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Abstract: Unconditionally secure signature (USS) schemes provide the ability to electronically sign docu-
ments without the reliance on computational assumptions needed in traditional digital signatures. Unlike
digital signatures, USS schemes require that verification algorithms are not public – for any possible signer,
a given user must have a different secret verification algorithm corresponding to that signer. Thus, any viable
security definition for aUSS schememust carefully treat the subject ofwhat constitutes a valid signature. That
is, it is important to distinguish between signatures that are created using a user’s signing algorithm and sig-
natures that may satisfy one or more user verification algorithms. Moreover, given that each verifier has his
own distinct verification algorithm, a USS scheme must necessarily handle the event of a disagreement. In
this paper, we present a new security model for USS schemes that incorporates these notions, as well as give
a formal treatment of dispute resolution and the trust assumptions required. We provide formal definitions
of non-repudiation and transferability in the context of dispute resolution, and give sufficient conditions for
a USS scheme to satisfy these properties. We then extend our basic framework to the setting of strong key-
insulated signatures, which increase robustness against key exposure. Finally, we give security analyses for
two constructions: Hanaoka et al.’s construction, which we show is secure in our basic USS model, and a
key-insulated extension of this construction, which is secure in our strong key-insulated model.
This is an extended version of the conference paper [19], which appeared in ICITS 2011.
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1 Introduction
Unconditionally secure signature (USS) schemes provide the ability to electronically sign documents without
the reliance on computational assumptions needed in traditional digital signatures. That is, USS schemes are
the analogue of digital signatures in the unconditionally secure cryptographic setting. The construction of
such schemes is interesting not only from a theoretical perspective, but also from the viewpoint of ensuring
security of information in the long term or designing schemes that are viable in a post-quantum world.

In traditional digital signatures, each user has a pair consisting of a secret signing algorithm and a pub-
lic verification algorithm. Since user verification algorithms are public, anyone can verify whether a given
signature was created by the claimed signer. Unlike digital signatures, USS schemes require that verification
algorithms are not public – for any possible signer, each user must have a different secret verification algo-
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rithm corresponding to that signer. The consequence is that USS schemes necessarily have a limited number
of users, and hence a limited number of entities with the ability to verify a given signature, each with their
own special test. Thus, any viable security definition for a USS scheme must carefully treat the subject of
what constitutes a valid signature. That is, it is important to distinguish between signatures that are created
using a user’s signing algorithm and signatures that may satisfy one or more user verification algorithms.
Current research [7–9, 12, 16] has proposed various models for unconditionally secure signature schemes,
but these models do not fully treat the implications of having multiple verification algorithms or analyze the
need for (and trust questions associated with) having a dispute resolution mechanism. We address both of
these issues in this paper.

Historically, there have been several attempts to create unconditionally secure constructions that satisfy
security properties required for digital signatures, including non-repudiation, transferability, and unforge-
ability. Chaum and Roijakkers [2] introduced unconditionally secure signatures, proposing an interactive
scheme that does not have transferability. Another approach to creating unconditionally secure signatures
has been to enhance existing unconditionally secure message authentication codes (MACs), making these
codes more robust in a signature setting. MACs clearly do not provide non-repudiation, as the sender and re-
ceiver compute authentication tags using the same algorithm. In addition, the need for a designated sender
and receiver further limits the applicability of such schemes in a general signature setting.

Much research has been devoted to the removal of the standard MAC trust assumptions, in which both
sender and receiver are assumed to be honest. In A2-codes [10, 17, 18], the sender and receiver may be dis-
honest, but there is a trusted arbiter to resolve disputes; in A3-codes [1, 4, 11], the arbiter is no longer trusted
prior to dispute resolution, but is trusted to make an honest decision in event of a disagreement. Johans-
son [11] used A3-codes to improve the construction of Chaum and Roijakkers by making it non-interactive,
but the signatures produced by the scheme are not transferable, as the use of a designated receiver limits
the verification of the signature to those who have the appropriate key. Multi-receiver authentication codes
(MRAs) [3] and multi-receiver authentication codes with dynamic sender (DMRAs) [13] use a broadcast set-
ting to relax the requirement for designation of receivers, and also, in the latter case, senders. These codes
are not appropriate outside of a broadcast setting, however, as neither non-repudiation nor transferability
are satisfied.

Unsurprisingly, the first securitymodels for unconditionally secure signature schemes, including Johans-
son [11] andHanaoka et al. [7, 8], drewupon the standardMAC securitymodels. Shikata et al. [16] introduced
a model using notions from public-key cryptography, which was also adopted in the work by Hara et al. [9]
on blind signatures. Safavi-Naini et al. [12] presented a MAC-based model meant to encompass the notions
developed by Shikata et al. In this work, we present a new security model. Our model is more general than
theMAC-basedmodels of Hanaoka et al. [7, 8] and Safavi-Naini et al. [12] and covers the attacks described in
these works. Like that of Shikata et al. [16], our work is based on security notions from traditional public-key
signature systems. However, our model differs from those in the existing literature in its careful treatment of
the concept of a “valid” signature. Our aim is to provide a rigorous and natural security model that covers all
reasonable attacks.

In addition, we analyze a construction of Hanaoka et al. [7] in our model and provide a proof of security.
We remark that while Hanaoka et al. make claims about the security of this construction in their model, they
do not provide an analysis. In fact, security proofs are not provided for most of the constructions given in
existing research. Thus, we feel it is useful to include our analysis of a basic unconditionally secure signature
construction in our security model.

Our basic notion of security is easily extendable to a system with dispute resolution, which we argue is
a necessary component of any USS scheme. Furthermore, our treatment of dispute resolution allows us to
give formal definitions of non-repudiation and transferability. We show that a USS scheme that satisfies our
unforgeability definition and has an appropriate dispute resolution method also satisfies non-repudiation
and transferability, both of which are required properties for any reasonable signature scheme. Finally, we
define various dispute resolution methods and examine the amount of trust each requires.

An advantage of our security framework for USS schemes is its flexibility; standard security properties
from the literature, such as strong key insulation [5, 6], can be incorporated into our basic model in a nat-
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ural way. In key-insulated signature schemes, constructions are designed to be robust against signing-key
exposure; this is done by splitting a user’s signing information between a physically secure device (which
stores the user’s master key) and an insecure device (which is responsible for actually signing messages us-
ing temporary signing keys).We explore the notion of unconditionally secure strong key-insulated signatures
in Sections 8 and 9, drawing from the work of Seito et al. [14] and Seito and Shikata [15] on unconditionally
secure key-insulated multi-receiver authentication codes and key agreement. In particular, we give a formal
extension of our security model to the strong key-insulation setting and present a construction that is secure
in a restricted version of our model.

An outline of our paper is as follows. In Section 2, we give a basic definition of a USS scheme, before
moving to an informal treatment of the desired security properties. We then define a formal security model
in Section 3. We introduce the notion of dispute resolution and give examples of possible dispute resolution
methods in Section 4; we then formally define dispute resolution in Section 4 and explore the impact of dis-
pute resolution on our basic security notions of unforgeability, non-repudiation, and transferability. In Sec-
tion 6,we compare ourworkwith that of previous literature.We analyze the construction of Hanaoka et al. [7]
in Section 7. In Sections 8 and 9, we give a formal treatment of USS schemes with strong key-insulation and
then we present our construction. Finally, we give some concluding remarks in Section 10.

2 Preliminaries
We require the following definitions.

Definition 2.1. An unconditionally secure signature scheme (or USS scheme) Π consists of a tuple (U,X, Σ,
Gen, Sign, Vrfy) satisfying the following:
∙ The set U = {U1, . . . , Un} consists of n possible users, X is a finite set of possible messages, and Σ is a

finite set of possible signatures.
∙ The key-generation algorithm Gen takes as input 1k, where k is a security parameter, and outputs the

signing algorithm Sign and the verification algorithm Vrfy.
∙ The signing algorithm Sign : X × U → Σ takes a message x ∈ X and a signer Uζ ∈ U as input, and outputs

a signature σ ∈ Σ. For each Uζ ∈ U, we let Signζ denote the algorithm Sign(⋅, Uζ ).
∙ The verification algorithmVrfy : X × Σ × U × U → {True, False} takes as input amessage x ∈ X, a signature

σ ∈ Σ, a signer Uζ ∈ U, and a verifier Uν ∈ U, and outputs either True or False. For each user Uν, we let
Vrfyν denote the algorithm Vrfy(⋅, ⋅, ⋅, Uν).
It is required that, for every k, for every pair (Sign, Vrfy) output byGen(1k), for every pair Uζ , Uν ∈ U, and

for every x ∈ X, it holds that
Vrfyν(x, Signζ (x), Uζ ) = True.

Remark 2.2. We are treating deterministic signature schemes only, in the sense that Sign and Vrfy are de-
terministic, although the above definition can easily be extended to the randomized setting. In practice, we
typically also want Sign and Vrfy to be polynomial-time algorithms for efficiency. The point of USS schemes
is to guarantee security against powerful adversaries, even those who are computationally unlimited.

We now define the concepts of authentic, acceptable, and fraudulent signatures. Distinguishing these three
concepts is one of the main themes of this section.

Definition 2.3. A signature σ ∈ Σ on a message x ∈ X is ζ -authentic if σ = Signζ (x).

Definition 2.4. A signature σ ∈ Σ on a message x ∈ X is (ζ, ν)-acceptable if Vrfyν(x, σ, Uζ ) = True.

Definition 2.5. A signature σ ∈ Σ on a message x ∈ X is (ζ, ν)-fraudulent if σ is (ζ, ν)-acceptable but not ζ -
authentic.

Remark 2.6. In practice, we assume the existence of a trusted initializer TI who takes responsibility for
scheme set up and key distribution. That is, the TI runs Gen(1k) and securely distributes signing and verifi-
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cation keys to the appropriate users. Participants cannot create their own signing information and distribute
corresponding verification keys to the other users, as in this case each user Uζ would be able to create a
(ζ, ν)-fraudulent signature for all Uν ∈ U. While it might be possible to avoid this problem by using a “group
computation” approach to create and distribute the necessary scheme information, for simplicity we assume
the existence of a TI.

2.1 Security notions

Informally, a secure signature scheme should satisfy the following three properties:
1. Unforgeability: Exceptwith negligible probabilitywith respect to the given security parameter k, it should

not be possible to create a “valid” signature without the corresponding signing algorithm.
2. Non-repudiation: Except with negligible probability with respect to the given security parameter k, a

signer should be unable to repudiate a legitimate signature that he has created.
3. Transferability: Except with negligible probability with respect to the given security parameter k, if a

verifier accepts a signature, he can be confident that any other verifier will also accept it.
One objective of this paper is to formalize these notions in the unconditionally secure setting; we provide

precise definitions in Sections 3 and 4. In contrast to the usual public-key setting, the requirements of non-
repudiation and transferability are not guaranteed in a USS scheme that satisfies the above intuitive notion
of unforgeability. For “ordinary” digital signatures, non-repudiation is a consequence of unforgeability: a
signature is considered “valid” if it passes a verification test, and it should be infeasible for anyone to create
such a signature without knowledge of the secret signing algorithm. Thus, assuming the signing algorithm is
not known to some third party, the signer cannot create a signature and later repudiate it. Transferability of
digital signatures is guaranteed since there is a single, public verification algorithm.

In USS schemes, the concept of a “valid” signature requires clarification. Given sufficient computation
time, a verifier is always capable of finding a signature that passes his own, secret verification test, so we
cannot define the validity of a signature based on whether it passes a given user’s verification algorithm.
Indeed, there must be signatures that pass a given user’s verification algorithm but that could not have been
created with the signer’s signing algorithm; otherwise the scheme does not satisfy unforgeability. Similarly,
each verifier’s verification algorithm must be different, or a given verifier may be able to present a signature
acceptable to any verifier who possesses the same verification algorithm. A “valid” signature, then, must be
created using the signer’s signing algorithm, and it should be infeasible for anyone to create a signature that
appears valid to other, non-colluding users, or the scheme does not have the properties of unforgeability,
non-repudiation, and transferability. In particular, we have the following observations.

Theorem 2.7. A necessary condition for a USS scheme to satisfy unforgeability is the existence of (ζ, ν)-
fraudulent signatures for ζ ̸= ν.

Proof. Given sufficient computation time, a verifier Uν can use his verification algorithm to create a (ζ, ν)-
acceptable signature for any ζ ̸= ν. If there are no (ζ, ν)-fraudulent signatures, then all signatures produced
in this fashion must be ζ -authentic, and therefore they are successful forgeries.

Theorem 2.8. A USS scheme that satisfies unforgeability has the property that Vrfyν(⋅, ⋅, ⋅) ̸= Vrfyℓ(⋅, ⋅, ⋅) for
ν ̸= ℓ.

Proof. Suppose that Vrfyν(⋅, ⋅, ⋅) = Vrfyℓ(⋅, ⋅, ⋅)where ν ̸= ℓ. Given sufficient computation time, Uν can create a
(ζ, ν)-acceptable signed message, (x, σ). Because Vrfyν(⋅, ⋅, ⋅) = Vrfyℓ(⋅, ⋅, ⋅), it follows immediately that (x, σ)
is (ζ, ℓ)-acceptable. This implies that the user Uℓ will accept (x, σ) as a valid signature, but (x, σ) was not
created by Uζ .
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3 Formal security model
We now develop a formal security model for USS schemes. Our security definition is comparable to the no-
tion of signatures secure against existential forgery under adaptive chosen message attacks in the case of
public-key signature schemes. However, our definition takes into account the distinctive characteristics of
the unconditional security setting, in particular the existence (and necessity) of fraudulent signatures and
multiple verification algorithms.

We specify two types of existential forgery. In our setting, an “existential” forgery is either a (ζ, ν)-
fraudulent signature created without the help of the verifier Uν, or a ζ -authentic signature created without
the help of the signer Uζ . If a USS scheme is secure, then both of these types of forgeries should be infeasible
for an adversary to create.

We need the following oracles for our security definition:
∙ The SignOℓ (⋅) oracle; this oracle takes as input a message x and outputs an ℓ-authentic signature for the

message x.
∙ The VrfyOℓ (⋅, ⋅, ⋅) oracle; this oracle takes as input a signature pair (x, σ) and a signer Uζ , and runs user

Uℓ’s verification algorithm on input (x, σ, Uζ ), outputting True or False.

Definition 3.1. Let Π = (U, X, Σ, Gen, Sign, Vrfy) be aUSS schemewith security parameter k, let the set C ⊆ U

be a coalition of at most ω users, and let ψS and ψV be positive integers. We define the following signature
game Sig-forgeC,Π(k) with target signer Uζ and verifier Uν:
1. Gen(1k) is run to obtain the pair (Sign, Vrfy).
2. The coalition C is given bounded access to the SignOℓ (⋅) and VrfyOℓ (⋅, ⋅, Uζ ) oracles for ℓ satisfying Uℓ ∉ C.

