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Theory of 3-rotation symmetric cubic Boolean functions
Abstract: Rotation symmetric Boolean functions have been extensively studied in the last 15 years or so be-
cause of their importance in cryptography and coding theory. Until recently, very little was known about such
basic questions as when two such functions are a�ne equivalent. This question in important in applica-
tions, because almost all important properties of Boolean functions (such as Hamming weight, nonlinearity,
etc.) are a�ne invariants, so when searching a set for functions with useful properties, it su�ces to consider
just one function in each equivalence class. This can greatly reduce computation time. Even for quadratic
functions, the analysis of a�ne equivalence was only completed in 2009. The much more complicated case
of cubic functions was completed in the special case of a�ne equivalence under permutations for mono-
mial rotation symmetric functions in two papers from 2011 and 2014. There has also been recent progress for
some special cases for functions of degree > 3. In 2007 it was found that functions satisfying a new notion
of k-rotation symmetry for k > 1 (where the case k = 1 is ordinary rotation symmetry) were of substantial in-
terest in cryptography and coding theory. Since then several researchers have used these functions for k = 2
and 3 to study such topics as construction of bent functions, nonlinearity and covering radii of various codes.
In this paper we develop a detailed theory for the monomial 3-rotation symmetric cubic functions, extending
earlier work for the case k = 2 of these functions.
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1 Introduction
Boolean functions have a variety of applications in the �eld of cryptography, a thorough overview of which
can be found in [12]. A Boolean function in n variables can be de�ned as a map from Vn, the n-dimensional
vector space over the two element �eld F2, to F2. If f is a Boolean function in n variables, the truth table of
f is de�ned to be the 2n-tuple given by (f(v0), f(v1), . . . , f(v2n−1)) where v0 = (0, . . . , 0, 0), v1 = (0, . . . , 0, 1), . . . ,v2n−1 = (1, . . . , 1, 1) are the 2n elements ofVn listed in lexicographical order. The weight or Hamming weight of
f (notation wt(f)) is the number of 1’s that appear in the truth table of f.

As described in [12, pp. 5–6], every Boolean function onVn can be expressed as a polynomial over F2 in
n binary variables by

f(x1, . . . , xn) = ∑a∈Vncaxa1
1 ⋅ ⋅ ⋅ xan

n

where ca ∈ F2 and a = (a1, . . . , an) with each ai equal to 0 or 1. The above representation is referred to as the
algebraic normal form (ANF) of f. Let di be the number of variables in the i-th monomial of f, so di is the
algebraic degree (or just the degree) of the monomial. If we let D be the set of the distinct degrees of the
monomials in fwhich have non-zero coe�cients, then the degree of f is given bymax(D). IfD contains only
one element, then each monomial in f has the same degree and f is said to be homogeneous. If the degree of
f is 1, then f is said to be a�ne, and if f is a�ne and homogeneous (i.e. the constant term is 0), f is said to
be linear.
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A Boolean function f is said to be rotation symmetric if its ANF is invariant under any power of the cyclic
permutation ñ(x1, . . . , xn) = (x2, . . . , xn, x1). The function is said to be k-rotation symmetric if it is invariant
under the k-th power of ñ but not under any smaller power (so the number of variables must be divisible
by k). A rotation symmetric function (respectively, k-rotation symmetric function) is said to be monomial
rotation symmetric (MRS) if it is generated by applying powers of ñ (respectively, powers of ñk) to a single
monomial. The k-rotation symmetric functions were introduced in [18], where they were used to extend the
results of [16, 17]. Paper [17] announced that searching the set of rotation symmetric functions had led to the
discovery of 9-variable Boolean functions with nonlinearity 241. In the previous 30 years no examples with
nonlinearity exceeding 240 had been found. In later work [16] it was possible to show by exhaustive search
that no 9-variable rotation symmetric functions with nonlinearity exceeding 241 exist. However, in [18] some
functions with nonlinearity 242were found by searching a subset of the 9-variable 3-rotation symmetric func-
tions. This result gave the best known result for the covering radius of the Reed–Muller code R(1, 9). Paper
[19] used k-rotation symmetric functions to extend this coding theory work to the Reed–Muller codes with
n = 11 and 13. More recently, [15] extends the de�nition of k-rotation symmetric functions to themulti-output
case and uses these functions to get new results in the design of cryptographic S-boxes. Also, the 2-rotation
symmetric functions are used to construct bent functions in [4].

The 3-symmetric rotation symmetric functions were essential for the coding theory results in [18, 19]. In
this paper, we give a detailed theory of the monomial 3-rotation symmetric cubic functions; for brevity, we
refer to these functions as (cubic) 3-functions. We expect that this theory will be useful in further applications
of the 3-rotation symmetric functions.Adetailed theory of themonomial 2-rotation symmetric cubic functions
was given in [10]. The case k = 3 has signi�cant di�erences, as explained below.

We use the notation 3-(1, r, s)3n (or 3-(1, r, s) when the number of variables is understood) for the cubic
3-function in 3n variables generated by the monomial x1xrxs. If we assume r < s ≤ 3n then formula

3-(1, r, s)3n = x1xrxs + x4xr+3xs+3 + ⋅ ⋅ ⋅ + x3n−2xr−3xs−3 (1.1)

is called the standard form of the above 3-function. We use the notation (1, r, s)n, as in [6], for the (ordinary)
cubic MRS function in n variables generated by the monomial x1xrxs.

We shall use the notation [i, j, k] for the monomial xixjxk. Unless otherwise speci�ed, all subscripts in
given monomials will be taken Mod 3n (where the capital Mod notation i Mod 3n indicates that i is reduced
modulo 3n and i ∈ {1, 2, . . . , 3n}) and all 3-functions will have 3n variables.

Let ò(f) denote a permutation of the variables in the functionf. If, given any rotation symmetric (respec-
tively, 3-rotation symmetric) function f, ò(f) is also rotation symmetric (respectively, 3-rotation symmetric),
we sayòpreserves rotation symmetry (respectively,preserves 3-rotation symmetry). Also,without loss of gener-
ality,we assume that ifò : 3-(1, r, s) → 3-(1, p, q), thenò([1, r, s]) = [1, p, q]. Ifò([1, r, s]) = [i, j, k], where [i, j, k]
is another monomial term in 3-(1, p, q), then we could take a map â that decreases the index of each variable
by i − 1Mod 3n and consider instead ò� = â ∘ ò.

Two Boolean functions f and g in n variables are said to be a�ne equivalent if there exist an invertible
matrixAwith entries inF2 and b ∈ Vn such thatf(x) = g(Ax ⊕ b). In general, determiningwhether or not two
Boolean functions are a�ne equivalent is di�cult, even in the simplest cases. Recently, however, muchwork
has been done on a�ne equivalence of MRS functions (see [2, 3, 6–8, 20]). In particular, [20] determines all of
the a�ne equivalence classes for quadratic MRS functions. Also, [6] determines all of the a�ne equivalence
classes under permutations which preserve rotation symmetry for cubic MRS functions, and the recent paper
[7] shows that in fact these equivalence classes are the same under all permutations. Also [9] determines all
of the a�ne equivalence classes under permutations which preserve rotation symmetry for the quartic MRS
functions.

In this paper we determine the equivalence classes under permutations which preserve 3-rotation sym-
metry for the cubic 3-functions. Next, using methods similar to those used for ordinary cubic MRS functions
in [2], we derive recursions for the weights of the cubic 3-functions. We prove that the roots of the characteris-
tic polynomials (we shall call them recursion polynomials) for these recursions have very special forms. This
leads to the theorem that the previously determined equivalence classes under permutations are in fact the
equivalence classes under arbitrary a�ne transformations.
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2 Some important de�nitions
For integers, as usual a|bmeans a divides b.

De�nition 2.1 (Form of a monomial). Given a monomial [a, b, c], the form of the monomial is de�ned as the
unordered triple [amod 3, bmod 3, cmod 3] with entries in {0, 1, 2}.

