(fy,,) at these values. We begin with the
following definition.

Definition 6.1 (Crucial weights and values). Consider a fixed y. We define the crucial weights (resp. crucial
(Walsh) values) for yx to be the sequence of weights wt( ka,x)’ k =2,3,... (respectively, sequence of Walsh
values W 5 ., k =2,3,...), where f;,, =3-(1,2, y + 1)s,,.

By Theorem 3.8, all 3-functions with the same y-value are affine equivalent and since weight is affine in-
variant, we only need to mention the particular function 3-(1, 2, xy + 1), in Definition 6.1. The above work is
summarized in the next lemma.

Lemma 6.2. For any y-value, in order to determine the sequence of Walsh values
Wu(y) = {Wn,x tn=23,..}

(for the function 3-(1, 2, x + 1) and so for any 3-function with the same x-value), it suffices to know the sequence
of crucial Walsh values
CU(X) = {ka/?,,x k= 2,3,.. .}

and the sequences Wu(x') for all y' < x such that x' divides x. Thus all of the sequences Wu(x), x = 3,4,...
can be determined successively by finding Wu(3) and then the successive sequences of crucial values Cu(y),
X=4,6,....

The next lemma gives a recursion for the crucial weights (recall equation (4.1) which gives the relation be-
tween weights and Walsh values).

Lemma 6.3. For y = 3q, the crucial weights for y satisfy the recursion of order q + 2, whose polynomial is given
by

9
G,(x) = (x - 81 [ [(x - (1 + VB)T" 21 - V3))').

i=0

Proof. Let x = 3q and let 3n = 3gk. By Corollary 5.4, the weight of f = 3-(1,2, y + 1), is given by

wi(f) = (%~ (0 + VB + 0 - VB, (6.1)

where d = ged(n, x/3) = ged(gk, q) = gand | = n/d = qk/q = k. We note that d does not change as the number
of variables in f increases and that ! increases with k. We can rewrite (6.1) as

WH(f) = (8% - (01 + VB + 201 - V)Y
- 3@~ Z( )@+ VEHTi(ea - VB )

i=0

= (- Z( )+ Ve ea - vEy). (6.2)

i=0

Thus, for any y, we can determine the k-th crucial weight of y, say a,, by

Z To e 6.3)
i=1
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where the g are the (2(1 + /5))7(2(1 — /5))' terms from (6.2) and the ¢, are their associated binomial coeffi-
cients. By the theory of recursions, then the numbers 8%, «, ..., a, are the roots of the recursion polynomial
for the crucial weights, and so our recursion polynomial is the one given above, as required. O

We can expand on the above idea to prove the following theorem, which gives an explicit formula, including
the roots, for the polynomials F, (x) defined in Section 4.

Theorem 6.4. Let x = 3q. Then the sequence of weights wt(f,,3,), n=q+ 1,4 +2,... satisfies a recursion of
order q* — q + 3 which has recursion polynomial
-1

9 . .
Fy(x) = (x - 8)(x" — 4x - 16) [ [ [ [(x - (2 + V3)* (21 - ¥5))) "¢,

i=1 j=1

B

I
—

where {_ is a primitive g-th root of unity.

Proof. First assume q is prime. If n # kq, Corollary 5.4 gives
1 n n n
WH(frq) = 5 (8" = (201 + VE)" - 21 = V5))"). (6.4)

For n = kq, on the other hand, by (6.3) we have

q+1
W(fagesg) = 3 —%af + %s", (6.5)
i=1
where the «; are the (2(1 + V5))77(2(1 - /5))' terms from (6.2) and the ¢, are their associated binomial coeffi-
cients. We can combine (6.4) and (6.5) by multiplying (6.5) by 1/ Z?:l ¢ ;" where (, is a primitive g-th root of
unity. We also need to change the indices in (6.5) to match with the general », so we let k = n/q. Finally, we
note that for n = gk the terms 8% and (2(1 + +/5))% appear in both (6.4) and (6.5). To eliminate this overlap,
we remove these terms from (6.5). Putting all of this together we have that

WHfyyag) = 5(8" = 201+ V)" - (21 - V5)") (ZWXE’W) (6.6)

1=

Thus, by the theory of recursions, the 3 + q(q — 1) = ¢* — q + 3 terms in the above sum are the roots of the
recursion polynomial for 3- f;; and so the claim is proved.