In particular, C is alloweda total ofψS andψV queries to theSignO andVrfyO oracles, respectively,with at
most ψS/(n − |C|) queries to SignOℓ (⋅) for each ℓ satisfying Uℓ ∉ C. It should be noted that C has unlimited
access to the signing and verification algorithms of any Uℓ ∈ C. We let Q denote the set of messages that
the coalition submitted as queries to the oracleSignOζ (⋅). Note thatQdoesnot containmessages submitted
as queries to SignOℓ (⋅) for ℓ ̸= ζ .

3. The coalition C outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if one of the following conditions is met:

a. Uν ∉ C and σ is a (ζ, ν)-fraudulent signature on x; or
b. Uζ ∉ C, x ∉ Q, and σ is a ζ -authentic signature on x.

Definition 3.2. Let Π = (U, X, Σ, Gen, Sign, Vrfy) be a USS scheme with security parameter k and let ϵ(k) be
a negligible function of k. We say Π is (ω, ψS , ψV , ϵ)-unforgeable if for all coalitions C of at most ω possibly
colluding users, and all choices of target signer Uζ and verifier Uν, it holds that

Pr[Sig-forgeC,Π(k) = 1] ≤ ϵ(k).

Remark 3.3. Another option is to include a FraudO(ζ,ν)(⋅) oracle; this oracle takes as input amessage x and out-
puts a (ζ, ν)-fraudulent signature on x. Providing certain (ζ, ν)-fraudulent signatures to the adversary could
only increase his chances of ultimately constructing a new (ζ, ν)-fraudulent signature. Thus this would con-
stitute a stronger securitymodel than the onewe consider. On the other hand, it is hard to envisage a practical
scenario where an adversary would have this kind of additional information about a verifier whom the ad-
versary is attempting to deceive. Therefore we do not include the FraudO oracle in our basic model of USS
schemes. However, it would be straightforward to modify our model to include these oracles, if desired.

We observe that a scheme meeting the unforgeability requirement of Definition 3.2 satisfies our intuitive no-
tions of non-repudiation and transferability. We explain these relationships in the following observations,
noting that formal definitions of non-repudiation and transferability are intrinsically linked to the dispute
resolution process, and so are provided later, in Section 4. We will formalize these observations in Theo-
rems 5.8 and 5.12.



40 | C.M. Swanson and D. R. Stinson, Unconditionally secure signature schemes revisited

Observation 3.4. An (ω, ψS , ψV , ϵ)-unforgeable USS scheme Π provides non-repudiation.

Proof. Suppose that Π is (ω, ψS , ψV , ϵ)-unforgeable. Then Uζ cannot repudiate a given ζ -authentic signature
σ, as Definition 3.2 guarantees that σ can be created without Uζ only with negligible probability (as Condi-
tion 4b of Definition 3.1 holds only with negligible probability). Thus Uζ cannot claim that other users may
have created σ. The other possibility for a signer Uζ to repudiate a signature on amessage given to Uν is if the
signature is (ζ, ν)-fraudulent. Definition 3.2 also implies that Uζ cannot create a (ζ, ν)-fraudulent signature
(even with the help of ω − 1 other users not including Uν) except with negligible probability, as Condition 4a
of Definition 3.1 is assumed to not hold (except with negligible probability).

Observation 3.5. An (ω, ψS , ψV , ϵ)-unforgeable USS scheme Π provides transferability.

Proof. In order for a signature σ to be non-transferable from Uν to Uℓ, the signature σ must be (ζ, ν)-
acceptable, but not (ζ, ℓ)-acceptable, where ν ̸= ℓ. If σ were ζ -authentic, it would also be (ζ, ℓ)-acceptable.
Therefore σ must be (ζ, ν)-fraudulent. However, Definition 3.2 implies a (ζ, ν)-fraudulent signature cannot
be created without the assistance of Uν, except with negligible probability.

From the point of view of a verifier, a schememeetingDefinition 3.2 gives reasonable assurance of the validity
of a received signature. If a verifier Uν receives a signature pair (x, σ) purportedly from Uζ , then Uν accepts
the signature so long as σ is (ζ, ν)-acceptable for the message x. In this case, there are only two possibilities:
either σ is ζ -authentic or (ζ, ν)-fraudulent for the message x. If σ is ζ -authentic, then a coalition that does not
include the signer Uζ has only a negligible probability of creating σ by Condition 4b of Definition 3.1. If σ
is (ζ, ν)-fraudulent, then Condition 4a of Definition 3.1 guarantees that a coalition that does not include Uν
cannot create σ, except with negligible probability.

4 Dispute resolution
Given that each verifier has his own distinct verification algorithm, a USS scheme must necessarily handle
the event of a disagreement. That is, since there is no public verification method as in traditional digital
signatures, a USS scheme must have a mechanism to determine the authenticity of a signature when some
subset of users disagree whether a given signature should be accepted. In particular, dispute resolution is
necessary to convince an outsider of the authenticity of a disputed signature. In traditional digital signatures,
there are no outsiders to the scheme, in the sense that everyone has access to the public verification method.
In our setting, however, the number of participants (and therefore their access to verification algorithms) is
limited. Dispute resolution is a method that effectively deals with the need for resolution of disagreements
in, for example, a court setting. Typically, dispute resolution involves all the users voting on the validity of a
signature, or alternatively, a trusted arbiter stating whether a signature is valid.

The manner in which a dispute resolution mechanism may be invoked necessarily affects the security of
the overall scheme. In particular, we should not allow users to invoke the dispute resolution mechanism an
arbitrary number of times. If users have unlimited access, it may be possible for a coalition to use dispute
resolution as a type of verification oracle against a target signer Uζ . As this is undesirable, we need to limit
access to dispute resolution in a reasonable way. One simple possibility is to limit dispute resolution to once
per scheme. That is, once dispute resolution has been invoked, we require that the users request the TI to
generate new signing and verification keys. This may be reasonable because dispute resolution necessarily
implies the existence of a lying (or otherwise compromised) user, andwefind it unlikely that userswillwant to
continue the current schemewith thedishonest (or compromised) user in question;wediscuss these concepts
in more detail in Remark 4.5. That said, it may be desirable to include a mechanism by which to determine
and punish cheaters – such amechanismmay be useful if multiple calls to the dispute resolution are desired,
or to determine which users should not be included in a scheme reset.

We focus on the case in which dispute resolution causes a scheme reset. We begin with some basic con-
cepts and then provide and analyze examples of possible dispute resolutionmechanisms. Ideally, the dispute
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resolution process validates a signature if and only if the signature is authentic, i.e., the signature was pro-
duced by the purported signer. This leads to the following definitions.

Definition 4.1. A dispute resolution method DR for a USS scheme Π is a procedure invoked when a pair of
users Uℓ, Uℓ� ∈ U disagrees as to the validity of a given signature (x, σ), purportedly signed by Uζ . Here Uℓ
(respectively, Uℓ� ) may be any user in U, including Uζ . The procedure DR consists of an algorithm DR that
takes as input a signature pair (x, σ) and apurported signerUζ , and outputs a value in {Valid, Invalid}, subject
to the following rules:
1. If DR outputs Valid, then (x, σ) must subsequently be accepted as a ζ -authentic signature on x by all

users.
2. If DR outputs Invalid, then (x, σ)must subsequently be rejected by all users.
We remark that the algorithm DRmay have access to additional (secret) scheme information, as specified by
the particular dispute resolution method.

The following definitions capture the desirable properties of a givenDR.

Definition 4.2 (Soundness). Let Π be a USS scheme and letDR be a dispute resolution method for Π. We say
DR is sound if, whenever σ is not a ζ -authentic signature on x, then DR((x, σ), Uζ ) outputs Invalid.

Definition 4.3 (Completeness). Let Π be a USS scheme and letDR be a dispute resolution method for Π. We
sayDR is complete if, whenever σ is a ζ -authentic signature on x, then DR((x, σ), Uζ ) outputs Valid.

Definition 4.4 (Correctness). Let Π be a USS scheme and letDR be a dispute resolution method for Π. IfDR

is both sound and complete, we sayDR is correct.

Remark 4.5. A correct dispute resolution method DR is useful in terms of identifying and punishing users
who are cheating (or alternatively whose secret information has been compromised). To see this, suppose
that a signature σ with purported signer Uζ is given toDR by two users Uℓ and Uℓ� . Without loss of general-
ity, suppose Uℓ claims σ should be accepted and Uℓ� claims σ should be rejected. Then if the output ofDR is
Valid, soundness implies that σ is ζ -authentic. In this case, the user Uℓ� is either dishonest or otherwise com-
promised. If, on the other hand, the output ofDR is Invalid, completeness implies that σ is not ζ -authentic. In
this case, the user Uℓ is either dishonest or otherwise compromised. Here, by otherwise compromised, we are
recognizing the possibility that a user’s secret information may become unintentionally known to an adver-
sary (i.e., a coalition of dishonest users), but the user in question is honest. This might happen, for example,
due to insecure storage of signing and/or verification keys.

We define three dispute resolution methods and examine the level of honesty required in each scheme. In
particular, wewish to define trust assumptions sufficient to ensure the correctness of these dispute resolution
methods. That is, we consider the degree of trust a group of users should have in order to use a particular
dispute resolution method.

Definition 4.6. We have the following dispute resolution methods, assuming a disputed signature σ on mes-
sage x with purported signer Uζ :
∙ Omniscient Arbiter (OA) Dispute Resolution: Designate an arbiter equippedwith all of the USS scheme set-

up information. The signature σ is considered valid if the arbiter, using his knowledge of all the signing
and verification algorithms, accepts the signature as authentic. Here we assume the arbiter is honest.

∙ Verifier-Equivalent Arbiter (VEA) Dispute Resolution: Designate an arbiter equipped with his own verifi-
cation algorithm, VrfyA, (i.e., the arbiter is a glorified verifier). The arbiter tests the authenticity of the
signature σ by running VrfyA(x, σ, Uζ ); the signature is considered valid if VrfyA(x, σ, Uζ ) outputs True.
Here we assume the arbiter is honest. We remark that the arbiter may or may not be a normal user in the
scheme, although assuming the arbiter is honest may be more reasonable if the arbiter is not otherwise
involved with the scheme.

∙ Majority Vote (MV) Dispute Resolution: Here we resolve disputes by having the users vote on the validity
of the signature σ. Each user is responsible for running his verification algorithm on (x, σ, Uζ ) and cast-
ing a valid vote if his verification algorithm outputs True and an invalid vote otherwise. The signature is
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considered valid if a prespecified threshold of valid votes are cast; here we consider the case of amajority
threshold and assume all users vote. We assume that a majority of users are honest.

In the case of OA dispute resolution, it is clear that we require the arbiter to be honest, as he has all the
necessary information to sign and verify documents on behalf of other users. That is, a USS scheme Π with
OA dispute resolution clearly cannot satisfy any unforgeability condition unless the arbiter is honest, as the
arbiter has all the necessary information to sign messages on behalf of users. Moreover, provided that the ar-
biter is honest, this dispute resolutionmethod is both sound and complete, as the arbiter is able to determine
the authenticity of a given signature and behave appropriately. In fact, the correctness of OA dispute resolu-
tion with an honest arbiter is independent of the security of the underlying scheme. Correctness implies the
arbiter’s ability to identify signatures that are ζ -authentic for the purported signer Uζ , which is independent
from the problemof preventing other users from creating a ζ -authentic signaturewithoutUζ ’s help. However,
it is of course still the case that correct dispute resolution is only useful in conjunction with an unforgeable
USS scheme. To summarize, we have the following result:

Theorem 4.7. Let Π be a USS scheme and let DR be an OA dispute resolution method for Π with an honest
arbiter. ThenDR is correct.

Remark 4.8. Although we focus on deterministic signature schemes in this section, an interesting observa-
tionwith respect to OA dispute resolution arises in the case of randomized signature schemes. In particular, if
the signature scheme is randomized, then the arbiter may have to be computationally unbounded in order to
perform dispute resolution. That is, if a purported signer claims a disputed signature is not valid, the arbiter
may have to search an exponential space. This issue does not arise if the purported signer does not dispute
the validity of the signature, however, as in this case the signer can simply reveal the randomness used to
produce the disputed signature.

In the next two theorems, we present trust assumptions sufficient to achieve correctness in VEA and MV
dispute resolution. For these methods, it is necessary to consider the security properties of the underlying
signature scheme Π.

Theorem 4.9. Let Π be an (ω, ψS , ψV , ϵ)-unforgeable USS scheme and let DR be a VEA dispute resolution
method for Π with an honest arbiter. ThenDR is correct in the presence of a coalition of users of maximum size
ω, except with negligible probability.

Proof. Supposewe have a disputed signature σ onmessage xwith purported signer Uζ . The arbiterA outputs
Valid if and only if σ is (ζ,A)-acceptable.

Given that Π satisfies our unforgeability definition, a coalition of maximum size ω cannot produce a
signature that is (ζ,A)-fraudulent without A’s help, except with negligible probability. That is, an honest
arbiterA outputs Valid exactly when σ is ζ -authentic (except with negligible probability).

Theorem 4.10. Let Π be an (ω, ψS , ψV , ϵ)-unforgeable USS scheme and let DR be an MV dispute resolu-
tion method for Π. Then DR is correct in the presence of a coalition of dishonest users of maximum size
min{ω, ⌊ n−12 ⌋}, except with negligible probability.

Proof. Supposewehave a disputed signature σ onmessage xwith purported signerUζ . Consider a coalition C
of size at most min{ω, ⌊ n−12 ⌋}. If x is ζ -authentic, then any honest Uℓ ∉ Cwill cast a Valid vote. The coalition C
can attempt to ensure that x is rejected by having each member cast an Invalid vote, but as long as a majority
of users are honest, xwill be accepted by the dispute resolution process. If x is not ζ -authentic, then since Π is
(ω, ψS , ψV , ϵ)-unforgeable,wehave that x is not (ζ, ℓ)-fraudulent for anyhonestUℓ ∉ C exceptwithnegligible
probability. That is, any honest Uℓ will (with overwhelming probability) cast an Invalid vote. The members of
C can attempt to have x accepted by having each member cast a Valid vote, but given that a majority of users
are honest, this approach works with only negligible probability.

Remark 4.11. The proof of Theorem 4.9 establishes that the correctness of the VEA dispute resolution
method depends on how easy it is to construct signatures which are (ζ,A)-acceptable for users Uζ ∈ U in
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the underlying scheme Π. In particular, it is easy to see that if Π does not satisfy Definition 3.2 for some ω
with respect to output 4a of the security game Sig-forgeC,Π(k) (as defined in Definition 3.1), then the VEA
method fails to be correct, even with an honest arbiter. In addition, if we consider the maximum ω for which
Π satisfies the above unforgeability criterion, it is easy to see that the VEA method fails to be correct in the
presence of more than ω colluding users. Similar observations hold for Theorem 4.10 with respect to the MV
dispute resolution method.