It is obvious that if a cubic 3-function is written in the form (1.1), then every monomial in (1.1) has the same
form.

De�nition 2.2 (Pure, mixed and simple forms). A monomial (or function) whose form is {1, 1, 1} is said to be
pure form. A monomial (or function) whose form has exactly two distinct elements is said to be mixed form.
A monomial (or function) whose form is has three distinct elements is said to be simple form.

A pure form function 3-(1, r, s)3n actually contains only variables xi with i ≡ 1mod 3 subscripts and there-
fore is essentially the same as the ordinary rotation symmetric function (1, (r + 2)/3, (s + 2)/3)n with variables
yi = (x3i−2 + 2)/3, 1 ≤ i ≤ n. Note that by [6, Lemma 3.1, p. 5071], there are (n−12 )/3 pure form functions if 3∤n
or (n2 − 3n + 6)/6 pure form functions if 3|n. A simple form function 3-(1, r, s)3n is a sum of nmonomials with
each xi, 1 ≤ i ≤ n, occurring exactly once. There are n choices for each of r and s, so there are n2 simple form
functions. Any two simple form functions are trivially a�ne equivalent, by a permutation of the variables,
to 3-(1, 2, 3)3n, which is easy to analyze since all of its monomials have disjoint sets of variables. Hence from
now on in this paper we shall only consider the mixed form functions.

De�nition 2.3 (Repeated and unique variables). In amixed formmonomial, there are three variables, exactly
two of which have indices which are congruentmod 3. We refer to the variables whose indices are congruent
mod 3 as repeated and the remaining variable as unique. The indices of the corresponding variables are called
the repeated and unique indices, respectively.

De�nition 2.4 (De�ning monomial). Given a function 3-(1, r, s)3n with r < s and both r and s are ̸≡ 1mod 3, it
is clear from (1.1) that x1 appears in only onemonomial. We call [1, r, s] the de�ning monomial of the function.
If instead exactly one of r or s is ≡ 1mod 3, then x1 appears in exactly one other monomial, say [1, t, u] with
t < u. In this case we designate the de�ning monomial to be the monomial in whichmin(r, t) appears.

De�nition 2.5 (Form of a function). Given a function 3-(1, r, s)3n with de�ning monomial [1, r, s], the form of
the function is the form of the de�ning monomial.

The di�erence between the repeated variables turns out to be essential to the study of equivalences among
mixed form 3-functions. Thus, we need the following de�nition.

De�nition 2.6 (ö-value). Let 3-(1, r, s) be a mixed form 3-function with de�ning monomial [1, r, s]. Assume a
is the unique index and b, c are repeated (where a, b, c ∈ {1, r, s} and b < c). Then we de�ne ö = c − b to be the
ö-value for 3-(1, r, s).

Note that since b and c are repeated, ö is always a multiple of 3.
One basic question about cubic MRS 3-functions is how many di�erent mixed form functions there are

with 3n variables. Our �rst lemma answers this.

Lemma 2.7. The number of cubic MRS mixed form 3-functions 3-(1, r, s)3n is 2n2 − 2n.

Proof. We begin by counting the number of functions which are not pure form. We �rst count the number
of functions 3-(1, r, s)3n with r ≡ 1mod 3 and s ̸≡ 1mod 3: we have n − 1 choices of r, 2 ≤ r ≤ 3n − 1, and since
r + 1 ≤ s ≤ 3n, we obtain (2n − 2) + (2n − 4) + (2n − 6) + ⋅ ⋅ ⋅ + 4 + 2 = n2 − n di�erent 3-functions. The triple
1, r, s will not always give the de�ning monomial for these functions, but the count of them is correct. If
both r and s are ̸≡ 1mod 3with r < s, then the de�ning monomials [1, r, s]with s ̸≡ 1mod 3 and r + 1 ≤ s ≤ 3n
for given r ̸≡ 1mod 3, 2 ≤ r ≤ 3n − 1, give (2n − 1) + (2n − 2) + ⋅ ⋅ ⋅ + 2 + 1 = 2n2 − n di�erent 3-functions. Each
monomial is a monomial of form [1, t, u] which appears in some function whose de�ning monomial [1, r, s]
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has r < t and is one of the successful candidates. We discard the n2 simple form functions. Thus the total
number of di�erent mixed form functions is 2n2 − 2n.

Example 2.8. For functions 3-(1, r, s)9 (n = 3), the 6de�ningmonomialswith exactly one of r or s equivalent to
1mod 3 are [1, 2, 4], [1, 2, 7], [1, 3, 4], [1, 3, 7], [1, 4, 8], [1, 4, 9]. The 15 de�ning monomials with both r ̸≡ 1mod 3
and s ̸≡ 1mod 3 are [1, 2, s], s = 3, 5, 6, 8, 9; [1, 3, s], s = 5, 6, 8, 9; [1, 5, s], s = 6, 8; 9; [1, 6, s], s = 8, 9; and [1, 8, 9].
Note that 9 of these monomials give the simple form functions. The remaining possible monomials contain-
ing 1 do not give any new functions; for instance, 3-(1, 2, 4)9 = 3-(1, 7, 8)9, 3-(1, 2, 7)9 = 3-(1, 4, 5)9, etc.

The corresponding count (for example, see [6, Lemma 3.1]) for the ordinary cubic MRS functions (1, r, s)n is
(n2 − 3n + 6)/6 if 3|n and (n2 − 3n + 2)/6 otherwise. Thus the count for n = 9 is 10. Of course it often happens
that a function (1, a, b)3n is equal to the sum of three functions 3-(1, r, s)3n, one of which will be 3-(1, a, b)3n.
For instance, (1, 2, 3)9 = 3-(1, 2, 3)9 + 3-(1, 2, 9)9 + 3-(1, 8, 9)9 and (1, 2, 6)9 = 3-(1, 2, 6)9 + 3-(1, 5, 6)9 + 3-(1, 5, 9)9.

For future reference, we give the linear recursion for the weights of simple form functions in the next
lemma. By the remarks after De�nition 2.2, it su�ces to consider only the functions 3-(1, 2, 3)3n.

Lemma 2.9. De�ne s(n) = wt(3-(1, 2, 3)3n) for n = 1, 2, . . . . Then s(1) = 1, s(2) = 14 and s(n) satis�es the linear
recursion s(n) = 14s(n − 1) − 48s(n − 2) for n ≥ 2.

Proof. The function s(n) has nmonomials, which have disjoint sets of 3 variables each. Hence [11, Lemma 2.1]
can be applied with f = 3-(1, 2, 3)3n, k = 3 and g = 3-(1, 2, 3)3n, so g2 = (1, 2, 3)3. Since trivially wt(s(1)) = 1,
Lemma 2.1 of [11] gives

s(n) = 7s(n − 1) + 23n−3 − s(n − 1).

This inhomogeneous recursion is easily seen to be equivalent to the homogenous one given in the lemma.

3 Mixed form functions
In this section we always assume that when we write a mixed form function as 3-(1, r, s), the de�ning mono-
mial for the function is [1, r, s] (see De�nition 2.4).

Lemma 3.1. Let 3-(1, r, s)3n be amixed form function. For a ∈ {1, r, s}, xa is the unique variable if and only if xa+3k
appears in exactly one monomial of 3-(1, r, s)3n for k = 0, 1, 2, . . . , n − 1. Similarly b, c ∈ {1, r, s} are the repeated
variables if and only if each of b + 3k and c + 3k appear in exactly two monomials for k = 0, 1, 2, . . . , n − 1.

