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Cryptanalysis of the MORE symmetric key
fully homomorphic encryption scheme
Abstract: The fully homomorphic symmetric encryption scheme MORE encrypts random keys by conjuga-

tion with a random invertible matrix over an RSA modulus. We provide a known-ciphertext cryptanalysis

recovering a linear dependence among any pair of encrypted keys.
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1 The FHE scheme MORE
In their paper [1], Kipnis and Hibshoosh propose, among other things, to use the following type of fully ho-

momorphic encryption (FHE) of keys, which they named Matrix Operation for Randomization or Encryption
(MORE).

LetN be an RSAmodulus. The secret key is an invertible matrixA ∈ GL2(ℤN). The scheme only encrypts

random elements k ∈ ℤN, and is constrained not to encrypt the same element twice. The encryption is ran-

domized. To encrypt a key k, choose a random secret s ∈ ℤN, and output

EA(k) := A−1 (s 00 k)A.
To decrypt, conjugate by A−1 instead of A. It is immediate that this is a fully homomorphic function of k.

This scheme is proved tobe secure in the sense that, given encryptions of uniformly random, independent

keys k1, . . . , kn, for arbitrary n, one can learn nothing about the key k1; see [1, p. 12].

A second FHE proposed in [1], Polynomial Operation for Randomization or Encryption (PORE), is shown

there to be equivalent to MORE.

An application to signatures is provided in [1], but Hibshoosh reported to us that this speci�c application

has in the meanwhile been cryptanalyzed.

2 Cryptanalysis of MORE
We do not invalidate the Kipnis–Hibshoosh proof of security. But we identify another potential problemwith

improper uses of this scheme.

Lemma 2.1. A 2 × 2matrix commutes with all diagonal matrices if and only if it is diagonal.
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Proof. Su�ciency is obvious. We prove necessity. Let C be a 2 × 2matrix commuting with all diagonal matri-

ces. In particular, we have that

C(
0 0
0 1
) = (
0 0
0 1
)C,

and thus the o�-diagonal entries of C are 0.

Lemma 2.2. Each matrix A with nonzero diagonal entries is of the form

(
a 0
0 d
)(
1 ∗
∗ 1
) .

Proof. We have that

(
a b
c d
) = (
a 0
0 d
)(
1 b/a
c/d 1

) .

The cryptanalysis

Let A be the secret matrix. We may assume that the diagonal entries of A are nonzero,¹ and thus write

A = D(
1 b
c 1
) ,

whereD is diagonal invertible. As diagonal matrices commute, we have that

EA(k) = A−1 (s 00 k)A = (1 bc 1)−1D−1 (s 00 k)D(1 bc 1) = (1 bc 1)−1 (s 00 k)(1 bc 1) .
Let EA(k) = (á âã ä). We have the following equations:

(
1 b
c 1
)(
á â
ã ä
) = (
s 0
0 k
)(
1 b
c 1
) , (

á + bã â + bä
cá + ã câ + ä

) = (
s sb
kc k
) .

In particular, we have that

k = âc + ä,

where only c is unknown. Recall that c depends only on A.
Now, assume that keys k1, k2 are encrypted. Then, in terms of the matrices forming the encryptions, we

have that

k1 = â1c + ä1, k2 = â2c + ä2.
This can be recast as a known, nontrivial linear equation on k1 and k2.
3 Discussion

3.1 Cryptanalytic comments

Consider a scenario that keys are distributed to many independent users. Having any of the keys compro-

mised, we can �nd all other keys by the known linear equations. Another view is that the entropy of any set

of encrypted keys is reduced, given the ciphertexts, to that of a single key. It follows that one can encrypt once

safely, but probably not more with MORE.

1 With overwhelming probability, this will be the case. One can address speci�cally degenerated cases, but there is no need for

that; we may randomize A. Indeed, choose a uniformly random invertible matrix B. Then so is AB, regardless of the way A was

chosen, and we have that EAB(k) = B−1EA(k)B, which can be computed from the encrypted matrix and B.
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This attack works even if we only have the second column of the encrypted matrix. We obtain similar

equations for s (the randomization) and the other entries of the (simpli�ed) secretmatrix. All entropy reduces

to that of one entry.

Our attack generalizes to the general case of n × n matrices as follows: Consider MORE, where given a

key k one chooses n − 1 random elements s1, . . . , sn−1, and the encryption is

EA(k) := A−1 diag(s1, . . . , sn−1, k)A.
Given n encryptions of keys k1, . . . , kn, one can express kn as a linear combination of k1, . . . , kn−1. Even worse,

the same holds if the encryption is

EA(k) := A−1 (S 00 k)A
for S a random secret n − 1 × n − 1matrix. It seems that there is no way to add to MORE more randomization

than that, if we wish to maintain its homomorphic (in k) properties.
We may consider the (deterministic) encryption of secret n × n keymatricesK by

EA(K) := A−1KA.
This is a fully homomorphic (with respect to addition and multiplication of matrices) encryption. However,

given n2 + 1 encrypted keys, one can express any of them as a linear combination of the others, since the

matrices

EA(K1), . . . , EA(Kn2+1)
are linearly dependent and conjugation is an automorphism.

3.2 Constructive comments

In reply to our observation, Kipnis and Hibshoosh (personal communication) pointed out the following po-

tential use of MORE: For each new key k, we generate a new random matrix A and encrypt k. Then, we can

send the output to a computationally stronger server, that will evaluate a (univariate) polynomial f(x) of our
choice on EA(k) and send us back, so we can decrypt and �nd f(k). In light of our observation, the server

may, instead, �nd a linear relation f(k) = ák + â and send the pair (á, â) instead, in the clear. This will save

communication and time for the weaker server, and is equally secure.²

The Kipnis–Hibshoosh idea is also interesting in the general setting, where an arbitrary ring is taken

instead of the ring ofmatrices over an RSAmodulus: Assume that the conjugacy problem over a certain ringR
is di�cult. Then conjugation by a secret matrix is a symmetric (nonrandomized, but there may be solutions

to that) FHE scheme, with respect to the ring addition and multiplication. Are there suitable rings for that

purpose?

3.3 Independent work

One of the referees has pointed out an independent cryptanalysis of MORE, announced soon after the sub-

mission of our paper, by Damian Vizár and Serge Vaudenay [2]. Unlike our cryptanalysis, which exhibits a

security issue even when the restrictions imposed in [1] are satis�ed, Vizár and Vaudenay challenge these

restrictions as unrealistic. They show, instead, that if the value of a knownmultivariate polynomial at a tuple

of encrypted keys is zero, then all encrypted keys can be recovered.³ This is a generalization of the �rst com-

2 The Kipnis–Hibshoosh proposal does not address the question of validation of the delegated computation, and neither does

our variation of their proposal. Our point is that the Kipnis–Hibshoosh proposal can be carried out more e�ciently if it is found

useful for any scenario.

3 A cryptanalysis is also provided in [2] in the case where the encrypted keys are signi�cantly shorter than the modulus.
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ment in Section 3.1 above. While our result provides a (linear) polynomial vanishing at a pair of keys, by the

Kipnis–Hibshoosh theorem it cannot be used in the Vizár–Vaudenay cryptanalysis. Our polynomial depends

on the randomization used in the encryption, and this must not be the case in [2].
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