As observed above, we achieve correctness of the VEAmethod by assuming that the arbiter is honest. Achiev-
ing soundness andcompleteness is not as clear ifweweaken this honesty requirement, however. In the typical
VEA dispute resolution methods considered in current literature [9, 12, 16], the arbiter is assumed to be a
glorified verifier, with the same type of keying information as an arbitrary verifier. The arbiter is assumed to
follow the rules of the dispute resolution method honestly and is otherwise treated as a normal user in the
context of the securitymodel, i.e., he is allowed to be dishonest otherwise. That is, the arbiter is allowed to be
a member of the coalition attempting to create a forgery, but he is expected to follow the dispute resolution
process itself honestly.We refer to this set of trust assumptions as the split trust assumption. We argue that the
split trust assumption is problematic, however, and should likely be abandoned. In particular, if we consider
VEA dispute resolution where we allow the arbiter to be part of a given coalition, then soundness is no longer
guaranteed.

The arbiter’s distinct role in thedispute resolutionmethodnecessitates amore careful studyof the arbiter,
and therefore treating the arbiter as a normal verifier in the context of the securitymodel is insufficient.While
it is obvious an arbiter who is dishonest during dispute resolution can cause a fraudulent signature to be
deemed valid, we cannot allow the arbiter to be dishonest before dispute resolution either, contrary to the
claims of Safavi-Naini et al. [12] and Shikata et al. [16]. In particular, the VEA dispute resolution method
does not achieve soundness under the split trust assumption due to the existence of a new type of forgery
introduced by the dispute resolution process, which we term a dispute-enabled forgery:

Definition 4.12. Let Π be aUSS scheme and letDR be a dispute resolutionmethod for Π.We say a signature σ
on amessage x ∈ X is a dispute-enabled forgery for signer Uζ if σ is not ζ -authentic, butDR((x, σ), Uζ ) outputs
Valid.

In fact, the proof of Theorem 4.9 indicates why the split trust assumption is problematic: an honest arbiterA
outputs Valid during dispute resolution if and only if the signature is (ζ,A)-acceptable for purported signer
Uζ . But if we allow A to be dishonest prior to dispute resolution, then A can produce a signature x that
is (ζ,A)-fraudulent. In this case, A’s verification algorithm outputs True on input x with signer Uζ , so x is
a dispute-enabled forgery. We remark that the case of MV may be viewed as a generalized version of VEA
dispute resolution and the security concerns are similar.

The main observation is that a cheating arbiterA (or, in the case of MV dispute resolution, a collusion of
amajority of verifiers) can successfully forge a (ζ, ν)-fraudulent signature for any cooperating user Uν. Hence,
VEA and MV dispute resolution do not protect the signer against a dishonest arbiter (or a dishonest majority
of verifiers) under the split trust assumption, since dispute-enabled forgeries exist. From the perspective of
signer security, the split trust assumption is certainly not reasonable.

From the perspective of verifier security, it is interesting to note that both the VEA and MV methods are
acceptable under the split trust assumption. This is a consequence of the fact that both the VEA and MV
methods are complete provided that the dispute resolution process itself is performed honestly. We show in
Theorems 5.8 and 5.12 that completeness is sufficient for an (ω, ψS , ψV , ϵ)-USS scheme Π with dispute res-
olutionDR to provide non-repudiation and transferability. That is, the VEA and MV methods do not require
the arbiter(s) to be honest prior to dispute resolution in order to achieve non-repudiation and transferabil-
ity. As seen above, however, the VEA and MV methods require the arbiter(s) to be honest prior to dispute
resolution in order to achieve soundness. In this sense, we see that VEA and MV dispute resolution under
the split trust assumption provide similar verifier security to OA dispute resolution with an honest arbiter (in
that non-repudiation and transferability are assured), but they fail to provide similar signer security (in that
unforgeability is not assured).
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Nonetheless, we argue that amore reasonable approach to dispute resolution is to assume the possibility
of cheating both before and during dispute resolution. In this case, we see that for the VEA method, we must
have an honest arbiterA, and for the MV method, we require that a majority of users are honest.

With these examples in mind, we give a formal treatment of dispute resolution in the following section.

5 A formal treatment of dispute resolution
The possibility of dispute-enabled forgeries requires an extension to the unforgeability requirement of a USS
scheme. Although unforgeability (unlike transferability and non-repudiation) is not intrinsically linked to
the dispute resolution process, we need to ensure that the dispute resolution process itself does not weaken
the overall security of the scheme.

Definition 5.1. Let Π be a USS scheme and letDR be a dispute resolution method for Π. We extend the sig-
nature game Sig-forgeC,Π(k) to the signature gameDR-Sig-forgeC,Π(k) by adjusting Definition 3.1 as follows.

We make the following changes to Step 4:
4. We add the following to the list of possible conditions for which the output of the game is 1:

c. Uζ ∉ C, σ is not ζ -authentic, but DR((x, σ), Uζ ) outputs Valid.

Definition 5.2. Let Π = (U,X, Σ, Gen, Sign, Vrfy) be a USS scheme with security parameter k and let DR be
a dispute resolution method for Π. Let ϵ(k) be a negligible function of k. We say the pair (Π,DR) is DR-
unforgeable with parameters (ω, ψS , ψV , ϵ) if for all coalitions C of at most ω possibly colluding users, and
all choices of target signer Uζ and verifier Uν, it holds that

Pr[DR-Sig-forgeC,Π(k) = 1] ≤ ϵ(k).

Remark 5.3. Herewemodel an attack inwhich a call to dispute resolution necessitates an immediate scheme
reset. If wewish to account for the possibility of multiple calls to the dispute resolutionmethod, we can allow
C bounded access to a new oracle, the DR(⋅, ⋅, ⋅) oracle, which takes as input a signature pair (x, σ) and a
signer Uζ and simulates the dispute resolution method DR on input (x, σ, Uζ ), outputting either Valid or
Invalid.

We nowobserve that given anunderlying scheme Π satisfying our originaldefinition of unforgeability (Defini-
tion 3.2), we can achieve our stronger definition ofDR-unforgeability by choosing a sound dispute resolution
methodDR.

Theorem 5.4. Let Π be an (ω, ψS , ψV , ϵ)-unforgeable USS scheme and let DR be a sound dispute resolution
method for Π. Then the pair (Π,DR) isDR-unforgeable with parameters (ω, ψS , ψV , ϵ).

Proof. Since Π is (ω, ψS , ψV , ϵ)-unforgeable, we see that a coalition C of at most ω users cannot produce
signatures satisfying Conditions 4a or 4b of Definition 5.1 except with negligible probability. If, in addition,
the dispute resolution method DR is sound, then DR outputs Invalid when given a signature that is not ζ -
authentic for (any choice of) target signer Uζ , so C cannot produce a signature satisfying Condition 4c.

Remark 5.5. Condition 4c of Definition 5.1 says that a possible successful output ofDR-Sig-forgeC,Π(k) is a
dispute-enabled forgery. Definition 5.2 implies that with high probability, the coalition C is unable to find
a dispute-enabled forgery. In other words, the coalition C is able to produce a signature compromising the
soundness of the dispute resolution methodDR with only negligible probability.

We nowdiscuss the properties of non-repudiation and transferability. As previouslymentioned, both of these
properties are intrinsically linked to dispute resolution. That is, the outcome of the chosen dispute resolution
method determines the success or failure of these attacks. In particular, we show that completeness is suffi-
cient to achieve both non-repudiation and transferability.

We remark that in order for the dispute resolution method to be invoked in the first place, there must be
disagreement as to the validity of a given signature σ. In a repudiation attack, the signer Uζ gives a (ζ, ν)-
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acceptable signature σ to the verifier Uν (i.e., σ appears valid to Uν) and then later denies the validity of σ. In
this case, the signer Uζ and the target verifier Uν will invoke the dispute resolution method. Similarly, for a
transferability attack, a verifier Uν transfers a signature σ that is (ζ, ν)-acceptable (i.e., σ appears valid to Uν)
to another user Uℓ, who rejects σ as invalid. Thus, the dispute resolution method is again invoked, this time
by users Uν and Uℓ. In this case, Uν is assumed to be honest, but we remark that it is also possible that Uℓ is
honest, in the sense that Uℓ may genuinely believe the signature in question to be invalid. That said, it is also
possible for Uℓ to be part of the attempt to “trap” Uν (independently of whether or not the given signature is
rejected by Uℓ’s verification algorithm). We now provide formal definitions of these two attacks.

Definition 5.6. Let Π = (U,X, Σ, Gen, Sign, Vrfy) be a USS scheme with security parameter k and let DR be
a dispute resolution method for Π. Let the set C ⊆ U be a coalition of at most ω users, and let ψS and ψV be
positive integers. We define the following signature game RepudiationC,Π(k) with signer Uζ ∈ C and target
verifier Uν satisfying Uν ∉ C:
1. Gen(1k) is run to obtain the pair (Sign, Vrfy).
2. The coalition C is given bounded access to the SignOℓ (⋅) and VrfyOℓ (⋅, ⋅, Uζ ) oracles for ℓ satisfying Uℓ ∉ C.

In particular, C is alloweda total ofψS andψV queries to theSignO andVrfyO oracles, respectively,with at
most ψS/(n − |C|) queries to SignOℓ (⋅) for each ℓ satisfying Uℓ ∉ C. It should be noted that C has unlimited
access to the signing and verification algorithms of any Uℓ ∈ C.

3. The coalition C outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if one of the following conditions is met:

a. σ is (ζ, ν)-fraudulent and the dispute resolution methodDR (as invoked by Uζ and Uν) rejects σ as
Invalid.

b. σ is ζ -authentic and the dispute resolutionmethodDR (as invoked byUζ andUν) rejects σ as Invalid.

Definition 5.7. Let Π = (U,X, Σ, Gen, Sign, Vrfy) be a USS scheme with security parameter k and letDR be a
dispute resolution method for Π. Let ϵ(k) be a negligible function of k. We say the combined scheme (Π,DR)
satisfies non-repudiationwith parameters (ω, ψS , ψV , ϵ) if for all coalitions C of at most ω possibly colluding
users, and for all choices of signer Uζ and target verifier Uν, it holds that

Pr[RepudiationC,Π(k) = 1] ≤ ϵ(k).

In the following theorem, we demonstrate that a dispute resolution methodDR that is complete, when com-
bined with an underlying USS scheme Π that is unforgeable, suffices to ensure non-repudiation attacks are
(highly) unlikely to succeed.

Theorem 5.8. Let Π be an (ω, ψS , ψV , ϵ)-unforgeable USS scheme and letDR be a complete dispute resolution
method for Π. Then (Π,DR) provides non-repudiation.

Proof. Assume Π does not provide non-repudiation, so with non-negligible probability, RepudiationC,Π(k)
outputs 1. Suppose RepudiationC,Π(k) with signer Uζ and target verifier Uν outputs 1. Then C has created a
(ζ, ν)-acceptable signature pair (x, σ), such that the dispute resolutionmethodDR (as invoked by Uζ and Uν)
rejects σ as Invalid.

Now, σ is either ζ -authentic or (ζ, ν)-fraudulent. If σ is ζ -authentic, then the dispute resolution method
DR rejected a ζ -authentic signature and is not complete. Therefore, if DR is complete, then every such sig-
nature σ that yields an output of 1 in the game RepudiationC,Π(k)must be (ζ, ν)-fraudulent. Thus, with non-
negligible probability, C can create a (ζ, ν)-fraudulent signature that satisfies Condition 4a of Definition 3.1,
resulting in an output of 1 in the game Sig-forgeC,Π(k) with target signer Uζ ∈ C and verifier Uν ∉ C. That is,
Π is not (ω, ψS , ψV , ϵ)-unforgeable.

Definition 5.9. Let Π = (U,X, Σ, Gen, Sign, Vrfy) be a USS scheme with security parameter k and let DR be
a dispute resolution method for Π. Let the set C ⊆ U be a coalition of at most ω users, and let ψS and ψV be
positive integers.We define the following signature gameNon-transferC,Π(k)with signerUζ and target verifier
Uν, where Uν ∉ C:
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1. Gen(1k) is run to obtain the pair (Sign, Vrfy).
2. The coalition C is given bounded access to the SignOℓ (⋅) and VrfyOℓ (⋅, ⋅, Uζ ) oracles for ℓ satisfying Uℓ ∉ C.

In particular, C is alloweda total ofψS andψV queries to theSignO andVrfyO oracles, respectively,with at
most ψS/(n − |C|) queries to SignOℓ (⋅) for each ℓ satisfying Uℓ ∉ C. It should be noted that C has unlimited
access to the signing and verification algorithms of any Uℓ ∈ C.

3. The coalition C outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if the following conditions are met:

a. σ is (ζ, ν)-fraudulent and the dispute resolutionmethodDR, as invokedbyUν and someuserUℓ ∈ U,
outputs Invalid.

b. σ is ζ -authentic and the dispute resolution methodDR, as invoked by Uν and some verifier Uℓ ∈ C,
outputs Invalid.

Remark 5.10. The distinction between the two cases in part 4 of Definition 5.9 is with respect to the integrity
of the users who invoke the dispute resolution method. In the first case, it is possible that an honest verifier
Uℓ ∉ C for whom σ is not (ζ, ℓ)-fraudulent may be involved, hence (unwittingly) aiding the coalition in trap-
ping the target verifier Uν. If σ is ζ -authentic, then there is no such user, as all honest verifiers would accept
σ, so a member of the coalition C must participate in invoking dispute resolution.

Definition 5.11. Let Π = (U,X, Σ, Gen, Sign, Vrfy) be a USS scheme with security parameter k and letDR be
a dispute resolutionmethod for Π. Let ϵ(k)be a negligible function of k.We say the combined scheme (Π,DR)
satisfies transferability with parameters (ω, ψS , ψV , ϵ) if for all choices of signer Uζ and target verifier Uν, it
holds that

Pr[Non-transferC,Π(k) = 1] ≤ ϵ(k).

The following theorem is similar to Theorem 5.8 and gives the corresponding result for transferability.

Theorem 5.12. Let Π be an (ω, ψS , ψV , ϵ)-unforgeable USS scheme and letDR be a complete dispute resolu-
tion method for Π. Then (Π,DR) satisfies transferability.

Proof. SupposeΠ doesnot provide transferability and further assume thegameNon-transferC,Π(k)outputs1,
with signer Uζ and target verifier Uν ∉ C. Then C output a signature pair (x, σ) such that σ is (ζ, ν)-acceptable
and the dispute resolution method (as invoked by Uν and some user Uℓ) rejected σ as Invalid.

Now, σ is either ζ -authentic or (ζ, ν)-fraudulent. If σ is ζ -authentic, then the dispute resolution method
DR rejected a ζ -authentic signature and is not complete. Therefore, if the DR is complete, then every such
signature σ that yields an output of 1 in the game Non-transferC,Π(k) must be (ζ, ν)-fraudulent. Thus, with
non-negligible probability, C can create a (ζ, ν)-fraudulent signature that satisfies Condition 4a of Defini-
tion 3.1, resulting in an output of 1 in the game Sig-forgeC,Π(k)with target signer Uζ ∈ C and verifier Uν ∉ C.
That is, Π is not (ω, ψS , ψV , ϵ)-unforgeable.