Proof. Let a, b, c be as above. Since the terms of 3-(1, r, s) are of the form [1 + 3k, r + 3k, s + 3k] and a ̸≡ bMod 3
and a ̸≡ cMod 3, it is clear that there do not exist p, q such that a + 3p = b + 3q and a + 3p = c + 3q. Now
assume xa+3k appears in two monomials. That is, assume there exist p such that a + 3k ≡ a + 3pMod 3n. This
implies 3n|3k − 3p, but since k < n, k = p, so xa+3k appears in exactly one monomial.

For the reverse implication, assume xa+3k appears in only one monomial of 3-(1, r, s). This implies that
there is no 0 ≤ p < n such that a + 3k ≡ b + 3pMod 3n or a + 3k ≡ c + 3pMod 3n. Thus a ̸≡ bMod 3n and
a ̸≡ cMod 3n, so a is unique.

For the second part of the lemma, assume b, c are repeated and without loss of generality, assume b < c.
So ö = c − b by De�nition 2.6. We recall that because b, c are repeated, ö is a multiple of three (3u). Further,
since c ≤ 3n, b ≥ 1, and b ̸= c, we know 0 < ö < 3n. Then, in addition to the monomial

[a + 3k, b + 3k, c + 3k],

xb+3k also appears in the monomial

[a + (3k − ö), b + (3k − ö), c + (3k − ö)] = [a + (3k − ö), b + (3k − ö), b + 3k]

and xc+3k also appears in

[a + (3k + ö), b + (3k + ö), c + (3k + ö] = [a + (3k + ö), c + 3k, c + (3k + ö)].
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For the reverse implication, assume xb+3k appears in two monomials:

[a + 3k, b + 3k, c + 3k] and [a + 3p, b + 3p, c + 3p].

Since the monomials are distinct, this implies that b + 3k ≡ a + 3pMod 3n (impossible since a is unique) or
b + 3k ≡ c + 3pMod 3n. Thus b ≡ cMod 3n and so b is repeated.

We now want to examine the relationship between ö and the total number of variables. A helpful tool in this
endeavor is the concept of strings.

De�nition 3.2 (Strings). Given a mixed form function 3-(a, b, c)3n where a is unique and b, c are repeated, let
(3n, ö) = 3d (where ö is as de�ned above) and 3n = 3dl. We de�ne the i-th string of 3-(a, b, c) to be the set of
monomials Si such that

Si = {[a + 3i + íö, b + 3i + íö, c + 3i + íö] : í = 0, 1, . . . , l − 1},

where i = 0, 1, . . . , d − 1.

Example 3.3. Consider the function f = 3-(1, 2, 7)15. The repeated variables in the de�ning monomial of f
are x1 and x7. The unique variable is x2. Thus, we have that the ö-value of f is 7 − 1 = 6, (3n, ö) = (15, 6) = 3
and 3n = 3 ⋅ 5 = 15 = 3dl = 3 ⋅ 1 ⋅ l, so comparing with De�nition 3.2 we have 3d = 3 and l = 5. Thus, we have
one string of length 5. It is

S0 = {[1, 2, 7], [7, 8, 13], [13, 14, 4], [4, 5, 10], [10, 11, 1]}.

Lemma 3.4. Every monomial of the mixed form function 3-(1, r, s) is in one and only one string.

Proof. Let 3-(a, b, c)3n be amixed form function such that a is unique and b, c are repeated. It is clear that each
monomial appears in at least one string, so we begin by showing that nomonomial appears inmore than one
string. Assume that a given monomial [p, q, w] appears in Si and Sj. This implies that there exist ki, kj such
that

[p, q, w] = [a + 3i + kiö, b + 3i + kiö, c + 3i + kiö],

[p, q, w] = [a + 3j + kjö, b + 3j + kjö, c + 3j + kjö]

and thus
[a + 3i + kiö, b + 3i + kiö, c + 3i + kiö] = [a + 3j + kjö, b + 3j + kjö, c + 3j + kjö].

Since, by Lemma 3.1, each of the unique terms appears in only one monomial, we must have that

a + 3i + kiö ≡ a + 3j + kjö Mod 3n.

This implies that 3i + kiö ≡ 3j + kjöMod 3n, so 3n|3i − 3j + (ki − kj)ö. Since 3d|3n and 3d|ö, 3d must divide
3(i − j). But, since i, j ≤ d − 1, we have i = j, as required. Now, since ö is 3u, it is easy to see that there is no
pair i, ki such that a = b + 3i + kiö. Further, we claim that within a given string, there is no pair ki, kj such that
a + 3i + kiö = a + 3i + kjö. If there is, then we have kiö ≡ kjöMod 3n, which would imply 3n|(ki − kj)ö. Since
gcd(3n, ö) = 3d and 3dl = 3n, we must have l|(ki − kj). Since ki, kj ≤ l − 1, this implies ki = kj.

Thus, in each string there are l unique monomials, which do not appear in any other string. As a result,
we have accounted for lmonomials in each of the d strings, or ld = n total monomials. Since every 3-function
in 3n variables is composed of nmonomials, we have the desired result.

Apart from being useful in identifying speci�c monomials, the presence of unique variables limits the ways
in which we can permute the indices of 3-functions to �nd a�ne equivalent ones. In particular, we have the
following lemma.

Lemma 3.5. If f is a mixed form function and a permutation ò : f → g preserves 3-rotation symmetry, then g
must be mixed form.
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Proof. Let 3-(1, r, s) be a mixed form function and assume ò : f → g preserves 3-rotation symmetry. Let
a ∈ {1, r, s} be unique and b, c be repeated. If

3-fr,s = xaxbxc + xa+3xb+3xc+3 + ⋅ ⋅ ⋅ + xa−3xb−3xc−3,

then
g = ò(f) = xò(a)xò(b)xò(c) + xò(a+3)xò(b+3)xò(c+3) + ⋅ ⋅ ⋅ + xò(a−3)xò(b−3)xò(c−3).

By Lemma 3.1, for each k = 0, 1, 2, . . . , n − 1, we know that xa+3k appears in exactly one monomial and xb+3k
and xc+3k each appear in two. Thus xò(a+3k) must appear in exactly one monomial of g and xò(b+3k), xò(c+3k)
must each appear in two. Thus each monomial of g contains 1 unique variable and 2 repeated ones and so g
is mixed form.

Remark 3.6. We note that the above lemma does not imply that f and g have the same form (recall De�-
nition 2.5), only that they are both mixed form functions. As we shall see later, the equivalence classes are
determined by the distance between the repeated variables (the ö-value), not by a shared form.

With the previous lemma, we have shown that mixed form functions can only be a�ne equivalent to other
mixed form functions. In addition, during the proof of said lemma, we indicated that a 3-rotation symmetry
preserving mapping between mixed functions must send unique variables to unique variables and repeated
variables to repeated variables. Further, since the repeated variables each appear in two di�erentmonomials,
if we know the image of a repeated variable under a 3-rotation symmetry preserving map ò, we can get some
information about the image of both the monomials in which it appears. We use these ideas in the proof of
Theorem 3.8 below, which gives a simple way to de�ne the equivalence classes for functions 3-(1, r, s)3n under
permutations which preserve 3-rotation symmetry. We shall need the following useful lemma for the proof.

Lemma 3.7. If ò : 3-(1, r, s) → 3-(1, p, q) preserves 3-rotation symmetry and has the property that ò(t) = u im-
plies ò(t + kö) = u + kö� for all k = 0, 1, . . . , 3n − 1 (where ö and ö� are the ö-values for 3-(1, r, s) and 3-(1, p, q),
respectively), then (3n, ö) = (3n, ö�).

Proof. Let ò be as above. Let (3n, ö) = 3d and (3n, ö�) = 3d�. Let l and ì satisfy 3dl = 3n and 3dì = ö and l� and
ì� satisfy 3d�l� = 3n and 3d�ì� = ö�. If ò(t) = u, then

u = ò(t + 3dlì) = ò(t + lö) = u + lö�.