The same result holds even if g is not prime. To see this, assume d|q for some d > 1. This implies
W(f3,34) = Wt(f3,34) for all n = 0modd but n # 0mod q. Thus, we begin by writing (6.6) and adding the
terms from wt( f3,,34):

e dr-eo- o+ () (B -50) (G Ru)(E-5). 6
i=1 j=1 i=1
S, S

In what follows, we will refer to the first sums in (6.7) as S,; and the second as Sq, as labeled above. Now,
observe that if g = dp, then all of the d-th roots of unity are also g-th roots of unity (since C;’ = (CZ)" =17 =1).
Next, we note that

(21 + VE)TF1 - VE))™ = (21 + VB)*2(1 - VE)))P"
= ((2(1 + V3))P4 D201 - V)P

= (@01 + VE)TP(1 - VB,

Thus, each of the terms from S, is already present in Sq» SO when we added S, to (6.6) we did not add any new
roots a;, we merely adjusted the coefficients of the terms in (6.6). We note that this also implies that (6.7) has
some redundancy in its roots. To compensate, we must reduce the size of the ¢; for all o; in S, that also appear
in§,;.



DE GRUYTER T.W. Cusick and Y. Cheon, Theory of 3-rotation symmetric cubic Boolean functions = 59

Repeating the above argument for all factors of g, we can see that no new «;’s are added and that the
coefficients of the existing ones change with each iteration. Thus, the weight of f;,  is given by a weighted
sum of the elements in Sy 8", and (2(1 + V/5))". So, by the theory of recursions, we have that the weights for
3k, satisfy a recursion which has recursion polynomial

q-1 q
(x = 8)(x — (1 + V5))(x - (1 = V) [ T [(x - (e"/80),

i=1 j=1

where the «; are as defined above and {, is a primitive g-th root of unity. The degree of the above polynomial
(and hence the degree of the recursion) is 3 + g(q — 1) = ¢° — q + 3, as required. O

Corollary 6.5. If x(1) and x(2) are 3u and x(1) divides x(2), then F,(x) divides F,,(x).
Example 6.6. Let y = 12 = 3 - 4. In this case, q = 4, which has one nontrivial divisor d = 2. From (6.7) we have
W) = (87 = GO+ VB - (201 - V)" - (17 + (-1))(201 + VENE(L - VE))™)
- L ) ) (220 VB aa - V)
+3(21 + V3L - VB 4 201+ V) - VE))) - B
= (8- @O+ VB - U= VB - (7 (C1(CA + VB - VB
- ;11(1" F "+ )20 + VB - VE)!
+3(201 + V)20 - VB + 2(2 + VE)QA - VE))") - E,
where E represents the repeated terms. Note that, when n = 4k, we have an extra copy of
(0 + V)1 - V5)),
so we see that E = ((2(1 + v5))?(2(1 - V/5))?)*. Thus
WH(fan12) = (8 -+ VB - 1 - VB - (1 + (D@L + VB0 - VE))")
-7 D ) (20 VB Ra - V)
+2(2 + V5220 - V) + 2(20 + V5) (231 - \/3))3)"/4).

So the recursion polynomial for y = 12 is

3 4
Fip = (- 8)(” - ax - 16) [ [ [ [ (x - (@2 + va)**2a - va)k) "))

k=1 j=1
= x - 12xM + 16x" + 128x"% + 512xM — 61445 + 81924 + 65536x° — 131072x” + 1572864x°
—2097152x° — 16777216x* — 16777216x° + 201326592x> — 268435456x — 2147483648,

This polynomial matches the results from Table 2 and deg(F,,) = 15 = 4> — 4 + 3 = g* — q + 3, as required.

7 Powers of Lucas numbers

The sequence L = {¢, : n = 1,2,...} of Lucas numbers is defined by ¢, =1, ¢, =3,€,=¢, , + ¢, ,,n=3,4,....
If we let the sequence {a, : n=1,2,...} of Fibonacci numbers be defined by a, =a, =1, a,=a,_; +4,_,,
n = 3,4,...and we define

y=1++5, 8=1-15, (71)
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L,,(x)

xt-x-1
-2t —2x+1
xt—3xt—6xt+3x+1

3
x> —5xt —15x%% + 15x% + 5x — 1
6
7

x% - 8x% — 40x* + 60x> + 40x% - 8x — 1
x7 = 13x°% — 104x° + 260x* + 260x° — 104x% — 13x + 1

§ 33 ¥ I8
Il
A Ul B W N -

Table 3. List of m : L, (x).

then it is easy to see that

e,,:%(y”ﬂs”) and a, = "-8", n=12,.... (7.2)

L
2745 Y
The next theorem gives a simple formula for the crucial Walsh values in terms of powers of the Lucas numbers.