Together, Theorems 5.4, 5.8, and 5.12 provide sufficient conditions for a USS scheme Π and a dispute res-
olution method DR to satisfy the desired properties of unforgeability, non-repudiation, and transferability.
In particular, it suffices to take Π to be (ω, ψS , ψV , ϵ)-unforgeable and DR to be sound and complete (i.e.,
correct). Furthermore, we remark that Condition 4b of Definition 5.6 and Condition 4b of Definition 5.9 both
correspond to a demonstration of the lack of completeness of the associated DR. That is, in a scheme that
satisfies non-repudiation or transferability, it must be infeasible to find a signature pair that acts as a witness
to the lack of completeness of the associatedDR.

6 Comparison with existing models
Our model differs from those in the existing literature in its careful treatment of ζ -authentic and (ζ, ν)-
fraudulent signatures. In comparison to other works, our approach is most similar to that of Shikata et
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al. [16], whose model is also designed as an extension of traditional public-key signature security notions.
We compare our model with [16] in Section 6.1.

TheHara et al. [9]model for unconditionally secure blind signatures is essentially the sameas the Shikata
et al. model with an added blindness condition. Hara et al. separate the unforgeability definition of [16]
into a weaker notion of unforgeability and an additional non-repudiation requirement. The non-repudiation
requirement actually treats more cases than a simple non-repudiation attack (as the success of the attack
is not dependent on dispute resolution), so the reason for this separation is unclear. The authors of [9] also
allow the signer to be the target verifier, which is not explicitly allowed in the Shikata et al. model, and so
they add a separate unforgeability definition for this case.

The models of Hanaoka et al. [7, 8] and Safavi-Naini et al. [12] are based on security notions from mes-
sage authentication codes (MACs). Hanaoka et al. treat only a limited attack scenario (which is covered by our
model), including impersonation, substitution, and transfer with a trap, and they do not include a verification
oracle. Safavi-Naini et al. treat a similar range of attacks as our model, specified through denial, spoofing,
and framing attacks, and allow both signature and verification oracles. It is unclear whether Safavi-Naini et
al. meant to ensure strong unforgeability, as the relationship between successful forgeries and oracle queries
is unspecified. Furthermore, our model is more concise, as the denial attack covers a signer trying to repu-
diate a signature, whereas we show that it is unnecessary to treat non-repudiation as a separate part of an
unforgeability definition. In addition, not all attack scenarios included in our definition are covered by the
Safavi-Naini et al. model. For instance, the attack consisting of signer Uζ ∈ C with target verifier Uν, where C
creates a (ζ, ν)-fraudulent signature, is not considered. The Safavi-Naini et al. model considers this scenario
only in the case where an arbiter is involved and rejects the signature (i.e. a denial attack). In certain appli-
cations (e.g., e-cash) we do not want the signer to be able to create a (ζ, ν)-fraudulent signature, regardless
of whether a dispute resolution mechanism is invoked.

6.1 Comparison with the model of Shikata et al.

In this section, we discuss several aspects of the model of Shikata et al. [16] and how our approach differs
from theirs.
1. Shikata et al.’s model [16] is limited to a single-signer scenario. We consider a more general model in

which any participant can be a signer.
2. In [16, Definition 2], a signed message (x, σ) is defined to be valid if it was created using the signer’s

signing algorithm. Then, in their Requirement 1, which includes notions for verifiability, dispute resolu-
tion, and unforgeability, it is stated that (x, σ) is valid if and only if Uν’s verification algorithm outputs
Truewhen given (x, σ) as input. This requirement is problematic, since Uν can use knowledge of his ver-
ification algorithm to find a pair (x, σ) that has output True; such a pair is then “valid.” However, this
means that a receiver can create valid signatures, and consequently the signature scheme does not pro-
vide unforgeability. Shikata et al. relax this condition in their Requirement 2 by allowing a small error
probability that an “invalid” signature is accepted by a given verifier. However, this does not rectify the
aforementioned problem, as the probability space in this definition is unspecified.

3. Shikata et al.’s definitions of existential forgery and existential acceptance forgery [16,Definitions 3 and4]
are rather complicated. It seems that the notion of “existential forgery” corresponds to our definition of
an ζ -authentic signature. The coalition that creates this signature should not include Uζ . The notion of
“existential acceptance forgery” apparently is dependent upon the coalition that creates it. If Uζ is in the
coalition, then an existential acceptance forgery would most naturally coincide with our definition of an
(ζ, ν)-fraudulent signature. IfUζ is not in the coalition, then itwouldmore likelymean an (ζ, ν)-acceptable
signature. In each case, the coalition creating the signature should not include Uν. These definitions are
a bit confusing, and we believe that the concepts of authentic, acceptable, and fraudulent signatures are
helpful in phrasing clear and concise definitions.

4. In [16, Theorem 2], it is stated without proof that a signature scheme that is “existentially acceptance
unforgeable” is necessarily “existentially unforgeable.” Roughly speaking, this is logically equivalent
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to the statement that an adversary that can create an existential forgery can also create an existential
acceptance forgery. This statement seems rather obvious, but we need to also consider the coalitions that
are creating these signatures. The adversary creating the existential forgery (i.e., a ζ -authentic signature)
could be any coalition C that does not include Uζ . A ζ -authentic signature is an existential acceptance
forgery for any user Uν ̸∈ C ∪ {Uζ }. However, a problem arises if C consists of all users except for Uζ . In
this situation, a ζ -authentic signature created by C is not an existential acceptance forgery for any user.
This situation is not accounted for in [16, Theorem 2], and therefore it does not suffice to consider only
existential acceptance forgeries. We remark that our approach is consistent with that used to define A2-
codes [18], in which neither the sender nor the receiver is trusted, and so attacks solely against a target
signer are considered. To be specific, Simmons [18] treats R0 attacks, impersonation by the receiver, and
R1 attacks, substitution by the receiver. Allowing attacks in which all verifiers collude against a target
signer is a generalization of this approach.

5. Notwithstanding the previous points, Shikata et al.’s definition of “strong security” [16, Definition 9] is
very similar to our properties 4a and 4b of Definition 3.1, except that their Definition 9 only covers exis-
tential acceptance forgeries. In order to compare our model with that of Shikata et al. [16], we consider
the following three attack scenarios, where Uζ denotes the signer and Uν denotes a verifier:
Case A Neither Uζ nor Uν is in the coalition C, and C creates a (ζ, ν)-fraudulent signature.
Case B Uζ is not in the coalition C, and C creates a ζ -authentic signature.
Case C Uζ ∈ C, Uν ̸∈ C, and C creates a (ζ, ν)-fraudulent signature.
In our security definition (Definition 3.1), property 4a is equivalent to the union of Case A and Case C,
and property 4b is equivalent to Case B. Now, [16, Definition 9] considers two attacks: property 1) is the
union of Cases A and B, but does not include the case where there is no target verifier, as discussed in the
previous point; and property 2) is Case C.

6. Finally, we give a more complete treatment of dispute resolution than is presented by Shikata et al. [16].

7 Basic USS scheme construction and analysis
Current literature favors constructions using multivariate polynomials. We consider the security of the con-
struction from Hanaoka et al. [7] in our security model. We reiterate that Hanaoka et al. [7] do not provide a
proof of security for this construction in their model.

7.1 Key pair generation

Let Fq be a finite field with q elements such that q > n. (In practice, we pick q to be much larger than n.) The
TI picks n verification vectors ⃗v1, . . . , ⃗vn ∈ (Fq)ω uniformly at random for users U1, . . . , Un, respectively, sub-
ject to one additional constraint. For technical reasons, we assume the verification vectors ⃗v1, . . . , ⃗vn ∈ (Fq)ω

satisfy the additional property that for any subset of sizeω + 1, the corresponding subset of sizeω + 1 formed
from the new vectors [1, ⃗v1], . . . , [1, ⃗vn] ∈ (Fq)ω+1 is a linearly independent set. (This linear independence
assumption is used in the security proof in Section 7.3.) We assume user identities U1, . . . , Un have a repre-
sentation as elements in Fq in some suitable (and public) way.

The TI constructs the polynomial F(x, y1, . . . , yω , z) as

F(x, y1, . . . , yω , z) =
n−1
∑
i=0 ψ

∑
k=0 ai0kxizk + n−1

∑
i=0 ω

∑
j=1 ψ

∑
k=0 aijkxiyjzk ,

where the coefficients aijk ∈ Fq are chosen uniformly at random.
For each Uζ for 1 ≤ ζ ≤ n, the TI computes the signing key

sζ (y1, . . . , yω , z) = F(x, y1, . . . , yω , z)|x=Uζ
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and the verification key
ṽζ (x, z) = F(x, y1, . . . , yω , z)|(y1 ,...,yω)= ⃗vζ .

For each Uζ ∈ U, the TI distributes the corresponding verification vector ⃗vζ , signing key sζ (y1, . . . , yω , z),
and verification key ṽζ (x, z). It is assumed the TI can communicate with the users via secure channels and
deletes the information afterwards.

7.2 Signature generation and verification

For a message m ∈ Fq, a user Uζ generates a signature σ by

σ(y1, . . . , yω) = sζ (y1, . . . , yω , z)|z=m .
To verify a signature pair (m, σ) from Uζ , a user Uν checks that

σ(y1, . . . , yω)|(y1 ,...,yω)= ⃗vν = ṽν(x, z)|x=Uζ ,z=m .
Remark 7.1. The parameter ω in the construction determines themaximumnumber of colluders the scheme
protects against and the parameter ψ determines the maximum number of signatures each user can produce
without revealing their signing information. This is discussed in detail in the security analysis, but for clarity
we briefly sketch how the construction relates to these bounds. In particular, each signing key sζ is a poly-
nomial of degree ψ in z, so users cannot produce more than ψ signatures without revealing sζ . In addition,
if a coalition C consists of ω + 1 users or more, then the verification keys {ṽh}Uh∈C suffice to reconstruct F.
This follows because F is a linear polynomial in Fq[x, z][y1, . . . , yω], and each verification key is a point on
F(y1, . . . , yω). In this case the coalition has ω + 1 linearly independent linear equations in ω + 1 unknowns,
and so C can solve for F.

7.3 Security analysis

Given q, we define the security parameter to be k, where k = log2 q. We consider the game Sig-forgeC,Π(k) and
calculate the probability that the output is 1. In particular, we consider the probability that the coalition C
produces a signature pair (m, σ) satisfying Conditions 4a and 4b of Definition 3.1 separately. Here we prove
the scheme is unforgeable with respect to coalitions C of size at most ω, where C is allowed ψS = (n − ω)ψ
oracle queries to SignO (where ψ is the total number of SignOh oracle queries allowed for each user Uh ∉ C),
and where the number of VrfyO queries, say ψV , is arbitrary. (As shown in the following theorem, the prob-
ability that C creates a successful forgery depends on this value ψV .) That is, we allow C to have at most ω
members and to have access to ψ sample signatures from each user Uh ∉ C. (This is consistent with the fact
that in this USS scheme, each user is allowed to produce at most ψ signatures, so the bound on oracle access
to SignOh for each user Uh ∉ C must be ψ.)

Theorem 7.2. Under the above assumptions, C outputs a signature pair (m, σ) in the game Sig-forgeC,Π(k) of
Definition 3.1 satisfying Condition 4a or 4b with probability at most r

1−r , where r = ψV
q−1 .

Proof. Recall the assumption that the verification vectors ⃗v1, . . . , ⃗vn ∈ (Fq)ω satisfy the additional prop-
erty that for any subset of size ω + 1, the corresponding subset of size ω + 1 formed from the new vectors
[1, ⃗v1], . . . , [1, ⃗vn] ∈ (Fq)ω+1 is a linearly independent set. We use this fact throughout the proof.

Wewish to consider the strongest possible coalition C. To this end,we consider a coalition of sizeωwhose
verification vectors form a linearly independent set. Lemma A.1 implies that this is always possible. Without
loss of generality, assume our adversaries are C = {U1, . . . , Uω}, with target signer Uζ and target verifier Uν.
The coalition C outputs a signature pair (m, σ) with claimed signer Uζ .

For ease of notation, define y0 = 1 and let y⃗ denote the vector (y0, y1, . . . , yω). Then we have

F(x, y⃗, z) =
n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0 aijkxiyjzk .
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We sometimes refer to the user Uh’s augmented verification vector, namely [1, ⃗vh] = (1, vh,1, . . . , vh,ω), as
(vh,0, . . . , vh,ω).

The polynomial F is determined by the n(ω + 1)(ψ + 1) unknown coefficients aijk. The coalition C has
access to the following information:
1. The verification keys ṽ1, . . . , ṽω . We have, for Uh ∈ C,

ṽh(x, z) = F(x, y⃗, z)|y⃗= ⃗vh = n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0 aijkxivh,jzk .

Noting that ṽh is a polynomial with terms of the form (cik)hxizk for 0 ≤ i ≤ n − 1 and 0 ≤ k ≤ ψ, we see
that the coalition C has access to n(ψ + 1)(ω) equations Cikh in the unknowns aijk, where

Cikh : ai0k +
ω
∑
j=1 aijkvh,j = (cik)h

for some (known) element (cik)h ∈ Fq.
We note that these equations

{Cikh : 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω} (7.1)

form a linearly independent set, since the rank of {(1, ⃗v1), . . . , (1, ⃗vω)} ⊆ (Fq)ω+1 is ω. More details are
provided in Appendix A.1.

2. The signing keys s1, . . . , sω. We have, for Uh ∈ C,

sh(y⃗, z) = F(x, y⃗, z)|x=Uh = n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0 aijkU ihyjzk .

Noting that sh is a polynomial with terms of the form (djk)hyjzk, for 0 ≤ j ≤ ω and 0 ≤ k ≤ ψ, we have that
C has access to (ω + 1)(ψ + 1)(ω) equations Djkh in the unknowns aijk, where

Djkh :
n−1
∑
i=0 aijkU ih = (djk)h

for some (known) element (djk)h ∈ Fq.
Now, these equations, together with the equations from (7.1), are not a linearly independent set, due to
the relationships between users’ signing and verification keys. More specifically, for any users Uh and
Uh� , we have

sh(y⃗, z)|y⃗= ⃗vh� = ṽh� (x, z)|x=Uh . (7.2)

Equation (7.2) implies that for each Uh� ∈ C and each choice of 0 ≤ k ≤ ψ, we have a set of ω relations
among the ω + 1 equations {Djkh : 0 ≤ j ≤ ω}.
Thus, the information gleaned from the coalition’s signing information is contained in the set

{Djkh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω}. (7.3)

3. Up to ψ signatures σh,k� from each user Uh ∉ C, on messages mh,k� of C’s choice, where 1 ≤ k� ≤ ψ, with
the exception that C can only access a signature σζ,k� on a messagemζ,k� ̸= m with target signer Uζ . Thus
C has access to n − ω signatures of the form

σh,k� (y⃗) = sh(y⃗, z)|z=mh,k� =
n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0 aijkU ihyj(mh,k� )k .