Thus u ≡ u + lö�Mod 3n and so 3d|ö�. Since 3d also divides 3n, this implies 3d|3d�. Since ò is a permutation of
variables, there exists a reverse permutation ò−1 : 3-(1, p, q) → 3-(1, r, s)which preserves 3-rotation symmetry
and has the property that ò−1(u) = t implies ò−1(u + lö�) = t + lö. Using the same argument as above, we have
that 3d�|ö. Again, since 3d� also divides 3n, this implies 3d�|3d. Thus 3d = 3d�, as required.

Theorem 3.8. Let f = 3-(1, r, s)3n and g = 3-(1, p, q)3n be mixed form functions which have associated ö-values
öf and ög. Then there exists a permutation ò : f → g which preserves 3-rotation symmetry if and only if
gcd(3n, öf) = gcd(3n, ög).

Proof. We begin with the forward implication. Let f = 3-(a, b, c) and g = 3-(w, p, q). Suppose a, w are the
unique variables of f and g, respectively, and öf = c − b = 3m and ög = q − p = 3m

�. Assume ò : f → g pre-
serves 3-rotation symmetry.

From the proof of Lemma 3.5, we know that òmaps the unique variables inf to the unique variables in g.
Thus, given any monomial [a + 3k, b + 3k, c + 3k] in f, we have

ò([a + 3k, b + 3k, c + 3k]) = [ò(a + 3k), ò(b + 3k), ò(c + 3k)]

= [w + 3â, ò(b + 3k), ò(c + 3k)]

= [w + 3â, p + 3â, q + 3â], (3.1)

where the last equality results from the fact that the unique variable with index w + 3â occurs only in one
monomial.
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Case 1: Assume 3m ̸≡ −3mMod 3n. Since b, c are repeated, xb+3k also appears in the monomial

[a + 3k − 3m, b + 3k − 3m, c + 3k − 3m] = [a + 3(k − m), b + 3(k − m), b + 3k]

and xc+3k also appears in the monomial

[a + 3k + 3m, b + 3k + 3m, c + 3k + 3m] = [a + 3(k + m), c + 3k, c + 3(k + m)].

Since b ̸= c, 3m ̸= 0 and by assumption 3m ̸≡ −3m, we have

a + 3k ̸= a + 3(k + m) ̸= a + 3(k − m).

Thus the three monomials

[a + 3k, b + 3k, c + 3k], [a + 3(k − m), b + 3(k − m), b + 3k], [a + 3(k + m), c + 3k, c + 3(k + m)]

are di�erent, and hence their images under òmust be di�erent. From (3.1), we know

ò([a + 3k, b + 3k, c + 3k]) = [w + 3â, p + 3â, q + 3â]. (3.2)

Thus,
ò([a + 3(k − m), b + 3(k − m), b + 3k]) = [ò(a + 3(k − m)), ò(b + 3(k − m)), p + 3â].

But, by Lemmas 3.1 and 3.4, òmust send xa+3(k−m) to a variable with index of the formw + 3á1, which appears
uniquely in the monomial [w + 3á1, p + 3á1, q + 3á1]. So we have

[ò(a + 3(k − m)), ò(b + 3(k − m)), p + 3â] = [w + 3á1, p + 3á1, q + 3á1]. (3.3)

Since a + 3k ̸= a + 3(k − m), we have w + 3á1 = ò(a + 3(k − m)) ̸= ò(a + 3k) = w + 3â. So p + 3á1 ̸= p + 3â.
Thus, we have q + 3á1 = p + 3â which implies 3á1 = −(q − p) + 3â = −ög + 3â.

Similarly,

ò([a + 3(k + m), c + 3k, c + 3(k + m)]) = [ò(a + 3(k + m)), q + 3â, ò(c + 3(k + m))]

= [w + 3á2, p + 3á2, q + 3á2]. (3.4)

From above, none of a + 3(k + m), c + 3k, c + 3(k + m) is equal to a + 3k, so we have

p + 3á2 = q + 3â or 3á2 = (q − p) + 3â = ög + 3â.

From (3.2), (3.3), (3.4) we have that, if (3.2) is true for some â, 0 ≤ â ≤ n − 1, then

ò([a + 3k ± öf, b + 3k ± öf, c + 3k ± öf]) = [w + 3â ± ög, p + 3â ± ög, q + 3â ± ög].

Since every variable of f = (1, r, s)3n can be represented by i + 3k, where i ∈ {a, b, c}, k = 0, 1, . . . , n − 1, so
ò satis�es

ò(t) = ó â⇒ ò(t ± öf) = ó ± ög.

Thus from Lemma 3.7, we have the desired result, namely, (3n, öf) = (3n, ög).
Case 2: If 3m ≡ −3mMod 3n, then 3m = n. Since each of the two repeated terms appears in two distinct

monomials (which in this case happen to be the same two monomials), then for every k = 0, 1, . . . , n − 1, we
still have two distinct monomials which di�er in their unique term:

[a + 3k, b + 3k, c + 3k] and [a + 3m + 3k, b + 3k + 3m, c + 3k + 3m] = [a + 3m + 3k, c + 3k, b + 3k].

Applying ò to each of these monomials gives us (3.2) in the �rst case and

ò([a + 3k + 3m, c + 3k, b + 3k]) = [w + 3á, p + 3á, q + 3á] = [w + 3á, q + 3â, p + 3â]
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in the second. Since m ̸≡ 0, we must have p + 3á ≡ q + 3â and q + 3á ≡ p + 3â. Thus 3á ≡ (q − p) + 3â and
3á ≡ −(q − p) + 3â. So 3m� = (q − p) ≡ −(q − p) = −3m�Mod 3n. Hence, 3m� ≡ −3m�Mod 3n so 3m� = n = 3m
and gcd(3n, öf) = gcd(3n, ög) trivially.

For the reverse direction, we assume that (3n, öf) = (3n, ög) = 3d, then we de�ne ò : f → g as follows:

ò(a + 3i + köf) = w + 3i + kög,

ò(b + 3i + köf) = p + 3i + kög,

ò(c + 3i + köf) = q + 3i + kög.

We can see that this map is one-to-one, since given monomials [a + 3i + kiöf, b + 3i + kiöf, c + 3i + kiöf] and
[a + 3j + kjöf, b + 3j + kjöf, c + 3j + kjöf] such that

ò([a + 3i + kiöf, b + 3i + kiöf, c + 3i + kiöf]) = ò([a + 3j + kjöf, b + 3j + kjöf, c + 3j + kjöf])

by the de�nition of ò, we have

ò([a + 3i + kiöf, b + 3i + kiöf, c + 3i + kiöf]) = [w + 3i + kiög, p + 3i + kiög, q + 3i + kiög]

and
ò([a + 3j + kjöf, b + 3j + kjöf, c + 3j + kjöf]) = [w + 3j + kjög, p + 3j + kjög, q + 3j + kjög]

which implies

[w + 3i + kiög, p + 3i + kiög, q + 3i + kiög] = [w + 3j + kjög, p + 3j + kjög, q + 3j + kjög].

Since w is unique, this implies
w + 3i + kiög = w + 3j + kjög.

So 3n|3(i − j) + (ki − kj)ög. Since 3d|3n and 3d|ög, we have 3d|3(i − j). But, since i, j < d, we have i = j and
ki = kj. In addition, since there are the same number of monomial terms in f as in g, ò must map f onto g.
Since both f and g are 3-rotation symmetric, ò preserves 3-rotation symmetry, as required.

Corollary 3.9. Two 3-functions in 3n variables whose de�ning monomials are given by [1, r, s] and [1, p, q] are
a�ne equivalent by some permutation for all n if and only if their ö-values are equal.

Proof. Rotation symmetric functions are a�ne equivalent if there exists a permutation of variables thatmaps
one to the other. By Theorem3.8, the existence of such amapping between two functionsf andg is equivalent
to gcd(3n, öf) = gcd(3n, ög). In order for this equivalence to hold for all n, we must have öf = ög.