Theorem 7.1. The crucial Walsh values Wy, 5 , satisfy
Wigsy = @67, n=23,...

Proof. 1t follows from (7.1) and Corollary 5.4 (note 3n = ky, d = x/3 and ¢ = k) that
1
Wi(fi) = S @5 - (@08 +89), k=23,

Now (4.1) and (7.2) give the theorem. O

Corollary 7.2. For x = 3, the sequence of Walsh values W, 5, n = 2,3, ... satisfies
W,;=4", n=23,..., (73)
so for any y the crucial Walsh values satisfy
Wisag = W), n=2,3,.... (7.4)

The theory of recursions for powers of Fibonacci and Lucas numbers (and indeed for powers of other se-
quences defined by linear recursion of order 2) was developed long ago (see [5, 14, 21]) and we can use some
of those results to obtain more information about the recursion polynomial for the crucial Walsh value se-
quences Cu(y); let V(%) denote this polynomial. It is clear from (4.1) and Lemma 6.3 that

V,(x) = G, (x)/(x - 87). (7.5)

Theorem 7.1 shows that the crucial Walsh values Cu(y) are just the x/3-th powers of the sequence 4"€k,
k =2,3,....Therecursion polynomials for the powers of the Lucas numbers are given in the following lemma.
The first few recursion polynomials are listed in Table 3.

Lemma 7.3. The sequence ¢,", k = 2,3,..., of m-th powers of the Lucas numbers satisfies a linear recursion of
order m + 1 with polynomial

L,(x) = ril(_l)i(iﬂ)/Z [m: 1:|xi’ (76)

i=0
where [7] is the Fibonomial coefficient a,,a,,,_, -+ Gy, /%y -~ ay, [7] = 1.

Proof. Thisis aspecial case of results of [5, Section 6] and [14, (50), p. 443], and perhaps goes back farther. [



DE GRUYTER T.W. Cusick and Y. Cheon, Theory of 3-rotation symmetric cubic Boolean functions =— 61

V, (%)

x? —4x - 16
x> = 32x% — 512x + 4096
xt —192x% - 24576x% + 786432x + 16777216
2 x° - 1280x* — 983040x° + 251658240x° + 21474836480x — 1099511627776

Il
= 0 O\ W

R R XX
]

Table 4. List of x : V, (x).

x=3 xX=6 x=9 x =12
n=3 4%
n==6 48% 16%
n=9 256 256 64
n=12 1792 2304 1792 256
n=15 11264+ 11264 11264 11264
n=18 73728 65536% 65536 65536
n=21 475136% 475136 475136 475136
n=24 3080192 3211264+ 3080192 5308416
n=27 19922944 * 19922944 16777216 19922944
n =30 128974848 126877696 * 128974848 126877696
n=33 834666496 * 834666496 834666496 834666496
n =36 5402263552 5435817984 5754585088 * 4294967296 *
n =39 34963718144 * 34963718144 34963718144 34963718144
n=42 226291089408 = 225754218496 * 226291089408 225754218496
n=45 1464583847936 1464583847936 1429150367744 % 1464583847936

Table 5. Some values of W, for3 < x < 12.

By Theorem 7.1, if we multiply x in (7.6) with m = y/3 by 4¥/?™*1=) '\ve must get the polynomial V,(x), that

is,
(x/3)+1
i(i 3)+1 P
V)= Y (—1)’(’+1)/2[(X/_) ]4(x/3)((x/3)+1 D
=0 i

If we make this calculation, we get Table 4; of course this also follows from (7.5).

There are now several options for computing Walsh values W,  (or, equivalently, weights, by (4.1)). One
can use the recursion polynomial F, (x), but this requires finding the initial values for the recursion and would
give a lengthy calculation if n is large. One can compute W, ; from (7.3) and then simply use (74) if W, isa
crucial value. If not, then W, is a crucial value in the sequence Wy, ,» for some x' < x» by Lemma 6.2.
Table 5 illustrates the simple distribution of the crucial Walsh values, which are followed by =. Of course the
table could be extended to give entries for n < y, where the numbers W, , are not defined, by simply using
the polynomials F, (x) to calculate those values near the top of the table. In the table we have done this only
forn=y.
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