Note that σh,k� is a polynomial with terms of the form (bj)h,k�yj. Then C has access to (ω + 1)(ψ)(n − ω)
equations Bjhk� in the unknowns aijk, where

Bjhk� :
n−1
∑
i=0 ψ

∑
k=0 aijkU ih(mh,k� )k = (bj)h,k�

for some (known) element (bj)h,k� ∈ Fq.
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In a manner similar to the above analysis, we observe that

σh,k� (y⃗)|y⃗= ⃗vh� = ṽh� (x, z)|x=Uh ,z=mh,k�

for each Uh� ∈ C. Thus it suffices to consider the set

{B0hk� : 1 ≤ k� ≤ ψ} (7.4)

for each Uh ∉ C.
4. Up to ψV query results from the oracle VrfyOh for Uh ∉ C. In the following, we first consider the attack

scenario without VrfyO queries and then move to incorporate these queries into the analysis.
To summarize, the information obtained by C is contained in equation sets (7.1) and (7.3), together with,

for each Uh ∉ C, equation set (7.4). These equations form a linearly independent set; we provide the proof in
Appendix A.1. We have a total of nωψ + nω + ω + ψn equations, which implies we have n − ω free variables
in the given linear system.

With the given information, C can consider the polynomials F�(x, y⃗, z) consistent with the known infor-
mation about F(x, y⃗, z). If a given polynomial F� is consistent with the known information about F, we say F�
satisfies property (∗). We let

F = {F�(x, y⃗, z) : F� satisfies (∗)}.
From above, we have |F| = qn−ω.
Case 1: Uζ ∉ C, Uν ∈ C. In this case, the goal of C is to produce a ζ -authentic signature; we wish to give an
upper bound on C’s probability of success, so we consider the most advantageous method by which C can
create such a signature. If C creates a ζ -authentic signature (m, σ) consistent with C’s known information,
then this is equivalent to C finding Uζ ’s signing key sζ (y⃗, z). This follows because C would then have access
to ψ + 1 points σ(y⃗), σζ,1(y⃗), . . . , σζ,ψ(y⃗) on sζ (y⃗, z), which is a polynomial of degree ψ in z.

The above observation implies we can calculate the probability of success as
!!!!{F�(x, y⃗, z) ∈ F : F�(Uζ , y⃗, z) = F(Uζ , y⃗, z)}!!!!

!!!!{F�(x, y⃗, z) ∈ F}!!!!
.

Using the same notation as before, if F�(Uζ , y⃗, z) = F(Uζ , y⃗, z), we have the ψ + 1 additional equations
{D0kζ : 0 ≤ k ≤ ψ}, rendering the equations {B0k�ζ : 1 ≤ k� ≤ ψ} redundant. We can show the resulting set is
linearly independent, so we have one additional restriction on F�. Recalling that we chose F� from a space of
size qn−ω initially, the coalition C’s probability of success is

qn−ω−1
qn−ω =

1
q
.

Now, suppose C also has access to the VrfyO oracle. We observe that if the query (m, σ) to VrfyOh� results in
True (for some Uh� ∉ C), and (m, σ) is consistent with C’s information about F, then C has successfully deter-
mined Uζ ’s signing key sζ (y⃗, z). To see this, first note that if (m, σ) is consistent with C’s information about F,
then σ(y⃗) = F�(x, y⃗, z)|x=Uζ ,z=m for some F� ∈ F. This implies F�(x, y⃗, z)|x=Uζ ,z=m agreeswith F(x, y⃗, z)|x=Uζ ,z=m
on the ω + 1 points ⃗v1, . . . , ⃗vω, ⃗vh� . By assumption, the augmented verification vectors [1, ⃗v1], . . . , [1, ⃗vω],
[1, ⃗vh� ] ∈ (Fq)ω+1 are linearly independent, so we have

F�(x, y⃗, z)|x=Uζ ,z=m = F(x, y⃗, z)|x=Uζ ,z=m .
In other words, (m, σ) is a ζ -authentic signature. (This result is a consequence of basic linear algebra; we
provide the relevant theory in Lemma A.2 of the Appendix.)

Now, any F� ∈ F also satisfies

F�(x, y⃗, z)|x=Uζ ,z=mζ,k� = F(x, y⃗, z)|x=Uζ ,z=mζ,k�

for 1 ≤ k� ≤ ψ anddistinctmessagesmζ,k� ̸= m. That is, we have a total ofψ + 1points atwhich F�(x, y⃗, z)|x=Uζ
and F(x, y⃗, z)|x=Uζ agree as polynomials in z. Since F� and F are polynomials of degree ψ in z, this is sufficient
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to conclude
F�(x, y⃗, z)|x=Uζ = F(x, y⃗, z)|x=Uζ = sζ (y⃗, z),

as desired. The probability of C finding sζ , however, is the probability of C choosing the correct F�, which, as
we show below, is 1

q−ψV , where ψV is the number of queries to VrfyO with result False.
We now consider ψV queries to VrfyO with result False, supposing each query is consistent with C’s view

of the function F. We observe that each negative query eliminates (at most) one potential signing key for Uζ .
Given that the condition for success does not depend on the particular target verifier’s verification key ⃗vν,
we can calculate the probability of success as before, this time allowing for information gleaned from the ψV
negative queries.Wewrite ̄s1ζ , . . . , ̄sψVζ for these eliminated signing keys, and for readability, wewrite F�ζ (y⃗, z)
for F�(x, y⃗, z)|x=Uζ .

We first need to calculate the number of possible functions F� consistent with C’s view of F, that is,
|{F�(x, y⃗, z) ∈ F : F�ζ ∉ { ̄s1ζ , ̄s2ζ , . . . , ̄sψVζ }}|. We have

!!!!{F
� ∈ F : F�ζ ∉ { ̄s1ζ , ̄s2ζ , . . . , ̄sψVζ }}!!!! =

!!!!{F
� ∈ F}!!!! −

!!!!{F
� ∈ F : F�ζ ∈ { ̄s1ζ , ̄s2ζ , . . . , ̄sψVζ }}!!!!.

We assume the events F�ζ = ̄s1ζ , . . . , F
�
ζ = ̄sψVζ are disjoint, since if ̄siζ = ̄sjζ for some 1 ≤ i, j ≤ ψV , this is

equivalent to fewer verification oracle queries. Following the same reasoning as before, we then have

!!!!{F
� ∈ F : F�ζ ∉ { ̄s1ζ , ̄s2ζ , . . . , ̄sψVζ }}!!!! =

!!!!{F
� ∈ F}!!!! −

ψV
∑
i=1!!!!{F� ∈ F : F�ζ = ̄siζ }

!!!!

= qn−ω − ψVqn−ω−1
= qn−ω−1(q − ψV ).

We can calculate C’s probability of success on the ψV th oracle query as

!!!!{F�(x, y⃗, z) ∈ F : F�ζ ∉ { ̄s1ζ , ̄s2ζ , . . . , ̄sψVζ }, F�ζ = sζ }!!!!
!!!!{F�(x, y⃗, z) ∈ F : F�ζ ∉ { ̄s1ζ , ̄s2ζ , . . . , ̄sψVζ }}!!!!

=
!!!!{F

�(x, y⃗, z) ∈ F : F�ζ = sζ }!!!!
!!!!{F�(x, y⃗, z) ∈ F : F�ζ ∉ { ̄s1ζ , ̄s2ζ , . . . , ̄sψVζ }}!!!!

=
qn−ω−1

qn−ω−1(q − ψV )
=

1
q − ψV

.

C’s overall probability of success in this case is then∑ψV
i=0 1

q−i .
Case 2: Uζ ∉ C, Uν ∉ C. Now suppose Uν ∉ C. In this case, the goal of C is to produce a (ζ, ν)-acceptable
signature. Note that in order for a signature pair (m, σ)with claimed signer Uζ to pass Uν’s verification check,
(m, σ)must satisfy

σ(y⃗)|y⃗= ⃗vν = ṽν(x, z)|x=Uζ ,z=m .
In particular, if (m, σ) is consistent with both Uν’s verification key and with F, then the same analysis as in
the previous case implies that (m, σ) is a ζ -authentic signature, and indeed that C has determined sζ . Thus,
the set of known information (∗) does not help create a (ζ, ν)-fraudulent signature. For the case of creating a
(ζ, ν)-fraudulent signature, the most powerful collusion C includes the signer Uζ , which we consider next.

Case 3: Uζ ∈ C, Uν ∉ C. Here C’s goal is to produce a (ζ, ν)-fraudulent signature. Since the polynomial F and
the set of verification vectors ⃗v1, . . . , ⃗vn ∈ (Fq)ω are chosen independently, we see that the signing keys of C
and sample signatures from Uh ∉ C have no bearing on the probability distribution for the key ⃗vν.

Recall that for any subset of the set { ⃗v1, . . . , ⃗vn} of size ω + 1, the corresponding subset of size ω + 1
formed from the new vectors [1, ⃗v1], . . . , [1, ⃗vn] ∈ (Fq)ω+1 is a linearly independent set. Therefore, knowl-
edge of the keys ⃗vh for Uh ∈ C does affect the probability distribution for the key ⃗vν. In particular, C is aware
that [1, ⃗vν] ̸= ∑ω

j=1 kj[1, ⃗vj] for any choice of {k1, . . . , kω ∈ Fq : ∑ω
j=1 kj = 1}. That is, given ⃗v1, . . . , ⃗vω, there

are qω − qω−1 choices for ⃗vν, any of which are equally likely. We write V for the set of possible vectors ⃗vν.
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Now suppose we want to create a (ζ, ν)-fraudulent signature σ�(y⃗) on a message m. Suppose σ(y⃗) = b0 +
∑ω
j=1 bjyj is the ζ -authentic signature on m. Then writing

σ�(y⃗) = b�0 + ω
∑
j=1 b�jyj ,

we need σ( ⃗vν) = σ�( ⃗vν), but (b0, . . . , bω) ̸= (b�0, . . . , b�ω).
In other words, C needs to find a nonzero vector β⃗ = (b0 − b�0, . . . , bω − b�ω) satisfying β⃗ ⋅ [1, ⃗vν] = 0. The

probability of success is then calculated as

max
β⃗

!!!!{ ⃗vν ∈ V : β⃗ ⋅ [1, ⃗vν] = 0}!!!!
!!!!{ ⃗vν ∈ V}!!!!

≤ max
β⃗

!!!!{ ⃗vν ∈ (Fq)ω : β⃗ ⋅ [1, ⃗vν] = 0}!!!!
!!!!{ ⃗vν ∈ V}!!!!

=
qω−1

qω − qω−1 =
1

q − 1 .

We now consider VrfyO queries. We observe that a positive VrfyOν query (m, σ) allows the coalition C to
win the game Sig-forgeC,Π(k), sowe consider the probability of success givenψV negativeVrfyOν queries, since
this gives the best chance of success. (Note that it is also possible, albeit extremely unlikely, that a positive
VrfyOν query here results in a forgery that is ζ -authentic. The coalition C also wins in this instance, but we are
not concerned with ζ -authentic forgeries here, as the best approach to producing these types of forgeries is
analyzed in Case 1.)

We let V� be the set of possible vectors ⃗vν given the new knowledge gleaned from the ψV negative query
vectors ⃗β1, . . . , ⃗βψV . That is,

V� = { ⃗vν ∈ V : ⃗β1 ⋅ [1, ⃗vν] ̸= 0, . . . , ⃗βψV ⋅ [1, ⃗vν] ̸= 0}.

Now,
!!!!{ ⃗vν ∈ V�}!!!! = !!!!{ ⃗vν ∈ V}!!!! −

!!!!{ ⃗vν ∈ V : ⃗β1 ⋅ [1, ⃗vν] = 0 or ⋅ ⋅ ⋅ or ⃗βψV ⋅ [1, ⃗vν] = 0}!!!!
≥ !!!!{ ⃗vν ∈ V}!!!! −

!!!!{ ⃗vν ∈ (Fq)ω : ⃗β1 ⋅ [1, ⃗vν] = 0 or ⋅ ⋅ ⋅ or ⃗βψV ⋅ [1, ⃗vν] = 0}!!!!

≥ !!!!{ ⃗vν ∈ V}!!!! −
ψV
∑
i=1!!!!{ ⃗vν ∈ (Fq)ω : ⃗βi ⋅ [1, ⃗vν] = 0}!!!!

= (qω − qω−1) − ψVqω−1
= qω−1(q − ψV − 1).

C’s probability of success on the ψV th oracle query is then

max
β⃗

!!!!{ ⃗vν ∈ V� : β⃗ ⋅ [1, ⃗vν] = 0}!!!!
!!!!{ ⃗vν ∈ V�}!!!! ≤ max

β⃗

!!!!{ ⃗vν ∈ (Fq)ω : β⃗ ⋅ [1, ⃗vν] = 0}!!!!
!!!!{ ⃗vν ∈ V�}!!!!

≤
qω−1

qω−1(q − ψV − 1)
=

1
q − ψV − 1 .

This implies the probability of success (considering all verification oracle queries) in this case is∑ψV
i=0 1

q−i−1 .
As Case 3 treats the most powerful coalition, we use these results to establish simple bounds for the

overall probability of success. Setting r = ψV
q−1 , we have
r ≤ Sig-forgeC,Π(k) ≤

r
1 − r

.

This completes the proof of Theorem 7.2.

Remark 7.3. The linear independence assumption in the above construction is not necessary, as observed
by Hanaoka et al. [7], but it does simplify the security analysis. If the linear independence assumption is
not satisfied, we must take into account the rank of { ⃗vh : Uh ∈ C}, which may be strictly less than ω. In this
case, the coalition C has less information, but the proof is similar. We can also increase the robustness of
the construction against verification oracle queries by using a polynomial F(x, y1, . . . , yω+τ , z) of the same
form as above, where τ > 0. This achieves security as outlined in Theorem 7.2, where the coalition has, in
addition, achieved up to τ successful verification oracle queries. This technique is used by Shikata et al. [16]
in their construction, although it is not explained.
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8 USS schemes with key insulation
Key exposure is a major concern in any cryptosystem. In traditional public-key cryptography, Dodis et al. [5]
introduced the notion of key insulation, in which a user’s secret information is split between a physically
secure (and perhaps computationally limited) device H, and an insecure device with temporary secret keys
that are refreshed at intervals with information sent by H. These notions have been applied to signatures in
the traditional setting by Dodis et al. [6] and to unconditionally secure multi-receiver authentication codes
and key agreement by Seito et al. [14] and Seito and Shikata [15]. In this section, we concern ourselves with
key exposure of a user’s signing information. Our main goal is to provide an example of how our basic USS
security model might be extended to incorporate more complicated security notions, such as key insulation.
Our definitions are extensions of those provided by Seito et al. [14] and Seito and Shikata [15] to the signature
setting, keeping in mind the original goals of Dodis et al. [6].