In light of Corollary 3.9, we see that every 3-function in 3n variables shares many of its properties with every
other 3-function in 3n variableswith the sameö-value (since they are all a�ne equivalent). As a result, wewill
often refer to these functions simply by f3n,ö (or fö if the number of variables is clear), where the particular
member of the equivalence class being discussed is not important.

Theorem 3.8 enables us to give a simple formula for the number of equivalence classes under permu-
tations which preserve 3-rotation symmetry. To state this, we need the number theory function ó(n) = the
number of positive integer divisors (including 1 and n) of the integer n.

Lemma 3.10. For any given number of variables 3n, the number of equivalence classes under permutations
which preserve 3-rotation symmetry for the functions 3-(1, r, s)3n is ó(n) − 1.

Proof. By Theorem 3.8, two 3-functions are equivalent under some permutation which preserves 3-rotation
symmetry if and only if the functions have the same value of gcd(3n, ö) = 3 gcd(n, ö/3), so there is one equiva-
lence class for each possible value of the gcd. Sinceö is 3u andmust be≤ 3n − 3, this gives ó(n) − 1 classes.

We remark that the count of equivalence classes in Lemma 3.10 is very small (because of the well-known
result that ó(n) = O(nå) for any å > 0) compared to thenumber of equivalence classes for ordinaryRS functions
(1, r, s) in n variables. The latter count is > cn and the constant c depends heavily on r and s (see [3, 6]); also,
there is no simple formula for the number of those classes (see [3]).
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s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10r = 2 2 3 3 2 5 5 2 9r = 3 3 2 3 5 2 5 9r = 4 3 3 4 3 3 6r = 5 2 5 3 2 9r = 6 5 2 3 9r = 7 5 5 6r = 8 2 9r = 9 9

Table 1. Recursion order for 3-fr,s.

4 Recursions for weights of cubic 3-functions
Using themethods in [1, 2]we canprove that for any 3-function 3-(1, r, s)with 1 < r < s the sequence ofweights
{wt(3-(1, r, s)3n) : 3n ≥ s} satis�es a linear recursion with integer coe�cients. In fact, unlike the case of the or-
dinary RS functions analyzed in [1], the order (order = degree of recursion polynomial) of the recursion for
mixed form functions depends only on the ö-value for 3-(1, r, s) (recall De�nition 2.6), rather than on r and s.
In fact, if q = ö/3 then the order of the recursion for the mixed form functions is q2 − q + 3 (see Theorem 6.4
below). The recursion orders are given in Table 1, which includes pure and simple form functions for com-
pleteness. We use the abbreviated notation 3-fr,s for 3-(1, r, s).

In Table 1, each recursion of order i is identical to all the other recursions of order i. For instance, the
recursion for 3-f2,4 is identical to the recursions for 3-f2,5, 3-f3,4, 3-f4,5, and each of the other (r, s) pairs in the
table with recursion order 3. This con�rms the results found in Section 3, since 3-f2,4, 3-f2,5, 3-f3,4, and 3-f4,5
are all mixed form functions with ö = 3 (see Corollary 3.9).

We postpone discussing the proof that the above recursions exist, because in Section 5 below we show
that a relatively simple direct proof, not using the methods in [1, 2], can be given. The details are in Theo-
rem 6.4.

Let the recursion polynomial for the weights of a mixed form function with given ö be Fö(x). Then Table 2
lists ö : Fö(x) for 3 ≤ ö ≤ 18. Let d(ö) = deg(Fö(x)) − 1. It is easy to see that 8 is a root of every Fö(x); let the
remaining roots be {áj,ö : 1 ≤ j ≤ d(ö)}. De�ne

Wn,ö =
23n−1
∑
i=0

(−1)f(vi) = 23n − 2wt(f), (4.1)

where f is any 3-function in 3n variables with the given ö value. We call Wn,ö the Walsh value for f. See [12,
pp. 7–9] for more general functions, calledWalsh transforms, related to (4.1). It follows from Theorem 3.8 that
for given n,Wn,ö depends only on ö and not on the choice of the 3-function f. It follows from the basic theory
of recursions (for example, [13, pp. 1–3]) that

Wn,ö =
d(ö)

∑
j=1

cj,öá
n
j,ö (4.2)

for some complex numbers cj,ö. Theorem 6.4 gives explicit values for all of the áj,ö.

5 Weights and equivalence classes
It is well known that for any Boolean function f, wt(f) is invariant under a�ne transformations. For cubic
RS functions, it is possible for two functions with the same weight to be in di�erent equivalence classes un-
der permutations which preserve rotation symmetry; the case of cubic RS functions in 8 variables already
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Fö(x)ö = 3 x3 − 12x2 + 16x + 128ö = 6 x5 − 12x4 + 32x3 − 64x2 + 256x + 2048ö = 9 x9 − 12x8 + 16x7 + 192x6 − 768x5 + 1024x4 + 4096x3 + 49152x2 − 65536x − 524288ö = 12 x15 − 12x14 + 16x13 + 128x12 + 512x11 − 6144x10 + 8192x9 + 65536x8 − 131072x7 + 1572864x6

−2097152x5 − 16777216x4 − 16777216x3 + 201326592x2 − 268435456x − 2147483648ö = 15 x23 − 12x22 + 16x21 + 128x20 + 3072x18 − 36864x17 + 49152x16 + 393216x15 − 6291456x13 + 75497472x12

−100663296x11 − 805306368x10 − 3221225472x8 + 38654705664x7 − 51539607552x6 − 412316860416x5

+1099511627776x3 − 13194139533312x2 + 17592186044416x + 140737488355328ö = 18 x33 − 12x32 + 16x31 + 128x30 + 20480x27 − 245760x26 + 327680x25 + 2621440x24 − 251658240x21

+3019898880x20 − 4026531840x19 − 32212254720x18 − 1030792151040x15 + 12369505812480x14

−16492674416640x13 − 131941395333120x12 + 1407374883553280x9 − 16888498602639360x8

+22517998136852480x7 + 180143985094819840x6 + 1152921504606846976x3

−13835058055282163712x2 + 18446744073709551616x + 147573952589676412928

Table 2. List of ö : Fö(x).

gives an example [6, Remark 3.10, p. 5075]. The next theorem shows that such examples are impossible for
cubic 3-functions. Since the equivalence classes for cubic 3-functions under permutations which preserve
3-rotation symmetry are very large (see the remarks in the paragraph after the proof of Lemma 3.10), it is plau-
sible that they cannot be made any larger by applying all of the a�ne transformations. Theorem 5.1 proves
this is true. A similar result for the equivalence classes for ordinary cubic RS functions (these classes were de-
termined in [6]) was conjectured in [6, Remark 3.9, p. 5075], but, since these equivalence classes are so much
smaller and distinct classes can have functions with the same weight, the proof may be di�cult.

Theorem 5.1. Let C(3n) denote the number of equivalence classes for mixed form functions 3-(1, r, s)3n under
permutations which preserve 3-rotation symmetry. Let w1, . . . , wC(3n) denote the list of weights of representative
functions for the classes. Then theseC(3n)weights are all di�erent. Thus the equivalence classes in Lemma 3.10
are the same as the equivalence classes under all a�ne transformations.

Before we prove Theorem 5.1, we need the following results (recall the notation f3n,ö introduced after Corol-
lary 3.9).

Theorem 5.2. Given a 3-function f3n,ö such that gcd(n, ö/3) = d and l = n/d, then

wt(f3n,ö) =
1
2
(23n − (23l − 2wt(ℎ3l,3))

d),

where ℎ3l,3 = 3-(1, 2, 4)3l.

Theorem 5.2 is an analog of [11, Theorem 2.2]. Before we prove Theorem 5.2, we will need the following well-
known lemma [11, Lemma 2.1].