The basic idea is as follows. A user’s signing information is split into a “master” signing key stored on a
secure device, temporary secret-signing keys, which are derived from an initial secret (stored on an insecure
device), and key-updating information (which is sent at intervals from the secure device). For each signer,
we want the scheme to be robust against exposure of either that user’s master signing key or some (strict)
subset of the user’s temporary signing keys, but not both. The overall scheme should be secure provided
these exposure criteria hold for all honest users; this property is called strong key insulation.

We begin by providing a formal definition of an unconditionally secure signature scheme with key insu-
lation (KI-USS) in Section 8.1. In Section 8.2, we give an extension of our basic security model from Section 3
to the key-insulation setting. Once we have established our formal security notions and model, we give an
extension to the USS construction from Hanaoka et al. [7] (which we analyzed in Section 7) in Section 9. The
extension is inspired by a multi-receiver authentication code construction presented by Seito et al. [14].

8.1 Preliminary definitions

We require the following definitions.

Definition 8.1. An unconditionally secure signature scheme with key insulation (or KI-USS scheme) Π con-
sists of a trusted initializer TI, a set U of n users, a set H of n secure devices, a tuple of seven spaces
(T,X, Σ,V, I,MK, SK), and algorithms Gen and {Signζ , Vrfyζ ,MKUpdζ , SKUpdζ }1≤ζ≤n, satisfying the fol-
lowing:
∙ The set U = {U1, . . . , Un} consists of n possible users.
∙ H = {H1, . . . , Hn} is a set of n secure devices, where each Hi ∈ H is the secure device for user Ui ∈ U.
∙ T = {0, 1, 2, . . . , N} is a set of time periods.
∙ X is a finite set of possible messages.
∙ Σ is a finite set of possible signatures.
∙ V is a finite set of possible (secret) verification information.
∙ I is a finite set of possible secret-key-updating information (to keep track of time periods).
∙ MK is a finite set of possible (secret) master keys.
∙ SK is a finite set of possible secret signing keys. The set SKt is the set of possible signing keys at time

period t.
∙ The key-generation algorithmGen takes as input 1k, where k is a security parameter, and the total number

of time periods N and outputs a master secret keymk∗ := (mk1, . . . ,mkn) ∈ MKn and initial signing key
information sk∗ := (sk01, . . . , sk

0
n) ∈ SKn, together with verification keys {vζ ∈ V : 1 ≤ ζ ≤ n}.

∙ For eachUζ ∈ U, themaster-key-updating algorithmMKUpdζ : MK × T → I for userUζ takes as inputUζ ’s
master key mkζ , and a time period t ∈ T, and returns secret key-updating information mk(t−1,t)ζ ∈ I. The
key-updating informationmk(t−1,t)ζ ∈ I is used by Uζ in order to update his signing key from time period
t − 1 to time period t, as described by the next algorithm SKUpdζ .
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∙ For each Uζ ∈ U, the signing-key-updating algorithm SKUpdζ : T × SK × I → SK takes as input a time pe-
riod t ∈ T, a secret signing key sk(t−1)ζ for time period t − 1, and secret key-updating informationmk(t−1,t)ζ ,
and returns a signing key sktζ ∈ SKt for time period t.

∙ For eachUζ ∈ U, the signingalgorithmSignζ : T × X × SK → Σ takes as input a timeperiod t ∈ T satisfying
t > 0, a message x ∈ X, and a signing key sktζ ∈ SK, and returns a signature σ ∈ Σ. We let Signtζ denote
the algorithm Signζ (t, ⋅, sktζ ).

∙ For each Uζ ∈ U, the verification algorithm Vrfyζ : X × T × Σ × U × V → {True, False} takes as input a mes-
sage x ∈ X, a timeperiod t ∈ T, a signature σ ∈ Σ, a signerUν ∈ U, andverificationkey vζ ∈ V, andoutputs
either True or False. For each user Uζ , we let Vrfytζ denote the algorithm Vrfyζ (⋅, t, ⋅, ⋅, vζ ).
Scheme Phases:

1. Key generation phase. For each Uζ ∈ U, the TI runs Gen and securely distributes (mkζ , sk0ζ , vζ ) to Uζ . The
TI then deletes all keys from his memory. Each user Uζ places his master keymkζ on his secure device Hζ
and then deletesmkζ from his memory.

2. Update phase. To update signing information for a user Uζ from time period t − 1 to period t, the secure
device Hζ runs MKUpdζ (mkζ , t) and sends the output mk(t−1,t)ζ to Uζ via a secure channel. The user Uζ
then runs SKUpd(t, sk(t−1)ζ ,mk(t−1,t)), which outputs sktζ , the signing key for the new time period t. The
user Uζ then deletes sk(t−1)ζ andmk(t−1,t) from his memory.

3. Signing phase. To sign a message x ∈ X during a time period t, a user Uζ runs his signing algorithm
Signtζ (x), which outputs a signature σ ∈ Σ. The user Uζ then forms the signature triple (x, t, σ).

4. Verification phase. To verify a signature triple (x, t, σ) from a signer Uν, a user Uζ runs his verification
algorithm Vrfytζ (x, σ, Uν). If the output of Vrfy

t
ζ (x, σ, Uν) is True, then Uζ believes that the signature pair

was actually produced by Uν’s signing algorithm during time period t as claimed.
It is required that, for every k, for every N, for every set {Signζ , Vrfyν : 1 ≤ ζ, ν ≤ n} of signing and veri-

fication algorithms output by Gen(1k , N), for every pair Uζ , Uν ∈ U, and for every x ∈ X and t ∈ T such that
t > 0, it holds that

Vrfytν(x, Signtζ (x), Uζ ) = True.

Remark 8.2. Weare treating deterministic signature schemes only, in the sense that all algorithms exceptGen
are deterministic, although the above definition can easily be extended to the randomized setting.

8.2 Security model

The concepts of authentic, acceptable, and fraudulent signatures are defined as before.

Definition 8.3. A signature σ ∈ Σ on amessage x ∈ X during a time period t ∈ T is ζ -authentic if σ = Signtζ (x).

Definition 8.4. A signature σ ∈ Σ on a message x ∈ X during a time period t ∈ T is (ζ, ν)-acceptable if
Vrfytν(x, σ, Uζ ) = True.

Definition 8.5. A signature σ ∈ Σ on a message x ∈ X during a time period t ∈ T is (ζ, ν)-fraudulent if σ is
(ζ, ν)-acceptable but not ζ -authentic.

Informally, we wish to guard against two types of possible key exposure for each honest user Uℓ. Wewant the
scheme to be secure against either (but not both) of the following attacks on honest users Uℓ ∈ U:
∙ Signing key exposure: Compromise of user Uℓ’s signing keys from the insecure device for up to γ time

periods
∙ Master key exposure: Compromise of Uℓ’s secure device, wheremkℓ is stored.

We need to define the following oracles. The first two of these oracles are used to model possible key
exposure for honest users, and the latter two are direct generalizations of the signing and verification oracles
used for regular USS schemes.
∙ The SigningExposureO(⋅, ⋅) oracle; this oracle takes as input a user Uℓ ∈ U and a time period t ∈ T (where

t > 0) and outputs Uℓ’s signing information for period t, namely Signtℓ(⋅). This oracle is used to model
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compromise of Uℓ’s insecure device for up to γ time periods, where Uℓ’s temporary signing keys are
stored.

∙ TheMasterExposureO(⋅) oracle; this oracle takes as input a user Uℓ ∈ U and outputs Uℓ’s master keymkℓ.
This oracle is used to model compromise of Uℓ’s secure device, where the master keymkℓ is stored.

∙ The SignOℓ (⋅, ⋅) oracle; this oracle takes as input a message x ∈ X and time period t ∈ T and outputs an
ℓ-authentic signature on the message x for time t.

∙ The VrfyOℓ (⋅, ⋅, ⋅, ⋅) oracle; this oracle takes as input a signature triple (x, t, σ) (i.e., a message x ∈ X, a time
period t ∈ T, and a signature σ ∈ Σ) and a signer Uζ , and runs user Uℓ’s verification algorithm on input
(x, t, σ, Uζ ), outputting True or False.
We now define the formal model as follows:

Definition 8.6. Let Π be aKI-USS scheme (with notation as defined inDefinition 8.1),with security parameter
k. Let C ⊆ Ube a coalition of atmostω users and letψS,ψV , and γ bepositive integers.Wedefine the following
signature game KI-Sig-forgeC,Π(k) with target signer Uζ and verifier Uν:
1. Gen(1k) is run to obtain the pair (mk∗, sk∗).
2. The coalition C is given bounded access to the MasterExposureO(⋅) and SigningExposureO(⋅, ⋅) oracles,

as well as the SignOℓ (⋅, ⋅) and VrfyOℓ (⋅, ⋅, ⋅, ⋅) oracles. The rules for oracle access are as follows:
a. For each Uℓ ∉ C, the coalition C is permitted only one of the following:

∙ SigningExposureO(Uℓ, t) for up to γ time periods t ∈ T\{0};
∙ MasterExposureO(Uℓ).
We let T� = {t ∈ T : C has accessed SigningExposureO(Uζ , t)}.

b. The coalition C is given bounded access to the oracles SignOℓ (⋅, ⋅) and VrfyOℓ (⋅, ⋅, ⋅, Uζ ) for ℓ satisfying
Uℓ ∉ C. In particular, C is allowed a total of ψS and ψV queries to the SignO and VrfyO oracles,
respectively, with at most ψS/(n − |C|) queries to SignOℓ (⋅) for each ℓ satisfying Uℓ ∉ C. It should be
noted that C has unlimited access to the signing and verification algorithms of any Uℓ ∈ C. For each
time period t ∈ T, we let Qt denote the set of messages that the coalition submitted as queries to
the SignOζ (⋅, t) oracle. Note that Qt does not contain messages submitted as queries to SignOℓ (⋅, t) for
ℓ ̸= ζ .

3. The coalition C outputs a signature triple (x, t, σ).
4. The output of the game is defined to be 1 if and only if one of the following conditions is met:

a. Uν ∉ C and σ is a (ζ, ν)-fraudulent signature on x for period t; or
b. Uζ ∉ C and σ is a ζ -authentic signature on x for period t, where x ∉ Qt and t ∉ T�.

Definition 8.7. Let Π be a KI-USS scheme (with notation as defined in Definition 8.1) with security parameter
k and let ϵ(k)be anegligible functionof k.We say Π is strongly (ω, γ, ψS , ψV , ϵ)-unforgeable if for all coalitions
C of at most ω users, and all choices of target signer Uζ and verifier Uν, it holds that

Pr[KI-Sig-forgeC,Π(k) = 1] ≤ ϵ(k).

Given the nature of signing key exposure, it is reasonable to consider a scenario in which two or more con-
secutive time periods are compromised by the adversary. In this case, it is quite possible (or even likely) that
the adversary gains access not only to the signing keys from the exposed periods, but also the key-updating
information sent from the user’s secure device between those compromised time periods. To protect against
this, it is useful to consider the notion of secure key updates [5], which says that the combination of signing
information from two consecutive exposed periods t − 1 and t, together with the key-updating information
between these periods, should be equivalent to the signing information from these two periods alone.

Definition 8.8. Let Π be a strongly (ω, γ, ψS , ψV , ϵ)-unforgeable KI-USS scheme. Suppose a coalition C of
at most ω users plays the signature game of Definition 8.6, with the modification that any time C accesses,
for a user Uℓ ∉ C and two consecutive time periods t − 1 and t, the oracles SigningExposureO(Uℓ, t − 1) and
SigningExposureO(Uℓ, t), the coalition C receives the additional information mk(t−1,t)ℓ , together with Uℓ’s
signing information from periods t − 1 and t. If Π satisfies Definition 8.7 with this new signature game, we
say that Π has secure key updates.
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9 Construction: USS scheme with key insulation
We now give an extension to the USS construction from Hanaoka et al. [7], which we analyzed in Section 7.
The extension presented here uses ideas from a multi-receiver authentication code construction presented
by Seito et al. [14].

The construction given here is very similar to the basic construction given in Section 7, except that we
need our polynomial construction to be divided into two pieces, so that we can split each user’s signing
algorithm into an initial signing key which is stored on the user’s insecure device and a master signing key
which is stored on the user’s secure device.

To that end, we use a polynomial F of the same form as the basic construction and a polynomial mk,
which has a similar form as F but is extended to take into account time periods. The polynomials F and mk
are used to construct (by substituting a user’s identity into these polynomials, as before) each user’s initial
signing key and master signing key, respectively. A user’s overall signing information for a particular time
period is the sum of these two polynomials evaluated at the user’s identity and the given time period.

9.1 Key pair generation

Let q be a prime power such that q > n. (In practice, we pick q to be much larger than n.) Let Fq be a fi-
nite field with q elements. The TI picks n verification vectors ⃗v1, . . . , ⃗vn ∈ (Fq)ω uniformly at random for
users U1, . . . , Un, respectively, subject to one additional constraint. For technical reasons, we assume the
verification vectors ⃗v1, . . . , ⃗vn ∈ (Fq)ω satisfy the additional property that for any subset of size ω + 1, the
corresponding subset of size ω + 1 formed from the new vectors [1, ⃗v1], . . . , [1, ⃗vn] ∈ (Fq)ω+1 is a linearly
independent set. We assume user identities U1, . . . , Un and time periods {1, . . . , N} have a representation as
elements in Fq in some suitable (and public) way.

The TI constructs two polynomials:
1. The polynomial F(x, y1, . . . , yω , z), where

F(x, y1, . . . , yω , z) =
n−1
∑
i=0 ψ

∑
k=0 ai0k0xizk + n−1

∑
i=0 ω

∑
j=1 ψ

∑
k=0 aijk0xiyjzk ,

where the coefficients aijk0 ∈ Fq are chosen uniformly at random.
2. The polynomialmk(x, y1, . . . , yω , z, t), where

mk(x, y1, . . . , yω , z, t) =
n−1
∑
i=0 ψ

∑
k=0

γ
∑ℓ=1 ai0kℓxizk tℓ + n−1

∑
i=0 ω

∑
j=1 ψ

∑
k=0

γ
∑ℓ=1 aijkℓxiyjzk tℓ.

For each user Uζ for 1 ≤ ζ ≤ n, the TI computes the initial signing key

sk0ζ (y1, . . . , yω , z) = F(x, y1, . . . , yω , z)|x=Uζ ,
themaster signing key

mkζ (y1, . . . , yω , z, t) = mk(x, y1, . . . , yω , z, t)|x=Uζ ,
and the verification key

ṽζ (x, z, t) = F(x, y1, . . . , yω , z)|(y1 ,...,yω)= ⃗vζ +mk(x, y1, . . . , yω , z, t)|(y1 ,...,yω)= ⃗vζ .
It is assumed the TI sends sk0ζ ,mkζ , ⃗vζ , and ṽζ to the corresponding user via a secure channel and deletes the
information from his memory afterwards. The user Uζ places his master signing keymkζ (y1, . . . , yω , z, t) on
his secure device Hζ and deletes this information from his memory.
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9.2 Updating phase

To update his signing key from a time period t0 to the next time period t1, a user Uζ requests key-updating
information from the secure device Hζ . The device Hζ computes

mk(t0 ,t1)ζ (y1, . . . , yω , z) := mkζ (y1, . . . , yω , z, t)|t=t1 −mkζ (y1, . . . , yω , z, t)|t=t0
and sends this polynomial via a secure channel to Uζ .

The user Uζ then computes

Sign(t1)ζ (y1, . . . , yω , z) = Sign(t0)ζ (y1, . . . , yω , z) +mk(t0 ,t1)ζ (y1, . . . , yω , z),

where the signing key for time period t = 1 is defined by

Sign(1)ζ = sk0ζ (y1, . . . , yω , z) +mk(0,1)ζ (x, y1, . . . , yω , z).

Remark 9.1. For a given time period t0 > 0, user Uζ ’s signing key is as follows:

Sign(t0)ζ (y1, . . . , yω , z) = F(x, y1, . . . , yω , z)|x=Uζ +mk(x, y1, . . . , yω , z, t)|x=Uζ ,t=t0 .
9.3 Signature generation and verification

For a message m ∈ Fq during time period t0, Uζ generates a signature by

σ(y1, . . . , yω) = Sign(t0)ζ (y1, . . . , yω , z)|z=m .
To verify a signature pair (t0, σ) from Uζ on a message m, a user Uν checks that

σ(y1, . . . , yω)|(y1 ,...,yω)= ⃗vν = ṽν(x, z, t)|x=Uζ ,z=m,t=t0 .
Remark 9.2. As in the basic construction, the parameter ω determines the maximum number of colluders
the scheme protects against and the parameter ψ determines themaximumnumber of signatures (on unique
messages) each user can produce without revealing their signing information. Similarly, the parameter γ is
the maximum number of time periods for which a user Uh’s temporary signing key can be compromised (so
long as Uh’s master signing key is not exposed).

9.4 Security analysis

We consider the security of this construction in a restricted model, specified as follows. We let Q denote the
set of messages that the coalition submitted as queries to the SignOζ oracle. We then replace Condition 4b of
Definition 8.6 with the following:
4b. Uζ ∉ C and σ is a ζ -authentic signature on x for period t, where x ∉ Q and t ∉ T�.

This weakened condition allows forgeries (x, t, σ) for signer Uζ in the case where a ζ -authentic signature
for some time t� ̸= t is known (and Uζ ’s signing key for time period t has not been exposed). We can mitigate
the impact of this type of forgery in our construction by assuming messages m contain effective dates for
signatures. In this sense, an adversary can create a new signature on m for a different time period once he
has seen the first signature on m, but the effective date of the signature will remain the same, i.e., this type
of forgery will be detectable.

Given q, we define the security parameter to be k, where k = log2 q. We consider KI-Sig-forgeC,Π(k) and
calculate the probability that the output is 1. In particular, we consider the probability that the coalition C
produces a signature triple (m, t�, σ) satisfying Conditions 4a and 4b of Definition 8.6 separately. Here C is al-
lowed, for eachUh ∉ C, either γ queries to SigningExposureO(Uh , ⋅)or the single queryMasterExposureO(Uh),
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but not both. We prove the scheme is unforgeable with respect to coalitions C of size at most ω, where C is
allowed ψS = (n − ω)ψ oracle queries to SignO (where ψ is the total number of SignOh oracle queries allowed
for each user Uh ∉ C), andwhere the number of VrfyO queries, sayψV , is arbitrary. (As shown in the following
theorem, the probability that C creates a successful forgery depends on this value ψV .) That is, we allow C to
have at most ωmembers and to have access to ψ sample signatures from each user Uh ∉ C. (This is consistent
with the fact that in this USS scheme, each user is allowed to produce at most ψ signatures, so the bound on
oracle access to SignOh for each user Uh ∉ C must be ψ.)

Theorem 9.3. Under the above assumptions, the coalition C outputs a signature triple (m, t�, σ) in the game
KI-Sig-forgeC,Π(k) of Definition 8.6 satisfying Condition 4a or 4b with probability at most r

1−r , where r = ψV
q−1 .

Proof. Recall the assumption that the verification vectors ⃗v1, . . . , ⃗vn ∈ (Fq)ω satisfy the additional prop-
erty that for any subset of size ω + 1, the corresponding subset of size ω + 1 formed from the new vectors
[1, ⃗v1], . . . , [1, ⃗vn] ∈ (Fq)ω+1 is a linearly independent set. We use this fact throughout the proof.

We consider the strongest possible coalition C. To this end, we consider a coalition of size ω whose veri-
fication vectors form a linearly independent set. Lemma A.1 implies that this is always possible. Without loss
of generality, assume our adversaries are C = {U1, . . . , Uω}, with target signer Uζ and target verifier Uν. We
assume that the coalition C outputs a signature (t�, σ) for some choice of time period t� and message m, with
claimed signer Uζ .

For ease of notation, define y0 = 1 and let y⃗ denote the vector (y0, y1, . . . , yω). Let G(x, y⃗, z, t) denote
F(x, y⃗, z) +mk(x, y⃗, z, t). Then

G(x, y⃗, z, t) =
n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0

γ
∑ℓ=0 aijkℓxiyjzk tℓ.

We sometimes refer to a user Uh’s augmented verification vector, namely [1, ⃗vh], as (vh,0, . . . , vh,ω).
The polynomial F is determined by the n(ω + 1)(ψ + 1)(γ + 1) unknown coefficients aijkℓ. The coalition

C has access to the following information:
1. The verification keys ṽ1, . . . , ṽω . We have, for Uh ∈ C,

ṽh(x, z, t) = G(x, y⃗, z, t)|y⃗= ⃗vh = n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0

γ
∑ℓ=0 vh,jaijkℓxizk tℓ.

Noting that ṽh is a polynomial with terms of the form (cikℓ)hxizk tℓ for 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, and
0 ≤ ℓ ≤ γ, we have that C has access to n(ψ + 1)(γ + 1) equations Cikℓh in the unknown coefficients aijkℓ
for each Uh ∈ C, where

Cikℓh : ω
∑
j=0 vh,jaijkℓ = (cikℓ)h

for some (known) (cikℓ)h ∈ Fq. We note these equations

{Cikℓh : 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ, 1 ≤ h ≤ ω} (9.1)

form a linearly independent set, since the rank of {(1, ⃗v1), . . . , (1, ⃗vω)} ⊆ (Fq)ω+1 is ω.
2. The signing information for each Uh ∈ C. That is, the initial signing keys sk0h(y⃗, z) = F(Uh , y⃗, z), as well

as the master signing keysmkh(y⃗, z, t) = mk(Uh , y⃗, z, t).
Rewriting these equations, we have

sk0h(y⃗, z) =
n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0U ihaijk0yjzk

and

mkh(y⃗, z, t) =
n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0

γ
∑ℓ=1U ihaijkℓyjzk tℓ.
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We observe that both sk0h and mkh are polynomials with terms of the form (djkℓ)hyjzk tℓ, for 0 ≤ j ≤ ω,
0 ≤ k ≤ ψ, and 0 ≤ ℓ ≤ γ. So C has access to (ω + 1)(ψ + 1)(γ + 1) equations Djkℓh in the unknown coeffi-
cients aijkℓ for each Uh ∈ C, where

Djkℓh : n−1
∑
i=0 U ihaijkℓ = (djkℓ)h

for some (known) (djkℓ)h ∈ Fq. Now, these equations, together with the equations from (9.1), are not
a linearly independent set, due to the relationships between users’ signing and verification keys. More
specifically, for any users Uh and U�

h, we have

sk0h(y⃗, z)|y⃗= ⃗vh� +mkh(y⃗, z, t)|y⃗= ⃗vh� = ṽh� (x, z, t)|x=Uh . (9.2)

Equation (9.2) implies that for each Uh ∈ C and each choice of k and ℓ, for 0 ≤ k ≤ ψ and 0 ≤ ℓ ≤ γ, we
have a set of ω relations among the ω + 1 equations {Djkℓh : 0 ≤ j ≤ ω}.
Thus, the information gleaned from the coalition’s signing information is contained in the set

{D0kℓh : 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ, 1 ≤ h ≤ ω}. (9.3)

3. Key exposure information for honest users. For each Uh ∉ C, we allow the coalition either signing key
exposure or master key exposure (but not both for a given user). For a given Uh ∉ C, this information
takes one of the following forms.
∙ Signing key exposure for Uh ∉ C: C has access to Signth1h , . . . , Signthγh , where th1 , . . . , thγ are valid

time periods. We have, for a given time period thd (where 1 ≤ d ≤ γ),

Signthdh (y⃗, z) = G(Uh , y⃗, z, thd ) =
n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0

γ
∑ℓ=0 aijkℓU ih(thd )ℓyjzk .

Note that Signthdh is a polynomial with terms of the form (ejk)thd yjzk for 0 ≤ j ≤ ω and 0 ≤ k ≤ ψ, so
the coalition C has access to equations Ejkthd in the unknown coefficients aijkℓ, where

Ejkthd :
n−1
∑
i=0 γ

∑ℓ=0 aijkℓU ih(thd )ℓ = (ejk)thd

for some (known) (ejk)thd ∈ Fq. In a manner similar to the previous analysis, we observe the relation

Signthdh (y⃗, z)|y⃗= ⃗vh� = ṽh� (x, z, t)|x=Uh ,t=thd
for any pair of users Uh and Uh� . Thus, considering Uh� ∈ C and fixing k, we have a set of ω rela-
tions among the ω + 1 equations {Ejkthd : 0 ≤ j ≤ ω}. This implies that any new information gained
by signing key exposure for the user Uh is contained in the set

{E0kthd : 0 ≤ k ≤ ψ, 1 ≤ d ≤ γ}. (9.4)

∙ Master key exposure for Uh ∉ C:

mkh(y⃗, z, t) =
n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0

γ
∑ℓ=1U ihaijkℓyjzk tℓ.

Now,mkh is a polynomial with terms of the form (djkℓ)ℓyjzk tℓ, for 0 ≤ j ≤ ω, 0 ≤ k ≤ ψ, and 1 ≤ ℓ ≤ γ.
So C has access to (ω + 1)(ψ + 1)(γ) equationsDjkℓh in the unknown coefficients aijkℓ for eachUh ∉ C,
where

Djkℓh : n−1
∑
i=0 U ihaijk = (djkℓ)h
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for some (known) (djkℓ)h ∈ Fq. As before, the relation between users’ signing and verification keys
implies that it suffices to consider the set

{D0kℓh : 0 ≤ k ≤ ψ, 1 ≤ ℓ ≤ γ} (9.5)

for the user Uh.
4. Signing oracle queries for each user Uh ∉ C. The coalition C has access to ψ signing oracle queries for

each user Uh ∉ C. We first observe that for both types of key exposure, the result of a signing oracle
query on message m for a period t0 contains enough information for C to determine the signature on
m for all other time periods. This is easy to see for the case of master key exposure, since C can compute
F(x, y, z)|x=Uh ,z=m by subtracting mkh(y⃗, z, t)|z=m,t=t0 from the signature. This is the case for signing key
exposure so long as the coalition Cmaximizes its information by requesting a signature for a time period
for which C does not already have the signing key. In this case, C knows a signature on m in γ + 1 time
periods, so he can solve for G(x, y⃗, z, t)|x=Uh ,z=m, as this is a polynomial of degree γ in t. Therefore the
time period requested in a signature oracle query is irrelevant to this analysis; for simplicity we use th as
a placeholder for the time period in requested signatures from signer Uh.
That is, C has access to up to ψ signatures σh,k� from each user Uh ∉ C, on messages mh,k� of C’s choice,
where 1 ≤ k� ≤ ψ, with the exception that C can only access a signature σζ,k� on amessagemζ,k� ̸= mwith
signer Uζ .
Each requested signature has the form

σh,k� = G(x, y⃗, z, t)|x=Uh ,z=mh,k� ,t=th = n−1
∑
i=0 ω

∑
j=0 ψ

∑
k=0

γ
∑ℓ=0 aijkℓU ih(mh,k� )k(th)ℓyj .

Note that σh,k� is a polynomial with terms of the form (bj)h,k�yj for 0 ≤ j ≤ ω, so C has access to equations
Bjhk� , where

Bjhk� :
n−1
∑
i=0 ψ

∑
k=0

γ
∑ℓ=0 aijkℓU ih(mh,k� )k(th)ℓ = (bj)h,k�

for some (known) (bj)h,k� ∈ Fq. As before, we have

σthh,k� (y⃗)|y⃗= ⃗vh� = ṽh� (x, z, t)|x=Uh ,z=mh,k� ,t=th
for each Uh� ∈ C. Thus it suffices to consider the set

{B0hk� : 1 ≤ k� ≤ ψ} (9.6)

for each Uh ∉ C.
5. Up to ψV query results from the oracle VrfyOh for Uh ∉ C. In the following, we discuss the attack sce-

nario without VrfyO queries. Incorporating these queries into the analysis follows as in the proof of The-
orem 7.2.
To summarize, the information obtained by the coalition C is contained in the following sets of equations:

sets (9.1) and (9.3), together with, for each Uh ∉ C, one of set (9.4) or set (9.5) (depending on the type of
key exposure), and set (9.6). These equations do form a linearly independent set; we provide the proof in
Appendix A.2. We have a total of nω(ψ + 1)(γ + 1) + ω(ψ + 1)(γ + 1) + (n − ω)γ(ψ + 1) + (n − ω)ψ equations,
which implies that we have n − ω free variables in the given linear system.

With the given information, C can consider the polynomials G�(x, y⃗, z, t) consistent with the known in-
formation about G(x, y⃗, z, t). If a given polynomial G� is consistent with the known information about G, we
say G� satisfies property (∗). We let

G = {G�(x, y⃗, z, t) : G� satisfies (∗)}.
From above, we have |G| = qn−ω.
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Case 1: Uζ ∉ C, Uν ∈ C. In this case, the goal of C is to produce a ζ -authentic signature (m, σ) for some time
period t� (for which C does not already have the corresponding signing key). We first observe that produc-
ing a ζ -authentic signature for such a time period t� is equivalent to producing Uζ ’s general signing key
Signζ (y⃗, z, t) = G(x, y⃗, z, t)|x=Uζ . Oncewe have this result, the rest of the proof for this case is almost identical
to that provided in Theorem 7.2, so we do not provide the details here.