Lemma 5.3. Suppose f can be decomposed as g + ℎ where the variables of g and ℎ are disjoint. (Without loss
of generality assume g uses variables x1, . . . , xk and ℎ uses variables xk+1, . . . , xn). Then

wt(f) = wt(g + ℎ) = wt(g)(2n−k − wt(ℎ)) + (2k − wt(g)) wt(ℎ).

Proof of Theorem 5.2. By Corollary 3.9, all 3-functions in 3n variables with the same ö-value are a�ne equiv-
alent. Therefore, since weight is a�ne-invariant, it su�ces to consider only fö =3-(1, 2, ö + 1)3n. Recall from
De�nition 3.2 that the i-th string of fö is de�ned to be the set of monomials Si such that

Si = {[1 + 3i + íö, 2 + 3i + íö, ö + 1 + 3i + íö] : í = 0, 1, . . . , l − 1},

where i = 0, 1, . . . , d − 1. Note that, from this de�nition, the length of each string is l and there are d strings. By
Lemma 3.4, the sets of monomials that make up the d strings are disjoint. By de�nition, each string contains
exactly 3l monomials, so by relabeling the variables of fö, we can view fö as the sum of d disjoint copies
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of ℎ3l,3. This can be done as follows: Let the i-th string of fö be given by

{[1 + 3i, 2 + 3i, 1 + 3i + ö], [1 + 3i + ö, 2 + 3i + ö, 1 + 3i + 2ö], . . . , [1 + 3i − ö, 2 + 3i − ö, 1 + 3i]}.

This string can be mapped to

{[3li + 1, 3li + 2, 3li + 4], [3li + 4, 3li + 5, 3li + 7], . . . , [3li − 2, 3li + 3l, 3li + 1]}. (5.1)

The above can easily been seen to be a�ne equivalent to ℎ3l,3. Since each of the d strings of fö can bemapped
to one similar to (5.1), we can see thatf is a�ne equivalent to d copies of ℎ3l,3. Since weight is a�ne invariant,
we have

wt(fö) = wt (
d
∑
i=1

ℎ3l,3,i), (5.2)

where ℎ3l,3,i is the i-th copy of ℎ3l,3 whose de�ning monomial is [3li + 1, 3li + 2, 3li + 4]. Using Lemma 5.3, it is
easy to see that

wt(fö) = wt (
d
∑
i=1

ℎ3l,3,i) = wt(ℎ3l,3,1)(2
3n−3l − wt (

d−1
∑
i=1

ℎ3l,3,i)) + (2
3l − wt(ℎ3l,3,1)) wt (

d−1
∑
i=1

ℎ3l,3,i).

Since wt(ℎ3l,3,i) is the same for all i, we can write wt(ℎ3l,3) (without the index) whenever we are computing the
weight of a single copy of ℎ3l,3. Using this notation and expanding (5.2) further, we get

wt (
m
∑
i=1

ℎ3l,3,i) = (2
3l − wt(ℎ)) wt (

m−1
∑
i=1

ℎ3l,3,i) + wt(ℎ3l,3) wt(2
3n−3ml −

m−1
∑
i=1

ℎ3l,3,i)

which can be solved (see [11, Theorem 2.2]) to give

wt(f3n,ö) = wt (
d
∑
i=1

ℎ3l,3,i) =
1
2
(23n − (23l − 2wt(ℎ3l,3))

d)

as required.

Corollary 5.4. With d and l as de�ned above, we have

wt(f3n,ö) =
1
2
(23n − ((2(1 + √5))l + (2(1 − √5))l)d).

Proof. From Theorem 5.2, we have

wt(f3n,ö) =
1
2
(23n − (23l − 2wt(ℎ3l,3))

d). (5.3)

If we let á1, á2, á3 be the roots of the recursion polynomial for ö = 3, by the remarks surrounding (4.2) there
exist c1, c2, c3 such that, for any n,

wt(f3n,3) =
3
∑
i=1

ciá
n
i .

After solving for the ái’s and their associated ci’s, we can see that á1 = 8, á2 = 2(1 + √5), á3 = 2(1 − √5) and
c1 = 1/2, c2 = c3 = −1/2. Thus we can rewrite (5.3) as

wt(f3n,ö) =
1
2
(23n − (23l − 2(

1
2
(8l − (2(1 + √5))l − (2(1 − √5))l)))

d
)

=
1
2
(23n − (8l − (8l − (2(1 + √5))l − (2(1 − √5))l))d)

=
1
2
(23n − ((2(1 + √5))l + (2(1 − √5))l)d)

as required.

We can now use the above results to prove Theorem 5.1.
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Proof of Theorem 5.1. To prove Theorem 5.1 we need only prove that for a �xed n, every divisor d of n gives rise
to a unique weight. That is, we need to prove that

1
2
(23n − (23n/d − 2wt(ℎ3n/d,3))

d)

is unique for all d that divide n. Let d1 ≤ d2 such that di|n for i = 1, 2. Let f3n,3d1 and f3n,3d2 be 3-functions in 3n
variables with öi = 3di. Assume wt(f3n,3d1 ) = wt(f3n,3d2 ). We will show that d1 = d2. By Theorem 5.2, since the
weights of the functions f3n,öi are equal, we have

1
2
(23n − (23n/d1 − 2wt(ℎ3n/d1 ,3))

d1) =
1
2
(23n − (23n/d2 − 2wt(ℎ3n/d2 ,3))

d2)

which implies
(23n/d1 − 2wt(ℎ3n/d1 ,3))

d1 = (23n/d2 − 2wt(ℎ3n/d2 ,3))
d2 .

Using Corollary 5.4, we can rewrite the above as

((2(1 + √5))n/d1 + (2(1 − √5))n/d1)d1 = ((2(1 + √5))n/d2 + (2(1 − √5))n/d2)d2 . (5.4)

We can see that the above can only hold if d1 = d2 as follows. Since

(1 + x)a =
a
∑
i=0

(
a
i
)xi,

plugging in√5 and −√5 for x gives

(1 + √5)a =
a
∑
i=0

(
a
i
)5i/2 (5.5)

and
(1 − √5)a =

a
∑
i=0

(
a
i
)(−1)i5i/2, (5.6)

respectively. By adding (5.5) to (5.6) we see that

(1 + √5)a + (1 − √5)a = 2
a/2
∑
i=0

(
a
2i
)5i

if a is even, and

(1 + √5)a + (1 − √5)a = 2
(a−1)/2

∑
i=0

(
a
2i
)5i

if a is odd. Now, for i = 1, 2, let

ti =
{
{
{

n/di if n/di is even,
n/di − 1 otherwise.

Thus (5.4) is equal to

(4
t1/2

∑
i=0

(
n/d1
2i

)5i)
d1
= (4

t2/2

∑
i=0

(
n/d2
2i

)5i)
d2

or

4d1(
t1/2

∑
i=0

(
n/d1
2i

)5i)
d1
= 4d2(

t2/2

∑
i=0

(
n/d2
2i

)5i)
d2

and so

(
t1/2

∑
i=0

(
n/d1
2i

)5i)
d1
= 4d2−d1(

t2/2

∑
i=0

(
n/d2
2i

)5i)
d2
.

By looking at each side modulo 5, only the terms with i = 0 remain, and so equality can only hold if d1 = d2,
as required.
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6 Recursion orders and crucial weights
We can now prove some results on the recursion orders for the di�erent values of ö. Notice that, for
any ö = 3q, if 3n ̸= 3qk = kö, then gcd(n, q) ̸= q. So by Theorem 3.8, there exists a ö� dividing ö such that
wt(f3n,ö) = wt(f3n,ö� ). This means that f3n,ö “inherits” its weight from a function with a smaller ö-value for all
3n other than those that are multiples of ö. Since f3n,ö is distinguished from functions with smaller ö values
by its behavior at these values of 3n, it is of interest to study wt(fkö,ö) at these values. We begin with the
following de�nition.