To see this, suppose C produces a ζ -authentic signature (m, σ) for time period t� ̸= tζi for 1 ≤ i ≤ γ con-
sistent with C’s information. Then C has access to a total of ψ + 1 points (namely, the signatures onm and on
mζ,1, . . . ,mζ,ψ) on G(x, y⃗, z, t)|x=Uζ ,t=t� , which is a polynomial of degree ψ in z. Thus C can solve for

Signt�ζ (y⃗, z) = G(x, y⃗, z, t)|x=Uζ ,t=t� ,
so C knows Uζ ’s signing key for the time period t�. There are then two cases to consider, depending on which
type of key exposure C has for the target signer Uζ :
1. Suppose C has signing key exposure against Uζ for γ time periods, denoted by tζ1 , . . . , tζγ . Then C knows

Signt�ζ , Sign
tζ1
ζ , . . . , Sign

tζγ
ζ , i.e., γ + 1 points on Signζ (y⃗, z, t), which is a polynomial of degree γ in t. So

C can solve for Signζ (y⃗, z, t).
2. Suppose C has master key exposure for Uζ , so C knowsmkζ (y⃗, z, t). Then

Signt�ζ (y⃗, z) −mkζ (y⃗, z, t)|t=t� = (G −mk)(x, y⃗, z, t)|x=Uζ ,t=t� = F(x, y⃗, z)|x=Uζ .
That is, C knows both F(x, y⃗, z)|x=Uζ andmkζ (y⃗, z, t), the sum of which yields Signζ (y⃗, z, t).

Case 2:Uζ ∉ C,Uν ∉ C andCase 3:Uζ ∈ C,Uν ∉ C. The casewhereUζ ∉ C,Uν ∉ C and the casewhereUζ ∈ C,
Uν ∉ C follow the same argument as for the basic USS scheme provided in the proof of Theorem 7.2, so we do
not reproduce the proof here.

Theorem 9.4. The above scheme has secure key updates.

Proof. This is easy to see from the scheme definition. For a given user Uh, consider the signing information
Signth1h and Signth2h from the two consecutive periods th1 and th2 . We see that

Signth2h − Signth1h = mk(th1 ,th2 )h ,

which is the key-updating information from period th1 to th2 .

10 Conclusion
Wehave presented a new securitymodel for unconditionally secure signature schemes, onewhich fully treats
the implications of having multiple verification algorithms. In particular, we have given a formal discussion
of dispute resolution, a necessary component of any USS scheme, and analyzed the effect of dispute resolu-
tion on unforgeability. We have provided formal definitions of non-repudiation and transferability, and given
sufficient conditions for a USS scheme to satisfy these properties. Moreover, we have analyzed the trust as-
sumptions required in typical examples of dispute resolution. We have given an analysis of Hanaoka et al.’s
construction [7] in our security model. Finally, we have provided an extension of our basic framework to the
setting of key-insulation and presented a construction, inspired by the original construction of Hanaoka et
al. [7] and the work of Seito et al. [14] and Seito and Shikata [15], which satisfies our security definitions.

A Analysis of constructions
We need the following lemmas:
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Lemma A.1. Let n ∈ ℕ and consider the set of n + 1 vectors

R = { ⃗ri = (ri,1, . . . , ri,n) ∈ (Fq)n : i = 1, . . . , n + 1}.

If the vectors { ⃗ri� = (1, ri,1, . . . , ri,n) ∈ (Fq)n+1 : i = 1, . . . , n + 1} form a linearly independent set, then there
exists a subset R� ⊂ R of linearly independent vectors of size n.
Proof. Consider the matrix

M = (

1 r1,1 r1,2 . . . r1,n
1 r2,1 r2,2 . . . r2,n
...

...
...

...
1 rn+1,1 rn+1,2 rn+1,n

) .

Let Mij denote the (i, j) minor matrix of M. Then calculating the determinant of M by expansion along
the first column, we have

det(M) =
n+1
∑
i=1(−1)i+1 det(Mi,1). (A.1)

Recall M is invertible, so det(M) ̸= 0. Thus (A.1) implies det(Mk,1) ̸= 0 for some k ∈ {1, . . . , n}. We con-
clude that the matrix Mk,1 is invertible, so the desired subset R� exists.
Lemma A.2. Let n ∈ ℕand let F and F� bepolynomials in y1, . . . , yn of the form a0 + ∑n

i=1 aiyi overFq. Suppose
F� and F agree on the n + 1 vectors

R = { ⃗ri = (ri,1, . . . , ri,n) ∈ (Fq)n : i = 1, . . . , n + 1}.

If the vectors { ⃗ri� = (1, ri,1, . . . , ri,n) ∈ (Fq)n+1 : i = 1, . . . , n + 1} form a linearly independent set, then F� = F.
Proof. Define linear homogeneous polynomials G, G� ∈ Fq[y0, . . . , yn] such that

G(y0, . . . , yn)|y0=1 = F(y1, . . . , yn)

and
G�(y0, . . . , yn)|y0=1 = F�(y1, . . . , yn).

We have (G − G�)(1, ri,1, . . . , ri,n) = 0 for 1 ≤ i ≤ n + 1. In particular, this forms a homogeneous linear
system of n + 1 equations in the n + 1 unknowns a0, . . . , an. Since the vectors (1, ri,1, . . . , ri,n) ∈ (Fq)n+1
for i = 1, . . . , n + 1 are linearly independent, it follows that G − G� is the zero polynomial, so G = G�. Hence
F = F�, as desired.
A.1 Basic construction: Proof of linear independence

We use assumptions and notation as in the proof of Theorem 7.2. Recall that the information obtained by the
coalition C is contained in equation sets (7.1) and (7.3), together with, for each Uh ∉ C, equation set (7.4).
We have a total of nωψ + nω + ω + ψn equations, which would imply there are at least n − ω free variables
in the given linear system.

We proceed by showing that allowing C access to an additional n − ω equations (in the form of sample
signatures from each user not in C) suffices to solve the linear system. This implies the linear independence
of the original set of equations, as desired.

Lemma A.3. Let Uh ∉ C. Suppose C has access to an additional h-authentic signature fromUh on somemessage
mh,ψ+1 satisfying mh,ψ+1 ̸= mh,k for 1 ≤ k ≤ ψ. Then this is equivalent to C having access to all of the signing
information from Uh.

Proof. This follows immediately from the fact that Uh’s signing algorithm sh(y⃗, z) is a polynomial of degree
ψ + 1 in z.
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Lemma A.3 implies that the system of equations

{Cikh : 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω} ∪ {D0kh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ n}

is equivalent to the original system of equations known to C, plus n − ω additional equations

{B0h(ψ+1) : Uh ∉ C}

(obtained froman extra h-authentic signature on somenewmessagemh,ψ+1 for eachUh ∉ C). In the following
lemma, we show this new set is linearly independent, and therefore the linear independence of the original
set follows.

Lemma A.4. The coefficient matrix formed from the equations

{Cikh : 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω} ∪ {D0kh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ n}

has nonzero determinant.

Proof. The coefficient matrix E is a block matrix of the form

E = [A 0
C D] ,

where A and D are square matrices. Thus the determinant of the coefficient matrix, det(E), is defined by
det(E) = det(A)det(D). We show that det(E) ̸= 0.

Here the submatrix
[A 0 ]

is derived from the equations {D0kh : 0 ≤ k ≤ ψ, 1 ≤ h ≤ n}, where

A =
[[[[[

[

Vn 0 ⋅ ⋅ ⋅ 0
0 Vn ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ Vn

]]]]]

]

is a diagonal matrix with (ψ + 1) Vandermonde matrices Vn on the diagonal. That is, we have

Vn =
[[[[[

[

1 U1 ⋅ ⋅ ⋅ Un−11
1 U2 ⋅ ⋅ ⋅ Un−12
...

...
. . .

...
1 Un ⋅ ⋅ ⋅ Un−1n

]]]]]

]

.

To see that A is invertible, note that det(A) = det(Vn)ψ+1 ̸= 0.
The submatrix

[ C D ]

is derived from the equations {Cikh : 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, 1 ≤ h ≤ ω}.
The matrix D is defined by

D =
[[[[[

[

v1,1 I v1,2 I ⋅ ⋅ ⋅ v1,ω I
v2,1 I v2,2 I ⋅ ⋅ ⋅ v2,ω I
...

...
. . .

...
vω,1 I vω,2 I ⋅ ⋅ ⋅ vω,ω I

]]]]]

]

,

where I is the n(ψ + 1) × n(ψ + 1) identity matrix.
The fact that det(D) ̸= 0 follows immediately from the linear independence of the coalition’s verification

keys { ⃗vh : 1 ≤ h ≤ ω}.
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Remark A.5. The security analysis for a general coalition (whose verification keys may or may not be linearly
independent) is very similar. Recall the assumption that the n elements ⃗v1, . . . , ⃗vn ∈ (Fq)ω satisfy the addi-
tional property that for any subset of size ω + 1, the corresponding subset of size ω + 1 formed from the new
vectors [1, ⃗v1], . . . , [1, ⃗vn] ∈ (Fq)ω+1 is a linearly independent set. Consider a possible coalition C of size ω,
where V = { ⃗vh : Uh ∈ C} is the set of C’s verification keys. Then Lemma A.1 implies that, for any ⃗vr ∉ V, we
can pick a subset of size ω with full rank from V ∪ { ⃗vr}.

There are then two cases. Either the set V has rank ω, so that V forms a basis for (Fq)ω, or the additional
vector ⃗vr is needed to form a basis. In the former case, the analysis is as above. In the latter, the span of V is
a subspace of (Fq)ω of dimension ω − 1. The linear system corresponding to C’s information has n − (ω − 1)
free variables, which can be shown using a linear algebra trick similar to the one used above.

In fact, if we did not have any additional assumptions on user verification keys (other than that they are
chosen uniformly at random from (Fq)ω), the proof follows much as before. A coalition C’s information in
this case depends on the rank of V, i.e., the linear system has n − r free variables, where r = rank(V).

A.2 Key insulation construction: Proof of linear independence

We use assumptions and notation as in the proof of Theorem 9.3. Recall that the information obtained by
the coalition C is contained in the following sets of equations: sets (9.1) and (9.3), together with, for each
Uh ∉ C, one of set (9.4) or set (9.5) (depending on the type of key exposure), and set (9.6). We have a to-
tal of nω(ψ + 1)(γ + 1) + ω(ψ + 1)(γ + 1) + (n − ω)γ(ψ + 1) + (n − ω)ψ equations, which implies that we have
n − ω free variables in the given linear system.

Weuse the samemethod as inAppendixA.1;we include the argument here for completeness.Weproceed
by showing that allowing C access to an additional n − ω equations (in the form of sample signatures from
each user not in C) suffices to solve the linear system. This implies the linear independence of the original set
of equations, as desired.

Lemma A.6. Let Uh ∉ C. Suppose C has access to an additional h-authentic signature fromUh on somemessage
mh,ψ+1 satisfying mh,ψ+1 ̸= mh,k for 1 ≤ k ≤ ψ in addition to either master key or signing key exposure from Uh.
Then this is equivalent to C having access to all of the signing information from Uh.

Proof. Consider a user Uh ∉ C. Then C has access to up to ψ sample signatures from Uh on distinct messages
mh,k for 1 ≤ k ≤ ψ, which yield the equations {B0hk� : 1 ≤ k� ≤ ψ}. Suppose C has access to one additional
signature from Uh, yielding the additional equation B0h(ψ+1).

Now suppose C has achieved master key exposure for Uh. Then the coalition C has access to the set
{D0kℓh : 0 ≤ k ≤ ψ, 1 ≤ ℓ ≤ γ}. Let

Bh = {D0kℓh : 0 ≤ k ≤ ψ, 1 ≤ ℓ ≤ γ} ∪ {B0hk� : 1 ≤ k� ≤ ψ}.
We show that the coalition having access to the set Bh ∪ {B0h(ψ+1)} is equivalent to C knowing all of the signing
information for Uh, namely the set

{D0kℓh : 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ}.

First note that these two sets are both of cardinality (ψ + 1)(γ + 1).
It is easy to see that the equations in Bh ∪ {B0h(ψ+1)}may be written as a linear combination of the equa-

tions in {D0kℓh : 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ}. To see that Bh ∪ {B0h(ψ+1)} suffices to derive the signing information of
Uh, note that there are ψ + 1 equations {B0hk� : 1 ≤ k� ≤ ψ + 1} in the ψ + 1 unknowns {D0k0h : 0 ≤ k ≤ ψ}.
(The linear independence of these equations is guaranteed so long as the messages chosen for the sample
signatures from Uh are distinct.)

Now suppose C has signing key exposure for Uh instead of master key exposure. Let

B�
h = {E0kthd : 0 ≤ k ≤ ψ, 1 ≤ d ≤ γ} ∪ {B0hk� : 1 ≤ k� ≤ ψ}.
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It is easy to see that the equations in Bh ∪ {B0h(ψ+1)}may be written as a linear combination of the equations
in {D0kℓh : 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ} and that these two sets have the same cardinality. To see that Bh ∪ {B0h(ψ+1)}
suffices to derive the signing information of Uh, note that there are ψ + 1 equations {B0hk� : 1 ≤ k� ≤ ψ + 1}
and γ(ψ + 1) equations {E0kthd : 0 ≤ k ≤ ψ, 1 ≤ d ≤ γ} in the (ψ + 1)(γ + 1) unknowns {D0kℓh : 0 ≤ k ≤ ψ,
0 ≤ ℓ ≤ γ}. (The linear independence of these equations is guaranteed so long as the messages chosen for the
sample signatures from Uh are distinct.)

The following lemma completes the result:

Lemma A.7. The coefficient matrix formed from the equations

{Cikℓh : 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ, 1 ≤ h ≤ ω} ∪ {D0kℓh : 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ, 1 ≤ h ≤ n}

has nonzero determinant.

Proof. The coefficient matrix E is a block matrix of the form

E = [A 0
C D] ,

where A and D are square matrices. Thus the determinant of the coefficient matrix, det(E), is defined by
det(E) = det(A)det(D). We show that det(E) ̸= 0.

Here the submatrix
[A 0 ]

is derived from the equations {D0kℓh : 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ, 1 ≤ h ≤ n}, where

A =
[[[[[

[

Vn 0 ⋅ ⋅ ⋅ 0
0 Vn ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ Vn

]]]]]

]

is a diagonal matrix with (ψ + 1)(γ + 1) Vandermonde matrices Vn on the diagonal. That is, we have

Vn =
[[[[[

[

1 U1 ⋅ ⋅ ⋅ Un−11
1 U2 ⋅ ⋅ ⋅ Un−12
...

...
. . .

...
1 Un ⋅ ⋅ ⋅ Un−1n

]]]]]

]

.

To see that A is invertible, note that det(A) = det(Vn)(ψ+1)(γ+1) ̸= 0.
The submatrix

[ C D ]

is derived from the equations {Cikℓh : 0 ≤ i ≤ n − 1, 0 ≤ k ≤ ψ, 0 ≤ ℓ ≤ γ, 1 ≤ h ≤ ω}. The matrix D is defined
by

D =
[[[[[

[

v1,1 I v1,2 I ⋅ ⋅ ⋅ v1,ω I
v2,1 I v2,2 I ⋅ ⋅ ⋅ v2,ω I
...

...
. . .

...
vω,1 I vω,2 I ⋅ ⋅ ⋅ vω,ω I

]]]]]

]

,

where I is the n(ψ + 1)(γ + 1) × n(ψ + 1)(γ + 1) identity matrix.
The fact that det(D) ̸= 0 follows immediately from the linear independence of the coalition’s verification

keys { ⃗vh : 1 ≤ h ≤ ω}.
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