De�nition 6.1 (Crucial weights and values). Consider a �xed ö. We de�ne the crucial weights (resp. crucial
(Walsh) values) for ö to be the sequence of weights wt(fkö,ö), k = 2, 3, . . . (respectively, sequence of Walsh
valuesWkö/3,ö, k = 2, 3, . . .), where f3n,ö = 3-(1, 2, ö + 1)3n.

By Theorem 3.8, all 3-functions with the same ö-value are a�ne equivalent and since weight is a�ne in-
variant, we only need to mention the particular function 3-(1, 2, ö + 1)3n in De�nition 6.1. The above work is
summarized in the next lemma.

Lemma 6.2. For any ö-value, in order to determine the sequence of Walsh values

Wv(ö) = {Wn,ö : n = 2, 3, . . .}

(for the function 3-(1, 2, ö + 1) and so for any 3-function with the same ö-value), it su�ces to know the sequence
of crucial Walsh values

Cv(ö) = {Wkö/3,ö : k = 2, 3, . . .}

and the sequences Wv(ö�) for all ö� < ö such that ö� divides ö. Thus all of the sequences Wv(ö), ö = 3, 4, . . .
can be determined successively by �nding Wv(3) and then the successive sequences of crucial values Cv(ö),
ö = 4, 6, . . . .

The next lemma gives a recursion for the crucial weights (recall equation (4.1) which gives the relation be-
tween weights and Walsh values).

Lemma 6.3. For ö = 3q, the crucial weights for ö satisfy the recursion of order q + 2, whose polynomial is given
by

Gö(x) = (x − 8
q)

q

∏
i=0

(x − (2(1 + √5))q−i(2(1 − √5))i).

Proof. Let ö = 3q and let 3n = 3qk. By Corollary 5.4, the weight of f = 3-(1, 2, ö + 1)3qk is given by

wt(f) =
1
2
(23qk − ((2(1 + √5))l + (2(1 − √5))l)d), (6.1)

where d = gcd(n, ö/3) = gcd(qk, q) = q and l = n/d = qk/q = k. We note that d does not change as the number
of variables in f increases and that l increases with k. We can rewrite (6.1) as

wt(f) =
1
2
(8qk − ((2(1 + √5))k + (2(1 − √5))k)q)

=
1
2
((8q)k −

q

∑
i=0

(
q
i
)((2(1 + √5))k)q−i((2(1 − √5))k)i)

=
1
2
((8q)k −

q

∑
i=0

(
q
i
)((2(1 + √5))q−i)k((2(1 − √5))i)k). (6.2)

Thus, for any ö, we can determine the k-th crucial weight of ö, say ak, by

ak =
q+1

∑
i=1
−
ci
2
ák
i +

1
2
8qk, (6.3)
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where the ái are the (2(1 + √5))q−i(2(1 − √5))i terms from (6.2) and the ci are their associated binomial coe�-
cients. By the theory of recursions, then the numbers 8q, á0, . . . , áq are the roots of the recursion polynomial
for the crucial weights, and so our recursion polynomial is the one given above, as required.

We can expand on the above idea to prove the following theorem, which gives an explicit formula, including
the roots, for the polynomials Fö(x) de�ned in Section 4.

Theorem 6.4. Let ö = 3q. Then the sequence of weights wt(f3n,3q), n = q + 1, q + 2, . . . satis�es a recursion of
order q2 − q + 3 which has recursion polynomial

Fö(x) = (x − 8)(x
2 − 4x − 16)

q−1

∏
i=1

q

∏
j=1

(x − ((2(1 + √5))q−i(2(1 − √5))i)1/qæjq),

where æq is a primitive q-th root of unity.

Proof. First assume q is prime. If n ̸= kq, Corollary 5.4 gives

wt(f3n,3q) =
1
2
(8n − (2(1 + √5))n − (2(1 − √5))n). (6.4)

For n = kq, on the other hand, by (6.3) we have

wt(f3qk,3q) =
q+1

∑
i=1
−
ci
2
ák
i +

1
2
8k, (6.5)

where the ái are the (2(1 + √5))q−i(2(1 − √5))i terms from (6.2) and the ci are their associated binomial coe�-
cients. We can combine (6.4) and (6.5) by multiplying (6.5) by 1/q∑q

j=1 æ
jn
q where æq is a primitive q-th root of

unity. We also need to change the indices in (6.5) to match with the general n, so we let k = n/q. Finally, we
note that for n = qk the terms 8qk and (2(1 ± √5))qk appear in both (6.4) and (6.5). To eliminate this overlap,
we remove these terms from (6.5). Putting all of this together we have that

wt(f3n,3q) =
1
2
(8n − (2(1 + √5))n − (2(1 − √5))n) + (

1
q

q

∑
j=1

æjnq )(
q−1

∑
i=1
−
ci
2
án/q
i ). (6.6)

Thus, by the theory of recursions, the 3 + q(q − 1) = q2 − q + 3 terms in the above sum are the roots of the
recursion polynomial for 3-f3q and so the claim is proved.

The same result holds even if q is not prime. To see this, assume d|q for some d > 1. This implies
wt(f3n,3q) = wt(f3n,3d) for all n ≡ 0mod d but n ̸≡ 0mod q. Thus, we begin by writing (6.6) and adding the
terms from wt(f3n,3d):

1
2
(8n − (2(1 + √5))n − (2(1 − √5))n) + (

1
d

d
∑
j=1

æjnd )(
d−1
∑
i=1
−
ci
2
án/d
i )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Sd

+ (
1
q

q

∑
j=1

æjnq )(
q−1

∑
i=1
−
ci
2
án/q
i )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Sq

. (6.7)

In what follows, we will refer to the �rst sums in (6.7) as Sd and the second as Sq, as labeled above. Now,
observe that if q = dp, then all of the d-th roots of unity are also q-th roots of unity (since æqd = (æ

d
d)

p = 1p = 1).
Next, we note that

((2(1 + √5))d−i(2(1 − √5))i)n/d = ((2(1 + √5))d−i(2(1 − √5))i)pn/q

= ((2(1 + √5))p(d−i)(2(1 − √5))pi)n/q

= ((2(1 + √5))q−pi(2(1 − √5))pi)n/q.

Thus, each of the terms from Sd is already present in Sq, so when we added Sd to (6.6) we did not add any new
roots áj, we merely adjusted the coe�cients of the terms in (6.6). We note that this also implies that (6.7) has
some redundancy in its roots. To compensate, wemust reduce the size of the ci for all ái in Sq that also appear
in Sd.
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Repeating the above argument for all factors of q, we can see that no new ái’s are added and that the
coe�cients of the existing ones change with each iteration. Thus, the weight of f3n,ö is given by a weighted
sum of the elements in Sq, 8n, and (2(1 ± √5))n. So, by the theory of recursions, we have that the weights for
f3k,ö satisfy a recursion which has recursion polynomial

(x − 8)(x − (2(1 + √5)))(x − (2(1 − √5)))
q−1

∏
i=1

q

∏
j=1

(x − (ái)
1/qæjq),

where the ái are as de�ned above and æq is a primitive q-th root of unity. The degree of the above polynomial
(and hence the degree of the recursion) is 3 + q(q − 1) = q2 − q + 3, as required.

Corollary 6.5. If ö(1) and ö(2) are 3u and ö(1) divides ö(2), then Fö(1)(x) divides Fö(2)(x).

Example 6.6. Let ö = 12 = 3 ⋅ 4. In this case, q = 4, which has one nontrivial divisor d = 2. From (6.7) we have

wt(f3n,12) =
1
2
(8n − (2(1 + √5))n − (2(1 − √5))n − (1n + (−1)n)((2(1 + √5))(2(1 − √5)))n/2)

−
1
4
(1n + (−1)n + in + (−i)n)(2((2(1 + √5))3(2(1 − √5)))n/4

+ 3((2(1 + √5))2(2(1 − √5))2)n/4 + 2((2(1 + √5))(2(1 − √5))3)n/4) − E

=
1
2
(8n − (2(1 + √5))n − (2(1 − √5))n − (1n + (−1)n)((2(1 + √5))2(2(1 − √5))2)n/4)

−
1
4
(1n + (−1)n + in + (−i)n)(2((2(1 + √5))3(2(1 − √5)))n/4

+ 3((2(1 + √5))2(2(1 − √5))2)n/4 + 2((2(1 + √5))(2(1 − √5))3)n/4) − E,

where E represents the repeated terms. Note that, when n = 4k, we have an extra copy of

((2(1 + √5))2(2(1 − √5))2)k,

so we see that E = ((2(1 + √5))2(2(1 − √5))2)k. Thus

wt(f3n,12) =
1
2
(8n − (2(1 + √5))n − (2(1 − √5))n − (1n + (−1)n)((2(1 + √5))2(2(1 − √5))2)n/4)

−
1
4
(1n + (−1)n + in + (−i)n)(2((2(1 + √5))3(2(1 − √5)))n/4

+ 2((2(1 + √5))2(2(1 − √5))2)n/4 + 2((2(1 + √5))(2(1 − √5))3)n/4).

So the recursion polynomial for ö = 12 is

F12 = (x − 8)(x
2 − 4x − 16)

3
∏
k=1

4
∏
j=1

(x − ((2(1 + √5))4−k(2(1 − √5))k)1/4(i)j)

= x15 − 12x14 + 16x13 + 128x12 + 512x11 − 6144x10 + 8192x9 + 65536x8 − 131072x7 + 1572864x6

− 2097152x5 − 16777216x4 − 16777216x3 + 201326592x2 − 268435456x − 2147483648.

This polynomial matches the results from Table 2 and deg(F12) = 15 = 42 − 4 + 3 = q2 − q + 3, as required.

7 Powers of Lucas numbers
The sequence L = {ℓn : n = 1, 2, . . .} of Lucas numbers is de�ned by ℓ1 = 1, ℓ2 = 3, ℓn = ℓn−1 + ℓn−2, n = 3, 4, . . . .
If we let the sequence {an : n = 1, 2, . . .} of Fibonacci numbers be de�ned by a1 = a2 = 1, an = an−1 + an−2,
n = 3, 4, . . . and we de�ne

ã = 1 + √5, ä = 1 − √5, (7.1)
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Lm(x)m = 1 x2 − x − 1m = 2 x3 − 2x2 − 2x + 1m = 3 x4 − 3x2 − 6x2 + 3x + 1m = 4 x5 − 5x4 − 15x3 + 15x2 + 5x − 1m = 5 x6 − 8x5 − 40x4 + 60x3 + 40x2 − 8x − 1m = 6 x7 − 13x6 − 104x5 + 260x4 + 260x3 − 104x2 − 13x + 1

Table 3. List ofm : Lm(x).

then it is easy to see that

ℓn =
1
2n

(ãn + än) and an =
1

2n√5
(ãn − än), n = 1, 2, . . . . (7.2)

Thenext theoremgives a simple formula for the crucialWalsh values in terms of powers of the Lucas numbers.

Theorem 7.1. The crucial Walsh valuesWkö/3,ö satisfy

Wkö/3,ö = (4
kℓk)

ö/3, n = 2, 3, . . . .

Proof. It follows from (7.1) and Corollary 5.4 (note 3n = kö, d = ö/3 and ℓ = k) that

wt(fkö,ö) =
1
2
(2kö − (4k(ãk + äk))ö/3), k = 2, 3, . . . .

Now (4.1) and (7.2) give the theorem.

Corollary 7.2. For ö = 3, the sequence of Walsh valuesWn,3, n = 2, 3, . . . satis�es

Wn,3 = 4
nℓn, n = 2, 3, . . . , (7.3)

so for any ö the crucial Walsh values satisfy

Wnö/3,ö = (Wn,3)
ö/3, n = 2, 3, . . . . (7.4)

The theory of recursions for powers of Fibonacci and Lucas numbers (and indeed for powers of other se-
quences de�ned by linear recursion of order 2) was developed long ago (see [5, 14, 21]) and we can use some
of those results to obtain more information about the recursion polynomial for the crucial Walsh value se-
quences Cv(ö); let Vö(x) denote this polynomial. It is clear from (4.1) and Lemma 6.3 that

Vö(x) = Gö(x)/(x − 8
q). (7.5)

Theorem 7.1 shows that the crucial Walsh values Cv(ö) are just the ö/3-th powers of the sequence 4kℓk,
k = 2, 3, . . . . The recursion polynomials for the powers of the Lucas numbers are given in the following lemma.
The �rst few recursion polynomials are listed in Table 3.

Lemma 7.3. The sequence ℓmk , k = 2, 3, . . . , of m-th powers of the Lucas numbers satis�es a linear recursion of
orderm + 1 with polynomial

Lm(x) =
m+1
∑
i=0

(−1)i(i+1)/2[
m + 1

i
]xi, (7.6)

where [mi ] is the Fibonomial coe�cient amam−1 ⋅ ⋅ ⋅ am−i+1/aiai−1 ⋅ ⋅ ⋅ a1, [m0 ] = 1.

Proof. This is a special case of results of [5, Section 6] and [14, (50), p. 443], andperhaps goes back farther.
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Vö(x)ö = 3 x2 − 4x − 16ö = 6 x3 − 32x2 − 512x + 4096ö = 9 x4 − 192x3 − 24576x2 + 786432x + 16777216ö = 12 x5 − 1280x4 − 983040x3 + 251658240x2 + 21474836480x − 1099511627776

Table 4. List of ö : Vö(x).ö = 3 ö = 6 ö = 9 ö = 12n = 3 4∗n = 6 48∗ 16∗n = 9 256∗ 256 64∗n = 12 1792∗ 2304∗ 1792 256n = 15 11264∗ 11264 11264 11264n = 18 73728∗ 65536∗ 65536 65536n = 21 475136∗ 475136 475136 475136n = 24 3080192∗ 3211264∗ 3080192 5308416∗n = 27 19922944∗ 19922944 16777216∗ 19922944n = 30 128974848∗ 126877696∗ 128974848 126877696n = 33 834666496∗ 834666496 834666496 834666496n = 36 5402263552∗ 5435817984∗ 5754585088∗ 4294967296∗n = 39 34963718144∗ 34963718144 34963718144 34963718144n = 42 226291089408∗ 225754218496∗ 226291089408 225754218496n = 45 1464583847936∗ 1464583847936 1429150367744∗ 1464583847936

Table 5. Some values ofWn,ö for 3 ≤ ö ≤ 12.

By Theorem 7.1, if we multiply xi in (7.6) with m = ö/3 by 4(ö/3)(m+1−i), we must get the polynomial Vö(x), that
is,

Vö(x) =
(ö/3)+1

∑
i=0

(−1)i(i+1)/2[
(ö/3) + 1

i
]4(ö/3)((ö/3)+1−i)xi.

If we make this calculation, we get Table 4; of course this also follows from (7.5).
There are now several options for computing Walsh valuesWn,ö (or, equivalently, weights, by (4.1)). One

canuse the recursion polynomialFö(x), but this requires �nding the initial values for the recursion andwould
give a lengthy calculation if n is large. One can compute Wn,3 from (7.3) and then simply use (7.4) if Wn,ö is a
crucial value. If not, then Wn,ö is a crucial value in the sequence Wkö�/3,ö� for some ö� < ö, by Lemma 6.2.
Table 5 illustrates the simple distribution of the crucial Walsh values, which are followed by ∗. Of course the
table could be extended to give entries for n ≤ ö, where the numbers Wn,ö are not de�ned, by simply using
the polynomials Fö(x) to calculate those values near the top of the table. In the table we have done this only
for n = ö.
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